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Generalization of the Method 
of D-Decomposition 

JINDŘICH SPAL 

The well-known Nejmark's method of ^-decomposition is generalized for the cases of more 
than two parameters and of more general regions in the root plane than that of stability. An 
example of ^-decomposition in the three-parametric space is given for illustration. 

1. INTRODUCTION 

The method of D-decomposition was used by Nejmark in order to find stability 
regions in mono- and biparametric spaces (cf. [1], [3]). The idea occurs of pos
sible generalization in two ways: 

1. The application of other criteria in the decomposition than that of stability, such 
as non-zero stability measure, constant damping and even other more intricate 
requirements.. 

2. The decomposition in spaces of more than two parameters; a very important 
case is that of the three-parametric space because of the w'de use of three-para
metric PID controllers. 

The first of the mentioned ways does not require any principal modification 
of the original Nejmark's method in most cases. On the other hand, the boundaries 
of regions are usually too complicated in the three-parametric space, and even more 
in spaces of more than three parameters, to allow a successful use of the original 
Nejmark's procedure. The local analysis of the variability of roots, using their 
derivatives at the boundaries of the regions, often gives much better results. 

The present paper deals with this problem in more detail. The considerations are 
illustrated by an example of the decomposition in the three-parametric space. 



2. BASIC RELATIONS 

Let X be a space of m-dimensional vectors with real components {xj} (j = 1, . . . 
. . . , m ) . 

The algebraic equation 

(1) P(P) = tak.p
k = 0 

k = 0 

is assumed in normal form with a„ — 1. The other coefficients are generally linear 
functions of the parameters Xj\ 

(2) ak = bk0 + Y bkj -xj, (j = 1; . • •, m) , 

ak> bk0, bkj being fixed real numbers. The introduction of (2) into (l) yields: 

(3) Afo(p) + £ Af/p) . xj = 0 
J = I 

with 

(4) Mj(p) = ibkj.p
k (j = 0;l;...;m). 

k = 0 

The roots p may be real or pairs of complex conjugate values of the general form 

(5) p = a + i . co . 

Thus Mj(p) can be generally written in the form: 

(6) Mj(p) = Kj(a, co) + \.co. Lj(a, co), 

Kj(a, co), Lj(a, co) being linear combinations of products of the form a". co2" (u 3: 0. 

z; ^ 0 being integers). Consequently both are even functions in respect of co. 

The decomposition of (3) into its real and imaginary part gives the relations: 

(7) iiKj(a,co).xj + K0(a,co) = 0, 

(8) . co . ( f Lj(a, co). Xj + L0(a, co)) = 0 . 
J'=I 

The roots are evidently functions of the parameters xt; ...; xm: 

(5-a) p(Xl; ...;xm) = <-(*.; ...;xm) + i . a > ( * . ; • • • ; x m ) . 



The differentiation of (3) with respect to x,- yields: 431 

(9) i t = fa. + i ^£i = ~ M ; ( p ) 

5x ; Sx,. *ax ; P ( 1 )(p ;x, ; . . . ; x m ) ' 

where 

(9-a) P^\p; x i ; . . . ; xm) = M(1>(p) + £ M J 1 ^ ) . x , , 
J = I 

(9-b) M(-1)(p) = ~ M / p ) (J = 0; 1; . . . , m) . 
dp 

If p is a simple root and xx; . . . ; xm are its corresponding parameters, there is 
Mil\p; x, ; . . . ; x,„) #= 0. For multiple roots Ma\p; x x ; . . . ; xm) = 0 and (9) does 
not lead to an effective result. 

A modified procedure is applicable in the case of multiple roots (cf.[2]). Varying 
the value of one of the parameters Xj by a finite value Ax} we get from (1) the relation: 

(10) P(p + Ap) = t ak(xt; ...;xj + AXj; ...;xm).(p + Apf . 
k = 0 

Taking into account the linearity of (2) and expanding (10) with the use of the 
binomial theorem, we get after some arrangements [2]: 

(11) t Ap". P*\P) = -Axj. I Ap" . i ( ? ) . bkJ. ?-», 
h=0 h = 0 k = 0 \nJ 

Pw(p) being the derivative of P(p) of the degree h. If p is an r-fold root the derivat
ives Pw(p) = 0 for all h < r. 

The relation (11) can be used for the estimation of Ap for its sufficiently "mall 
value. Let ht be the lowest value of h giving non-zero value of derivative. Fur
ther let h2 be the lowest value of h (if any) giving non-zero value of 

(u-a) m2) = i{^).bkj.r^. 

The dominant variation Ap can be than estimated for small values of Ap: 

( l 2 ) AP - o(Ы 
-Q(h2).AxjVI«"-^ 

P«"\p) ) 

If there does not exist any value of h2 giving non-zero Q(h2) or if h. < h2 then 
the root is invariant with respect to the variations of Xj. 



3. THE PROBLEMS OF SYNTHESIS 

3.1. General 

The relations (7), (8) bind the values of the parameters x,; . . . ; xm with the values 
of the corresponding roots /?,; ...;pn. The functions Kj(a,co), Lj(a, a>) are too 
complicated to allow an efficient solution in respect of the roots. On the other hand 
they are linear in respect of the parameters x , ; . . . ; x„„ thus making possible a rela
tively simple analysis of the parametric space if the values of the roots are known 
or defined. The problems of this kind are known as the problems of synthesis. 

3.2. Complete Synthesis 

The problem of complete synthesis is defined as follows: 
Values of the parameters x.; . . . ; xm are to be found from given values of all 

roots pk (k = 1; . . . ; n) of the equation (1). Expressing P(p) by means of its root 
factors we get the relation: 

(13) f\(P~ Pk) = t^-Pk-
<c = l k = 0 

The comparison of corresponding coefficients of the left-hand and the right-hand 
sides gives the values of ak for the system (2), thus giving: 

(14) X bkJ. xj = ak - bk0 
i=i 

for all k, up to k == n — 1. 
The properties of such a system are well known and can be interpreted for the 

purpose of the complete synthesis as follows: 

1. The system (14) has a solution if and only if the matrix of the system (the matrix 
of the left-hand side coefficients) and the augmented matrix (obtained by joining 
the column of negative right-hand values to the matrix of the system) are of the 
same rank. If the ranks of both matrices are different there does not exist any 
set of parametric values giving the given set of roots of the thus defined equation 

(-)• 
2. If the system has a solution and if the ranks of both matrices are m then the 

system has a unique solution. There exists exactly one set of parameters (one point 
in the parametric space..X) giving the desired set of roots. The number of the 
linear equations (11) may be equal or superior to m. In the latter case some of the 
equations are lineary dependent. 

3. If the system is solvable and the rank of both matrices r is inferior to m there exists 
at least one set of (m — r) free parameters, the values of which may be chosen 
arbitrarily; the values of the remaining basic parameters can be then established 
from the system (14). 



3.3. The Synthesis of Roots 

The problem consists in establishing necessary and sufficient conditions for those 
parametric values, ensuring the existence of a given real root or of a given pair 
of complex roots. The problem may be extended to the requirement of simultaneous 
existence of more than one root, resp. of more than one pair of complex roots. Two 
cases are to be distinguished: 

1. the synthesis of simple roots, 

2. the synthesis of multiple roots. 

There are two basic methods of solving this problem. 

Method I 

The root values are introduced into the relations (7), (8). The equations, linear 
in respect of the parameters, which are obtained in this way, define a subspace of X, 
ensuring the existence of the respective roots. If this subspace is represented by an 
empty set it is evident that the complete set of the chosen roots cannot be obtained 
with the given structure of the parametric relations (2). It must be kept in mind that 
the relation (8) is always fulfilled for any real root as a) has zero value. Thus the 
relation (8) does not represent any limiting condition in the synthesis of real roots, 
only the relation (7) being significant in this respect; this holds for the synthesis 
of simple real roots, — This method is not directly applicable in the synthesis of multi
ple roots. 

Method II 

The introduction of (2) into (1) gives an algebraic equation containing in explicite 
form the parameters x,; . . . ; x,„ within its coefficients. Let us divide this polynomial 
by the product of all root factors, corresponding to the desired roots taking into 
account their eventual multiplicity. This division gives a resulting polynomial, as 
well as a residual polynomial, the coefficients of which are generally functions of the 
parameters. The existence of the given roots is equivalent with the requirement of 
zero value of any of the residual polynomials. The mathematical formulation of this 
condition gives a set of limitations, defining the chosen subspace of X, thus ensuring 
the existence of all required roots, including their eventual multiplicity. 

3.4. Example of a Root Synthesis 

3.4.1. Formulation of the Polynomial 

May the polynomial be defined as follows: 

P(p) = p6 + 6p5 + (12 - 2x, + x2 + 3x3) . pA + 



434 + (35 + 2x, + 2x2 + x 3 ) . p3 + (46 - 2x, + 5x. + 2x 3 ) . p2 + 

+ (32 + 6x, + x2 + 4x 3 ) . p + (20 - 3x2 + 2x 3 ) . 

3.4.2. Synthesis of a Pair of Complex Roots Pi,2 = — 1 ± i 

Root factor: p2 + 2p + 2. 
Resulting polynomial: / + 4p3 + (2 - 2Xj + x2 + 3x 3 ) . p2 + (23 + 6xt -

- 5x 3 ) . p + (-4 - 10xx + 3x2 + 6x3). 
Conditions of the zero value of the residual polynomial: 

14xj - 7x2 + 2x3 = 6 , 

20x, - 9x2 - 10x3 = - 2 8 . 

These linear equations define a straight line in the three-dimensional parametric 
space, representing the subspace of X, which ensures the existence of at least one 
given pair of roots. 

3.4.3. Synthesis of two pairs of roots: pia = — 1 + i; PIA — — 1 + 2i 

Root factor: p 4 + 4p3 + \\p2 + \4p + 10. 
Resulting polynomial: p2 + 2p + (-7 — 2xj + x2 + 3x3). 
Zero residual polynomial: 

lOx, - 2x2 - l l x 3 + 27 = 0 , 

20xj - 6x2 - 31x3 + 85 = 0, 

34x, - 15x2 - 38x3 + 110 = 0, ' 

20x, - 13x2 - 28x3 + 90 = 0 . 

This system of equations has a unique solution: 

xx = 1 ; x2 = 2 ; x3 = 3 . 

3.4.4 Synthesis of a Pair of Double Roots pU2,3A = — 1 ± i 

Root factor: p4 + 6p3 + \4p2 + 16p + 8. 
Resulting polynomial: p2 + 2p + (—4 — 2x t + x2 + 3x3). 
Zero residual polynomial: 

10x! - 2x2 - l l x 3 + 27 = 0 , 

14xj - 3x2 - 22x3 + 58 = 0, 

22xt - 7x2 - 20x3 + 64 = 0, 

8xx - 7x2 - 20x3 + 36 = 0 . 



This system of equations does not have any solution; the synthesis of the desired 435 
double roots is not feasible. 

3.5. Synthesis of Root Regions 

3.5.1. Formulation of the Problem 

The problem consists in determining that part of the parametric space, which 
corresponds to the defined region of the complex root plane. The determination 
of stability regions in the parametric space is evidently a special case of this problem. 

3.5.2. General Way of Solution 

This is evidently a problem of mapping between the root plane and the parametric 
space. The solution can be found in two steps: 

1. Mapping of the boundary of the region. 

2. Determination of that side of the boundary image, which corresponds to the 
interior of the region. 

Before starting the solution it is necessary to make sure that the entire region defined 
in the root plane allows mapping. For example mapping can be exactly defined only 
for such regions, which are symmetrical to the real axis of the root plane. This 
follows from the fact that the functions Kj{a, co), Lj{a, co) according to (6) are even 
functions of co. 

3.5.3. Mapping of the Boundary 

Let us consider the mapping of that part of the region, which is represented by 
the region lying in the upper half of the root plane. According to what has been said 
before, this maps simultaneously the conjugate part lying in the lower half of the root 
plane. The part under consideration is generally limited by a part of the real axis 
and by a continuous curve of complex root values with positive imaginary parts. 

Any single real root p — a of the root plane corresponds to one relation of the 
form (7), which defines a plane of the parametric space, ensuring the existence of this 
root. The differentiation of (7) in respect of p yields another relation, linear in respect 
of the parameters x,; . . . ; xm, i.e. another plane of the parametric space. As known 
from differential geometry, the intersection of both these planes defines a straight 
line, corresponding to the existence of a double root of the same value p. The varia
tion of the value p along the boundary lying on the real axis of the root plane gives 
a system of straight lines, forming a skew surface in the m-dimensional parametric 
space Thus any point of this skew surface corresponds to the mapping of a double 
real root. 



Together with any simple complex root the corresponding conjugate root is defined, 
too. The relations (7), (8) define a straight line in the parametric space, ensuring 
the existence of at least one pair of the given complex conjugate roots. The variation 
of p along the complex boundary gives again a system of straight lines in the para
metric space, representing another skew surface as the result of mapping of the 
complex part of the boundary of the root plane. This skew surface begins and ends 
on the skew surface of the double real roots, the final straight lines giving the inter
section of the image of the "complex" curve with the image of the real axis of the 
root plane. 

The singular case of the linear dependence of (7), (8) may occur, defining a plane 
in the parametric space and thus partitioning supplementarily the parametric space. 

Double complex roots are again defined by simultaneous validity of (7), (8) and 
their derivatives. Higher derivatives give higher multiplicity of the roots. 

The skew surface and the singular planes may form own and mutual intersections, 
thus partitioning the parametric space often in a very complicated manner. Geome
trical interpretation surpasses in most cases the capabilities of intuitive imagination. 
The analytic discussion of the local behaviour is usualy the more efficient way of 
treatment. 

3.5.4. Local Investigation of the Boundaries 

The boundary may be expressed in the complex root plane in parametric form, 
using an auxiliary real parameter X: 

(15) o=f(X), co = g(X). 

The sense of increasing values of A defines a direction of circulation on the boundary 
with one point of discontinuity. These functions are assumed continuous in respect 
of a, (o and at least by parts smooth. Thus the functions (15) have at least one deriva
tive everywhere, except, perhaps, a finite number of points. In any point of smooth
ness there exists a tangent of the boundary with the angle of inclination q>t: 

(16) cos ę, 

df(X) dg(X) 

dX . dX 
sm ę, = 

im+m] im+mi 
The normal at this point has the angle of inclination 

(17) <P„ = <pt ± ~ • 

Let us choose the sign in (17) in such a way that the normal be directed to the 
interior of the region. 



3.5.5. Mapping along the Complex Boundary 

May the set of parametric values [x1; . . . ; x,„} define a single root p(l) on the skew 
surface, which maps the "complex" root boundary. Then according to (9) a derivative 
exists in respect of any parameter Xj (j = 1; . . . ; m), which can be transformed 
to the polar form: 

(is) ?-r + , - r --i • •"»(*/-o. 
OXy OXy <?Xy 

where D^ ^ 0 is the modulus; ipj the argument of the derivative. 

The value of cos (\jfj - cp„) represents a criterion of the movement of the respective 
root, produced by the variation of the respective parameter Xj. A positive increment 
of the parameter shifts the root in the direction of the interior if cos (\j/j — cp„) > 0; 
in the direction of the outside if cos (\j/j — cpn) < 0; and in the direction of the 
tangent if cos ({//j - <p„) = 0. The value of Dj is a measure of the "sensitivity" 
of this movement. 

Similarily the value of cos (\jjj — (p,) makes possible the estimation of the move
ment of the root in respect of the direction of the tangent of the boundary. 

3.5.6. Mapping of the Real Part of the Boundary 

The mapping of the real part of the boundary merits special attention. 
Any point of the real part of the boundary allows two ways of interpretation: 

1. as a single real root; 

2. as a double real root. 

In both cases the values of Mj(p)(j = 0; 1; . . . ; m) according to (3) and (4) are real. 
A definite real derivative, given by (9), exists in the former case, describing the 

movement of the root along the real axis [2]. This can be interpreted as a position 
"apart from the boundary of the region of complex roots". 

The latter case happens if the root and the parameters fulfill the two conditions: 

(19) Mn(p) + £ Mj(p) . x, = 0 , 

(20) M$Kp) + iM?Xp).xj-0, 

where 

(21) My\p) = ^-Mj(P) (j = 0 ; l ; . . . ; m ) . 
dp 

The discussion of the proximity of the skew surface (19), (20) can be done by means 
of the method given above (formulae (11), (12)). 



3.5.7. Conclusions on Root Region Synthesis 

For the general boundary in the root plane, consisting of a real and a complex 
part, two skew surfaces are defined as mapping to the parametric space, one corres
ponding to the real part, the other to the complex part of the boundary. 

The former is a part of the unlimited skew surface, mapping the entire real axis 
of the root plane, as represented by double real roots; it separates the parametric space 
into two halfspaces: that of the pairs of real roots (equal or different) and that of the 
pairs of complex conjugate roots. 

The latter skew surface starts and ends on the former one by straight lines, which 
are common to both skew surfaces, thus separating the parametric halfspace of the 
complex roots into the image of the interior and that of the exterior of the synthetized 
root region. 

This division of the parametric space may be quite complicated, the separating skew 
surfaces intersecting oneself, as well as each other. Moreover the separation may 
comprise singular planes, corresponding to linear dependence of the defining equa
tions. 

The examination of the nature of the boundaries and of the consequences of para
metric variations was given in 3.5.5 and 3.5.6. 

4. EXAMPLE OF DECOMPOSITION IN THE THREE-PARAMETRIC 
SPACE 

4.1. The System under Examination 

The decomposition, given further, concerns the system defined by the algebraic 
equation: 

(A) p4 + (5 + 0-2x.) . p3 + (11 + x, + 0-2x2) :p2 + 

+ (15 + x2 + 0-2x3).p + x3 = 0 . 

The introduction of p = a + i . a> gives, after the decomposition into the real and 
imaginary part, the following basic relations: 

(B-l) ((-0-6(7 - 1). co2 + (0-2(73 + a2)) • x. + (-0-2o>2 + (0-2a2 + a)) 

. x2 + (0-2(7 + 1). x3 = 

= -co4 + (6a2 + 15(7 + 11) -co2 - (a4 + 5a3 + \\a2 + 15a), 

(B-2) co((-0-2w2 + (0-6a2 + a)). x, + (0-4,7 + \). x2 + 0-2x3) = 

= co((4a + 5). Q)2 - (4a3 + 15a2 + 22a + 15)). 



The differentiation of (A) with respect to the parameters gives: 439 ! 

(C-l) ^.Q(p;xl;x2;x3)= -(0-2p3 + p 2 ) , 
OXy 

(C-2) | £ . . Q(p; x,; x2; x3) = -(0-2p2 + p), 
ox2 

(C-3) ~.Q(p;xux2;x3)= -(0-2p+ 1) , 
ox3 

where 

(C-4) Q(p; x, ; x2; x3) = (4p3 + \5p2 + 22p + 15) + 

+ (0-6p2 + 2p). Xl + (0-4p + 1). x2 + 0-2x3 . 

4.2. Real Roots 

The introduction of co = 0 into (B-l) gives the condition of the existence of at 
least one real root p = a in the form: 

(D-l) (0-2cr3 + a2) . Xi + (0-2a2 + a) . x2 + (0,2a + l) . x3 = 

= - ( a 4 + 5a3 + \\a2 + \5a) . 

The relation (B-2) is always fulfilled by virtue of a> = 0. The zero value of the 
remaining factor (B-2) gives: 

(D-2) (0-6cr2 + 2a). x, + (0-4a + l) . x2 + 0-2x3 = 

= -(4a3 + \5a2 + 22a + 15), 

which is the derivative of (D-l) in respect of a. The simultaneous fulfilment of both 
(D-l) and (D-2) gives the relations for the skew surface of the double roots with 
a as parameter; this skew surface separates the parametric space into the halfspace 
of real roots and that of complex roots. 

Another differentiation of (D-2) with respect to a gives: 

(D-3) P(2\a) = (12a2 + 30a + 22) + (l-2a + 2) . x, + 0-4x2 . 

For a = 0 the expression (D-l) defines the plane 

(E-l) x3 = 0 

and (D-2) defines another plane: 

(E-2) x2 + 0-2x3 = - 1 5 , 



440 their intersection giving the parametric set of at least double zero roots: 

(E-3) x2 = - 1 5 , x3 = 0 . 

The introduction of (E-3) into (D-3) gives: 

(E-4) P(2)(0) = 16 + 2x, . 

Thus the parametric values of x t = — 8; x2 = —15; x3 = 0 give a threefold 
zero root, the remaining non-zero root being p4 = -3-4 . 

Other values of x,, combined with x2 — —15; x3 = 0, give two zero roots, the 
remaining two roots being different from zero. For example x, = —3-2843 . . 
gives-a twofold zero root and another twofold real root p3A = —2-1716 . . . ; simi
larity for x, = 53-2843 . . . a twofold zero root and another twofold real root p3A = 
= -7-8284 . . . is obtained. These points of the parametric space are points of 
intersection of the skew surface of double real roots with itself. 

Let us now perform the examination of the point (-3,2843; —15; 0) on the 
variability of the roots with the variation of parameters. Applying (11), (12) we get: 

p<2>(0) = 9,4315 , 

Apxi = 0 , 

Apx2 = -0-1060. Ax2, 

only one of the pair of roots being subject to variation 

AP*3 = ±0-1456 . , / ( _ x 3 ) . i for Ax3 > 0 , 

Apx3 - ±0-1456 . V|_x31 for zlx3 < 0 . 

This indicates that the positive increment Ax3 is directed to the region of pairs 
of complex roots, the negative increment to the direction of pairs of real unequal 
roots. 

The analysis of the same point in respect to the real root p = a = —2-1716 gives: 

/*- ) (_ 2-1716) = 9-4315 

with the variability: 

For x, :Ap(x1) as ±0-5318 ./(-_x,), 

for x2 : Ap(x2) <a +0-3609 N/( + _x 2) , 

for x3 :Ap(x3) « ±0-2449 v ! ( - _ x 3 ) . 

In all cases both roots undergo variations with the variation of any of the para
meters x,; x2; x3. For _x, the positive increment is directed to the region of complex 
roots; the same is valid for the positive increment of Ax3; but the shift is directed 
to the region of complex roots for negative increments Ax2. 



Pl.2 = a 

a Ruling straight line 

0 л 2 = - 1 5 ; л 3 = 0 

-0-25 *1 - 2 л 2 = 23-232; A - 16 л 3 = -6-364 

- 0 - 5 *1 л 2 = 9-367; Xt- 4 л 3 = -4-878 

-0-75 *1 - 0-667 л 2 = 5-383; л"! - 1-778 л 3 = -3-573 

— 1 *1 - 0-5 л 2 = 3-75; л, - л 3 = - 2 - 5 

-1-25 *1 - 0-4 л 2 = 2-931; x{ - 0-64 л 3 = -1-722 

-1-5 Л i - 0-333 л 2 = 2-372; л-[ - 0-444 л 3 = -1-327 

-1-75 *1 - 0-286 л 2 = 1-789; XІ - 0-327 x3 = -1-435 

- 2 *1 - 0-25 л 2 = 0-972; ЛÍ - 0-25 л 3 = -2-222 

-2-25 *1 - 0-222 л 2 = - 0-288; xx - 0-198 л 3 = -3-946 

- 2 - 5 Л"i - 0-2 л 2 = - 2-25; xx - 0-16 л 3 = - 7 

-2-75 *1 - 0-182 л 2 = - 5-290; xv - 0-132 л 3 = -12-006 

- 3 *1 - 0-167 л 2 = - 1 0 Л"! - 0111 л 3 = - 2 0 

Tab. I contains the analytic expression of some ruling straight lines of the skew 
surface of double real roots. 

4.3. Complex Boundaries 

In most cases the complex boundaries consist of simple roots, except perhaps some 
isolated multiple roots. The examination does not present difficulties and the method 
of differentiation (formula (9)) is applicable in establishing the variations of the roots. 
Some examples are given in the following. 

For the limit of stability [a = 0) the following equations are obtained: 

(F-1) 

(F-2) 

— C02 . xľ - 0-2ш2 . x 2 + x 3 = - ю 4 + l lw 2 , 

-0-2CУ 2 . x, + x2 + 0-2x3 = 5co2 - 15 . 

Tab. II gives the equations of several ruling straight lines of the corresponding skew 
surface. It is worth noting, that the separation applies only for the halfspace of com
plex roots, but is not valid for the halfspace of unequal real roots. 

The further example gives a skew surface of constant damping (<r = A; co = 1-5A): 

(F-3) (-1-15A3 - 1-25A2).X! + (-0-25A2 + X). x2 + (0-2A + 1) . x 3 = 

= 7-4375A
4
 + 28-75A

3
 + 13-75A

2
 - 15A , 

(F-4) (0-15A
2
 + 2X). x, + (0-4A + 1) . x

2
 + 0-2 . x

3
 = 

= 5A
3
 - 3-75A

2
 - 22A - 15 . 



ra R u l i n g s t r a i g h t l ine 

0 xг = — 1 5 ; JC 3 = 0 

0-25 xг = - 1 4 - 7 8 8 ; xt - 16 JC 3 = - 7 - 9 8 0 

0-5 л-2 = —14-146; xx — 4 л-3 = - 7 - 9 2 1 

0-75 J C 2 = - 1 3 0 6 8 xx - 1-778 JC 3 = - 7 - 8 2 4 

1 л r 2 = - 1 1 - 5 3 8 * i - * з = - 7 - 6 9 2 

1-25 JC 2 = - 9-540 л-j — 0-64 лr3

 = - 7 - 5 2 9 

1-5 JC 2 = - 7-053 л"! - 0-444 JC 3 = - 7 - 3 3 9 

1-75 x2 = - 4-053 jc t - 0-327 JC 3 = - 7 - 1 2 7 

2 JC 2 = - 0-517 лҷ — 0-25 л-3 = - 6 - 8 9 7 

2-25 JC 2 = + 3-577 л-j - 0-198 JC 3 = - 6 - 6 5 3 

2-5 JC 2 = + 8-25; JCJ — 0-16 JC 3 = - 6 - 4 

2-75 J C 2 = + 1 3 - 5 2 3 ; xx - 0-132 JC 3 = - 6 - 1 4 2 

3 J C 2 = + 1 9 - 4 1 2 ; xx - 0-111 JC 3 = - 5 - 8 8 2 

a= X; co = ± И . І 

X R u J i n g s t r a i g h t Jine 

0 JC 2 = - 1 5 ; JC 3 = 0 

- 0 - 2 5 Ч - 2 JC 2 = 22-375; лҷ - 4-923 лг3 = - 6 - 3 0 9 

- 0 - 5 * 1 - * 2 = 7-889; xt - 1-231 JC 3 = - 4 - 6 0 9 

- 0 - 6 2 5 JCI — 0-8 JC 2 = 5-209; JCJ - 0-788 JC 3 = - 3-740 

- 0 - 7 5 JCI - 0-667 JC 2 = 3-581; JC, - 0-547 J C 3 = - 2 - 8 4 8 

- 0 - 8 7 5 jc t — 0-571 JC 2 = 2-574; xx - 0-402 J C 3 = - 1 - 9 2 3 

- 1 Xi — 0-5 JC 2 = 1-978; xi - 0-308 JC 3 = - 0 - 9 5 9 

- 1 - 2 5 xt — 0-4 JC 2 = 1-588; xt - 0-197 J C 3 = + 1 - 1 2 2 

- 1 - 5 JCJ - 0-333 JC 2 = 1-892; xt - 0-137 J C 3 = + 3 - 4 4 8 

- 1 - 7 5 лrt — 0-286 JC 2 = 2-623; jcj - 0 1 0 0 JC 3 = + 6 0 4 2 

- 2 JCJ — 0-25 JC 2 = 3-611; JCІ - 0-077 J C 3 = + 8 - 8 8 9 

Tab. I l l gives some equations of the ruling straight lines of this skew surface. 

The case of constant measure of stability (a = —1) leads to the equations: 

(F-5) (-0-4co2 + 0-8). x, + (-0-2o)2 - 0-8). x 2 + 0-8 . x 3 = 

= -co* + 2co2 + 8 , 

(F-6) ( - 0 - 2 Û > 2 - 1-4). x, + 0-6 . x2 + 0-2 . x3 = co2 - 4 . 



Some equations of the ruling straight lines are summarized in Tab. IV. 

Tab. IV. 

a= - 1 

Ю Ruling straight line 

0 x i ~ 0 5 л 2 = 3-75; xl ~~ xз = —2-5 
0-25 x i - 0-5 x2 = 3-715; л t - 0-941 x3 = -2-451 
0-5 x i - 0-5 л 2 = 3-606; Л[ — 0-8 x3 = —2-308 
0-75 x i - 0-5 л 2 = 3-405; л , - 0-64 л 3 = - 2 0 7 5 
1 x i - 0-5 л 2 = 3-088; л t - 0-5 л 3 = -1-765 
1-25 x i - 0-5 л 2 = 2-624; Лj - 0-390 л~3 = -1-388 
1-5 x i - 0-5 л 2 = 1-978; xx - 0-308 л 3 = -0-959 
1-75 x i - 0-5 л 2 = 1114; л , - 0-246 л 3 = -0-492 
2 x i - 0-5 л 2 = 0; xx - 0-2 л 3 = 0 
2-25 x i - 0-5 л 2 = -1-395; лj - 0-165 л 3 = +0-504 
2-5 x i - 0-5 л 2 = -3-097; л , - 0138 л 3 = + 1 0 1 1 
2-75 x i - 0-5 л 2 = -5-126; x, - 0-117 л 3 = +1-512 
3 x i - 0-5 л 2 = -7-5; л-( - 0 1 л 3 = +3-08 

4.4. Examination of a Region 

Let us define the boundary of the region in parametric form: 

(G) a = — 2 + 2 . cos Xn , a> = 2 . sin Xn 

and the interior of this circle let represent the defined region. The corresponding 

part of the parametric space is limited by the skew surface of the real interval of the 

root plane <— 4; 0> and by the skew surface defined by the half of the circle in the 

root plane (skew surface C). The parametric equations of the skew surface C are 

obtained by introducing (G) into (B-l), (B-2). The direction of the interior of the 

circle is given by the angle of the normal: 

(H) Ф„ = — Я 

This example is applied to illustrate the principles given in 3.5.5. The analysis 

for three values of the parameter X and for the arbitrarily chosen value x3 = 10 is 

given in Tab. V. 



Tab. V. 

a = — 2 + 2 . cos Xж; w = 2 . sin Ял 

я 
í>л 

t>l,2 

0-25 
-0-25тt 

-0-586 ±1-414. i 

0-5 
-0-5тt 

- 2 ± 2 . i 

0-75 
-0-75тt 

-3-414 ±1-414. i 

Ruling 

straight Hne 

Л] - 0-853 . x2 = 
= 3-076 

лŁ - 0-427 . л 3 = 
= -3-451 

Xx - 0-25 . x2 = 
= 4-519 

xt — 0-125. x2 = 
= 4-615 

xt - 0-146. x2 = 
= -0-241 

л t - 0-073 , л 3 = 
= -10-157 

X\\ x2\xъ 

Þъ 
P, 

0-817; -2-647; 10 
-1-996 +0-533. i 
-1-996 - 0 - 5 3 3 . i 

5-865; 5-385; 10 
-1-087 +0-264. i 
-1-087 -0-264. i 

-9-425; -62-714; 10 
+ 3-505 
+ 0-209 

ePl 

Єxj 

/ = 1 
2 
3 

- 0 0 7 6 - 0 - 1 7 6 . І 
-0-087 +0-090. i 
+ 0-076 +0-030 . i 

-0-289 +0-083 . i 
+ 0-093 -1-0-052. i 
-0-010 - 0 - 0 3 6 . i 

-0-037 4 0065 . i 
+ 0-016 -0-012. i 
-0-005 + 0 0 0 1 . i 

(>Pi 

Єxj 

j = 1 
2 
3 

0-192. exp(-1-978 .i) 
0-125. exp (+2-342. i) 
0-082. exp (+0-378. i) 

0-301 . exp (2-862 . i) 

OЮб.exp (0-506. i) 
0-038 . exp(-1-851 . i) 

0-075 . exp (2-087 . i) 

0-020. e x p ( - 0-661 . i) 
0-005 . exp (2-873 . i) 

cos (ҷ/j — ęn) 
/ = 1 
/ = 2 
/ = з 

c o s ( - 1 - 1 9 2 ) = +0-369 
cos( 3-127)= -1-000 
cos( 1-164)= +0-396 

cos ( - 1 - 8 5 1 ) = -0-276 
cos( 2-076)= -0-484 
c o s ( - 0 - 2 8 0 ) = +0-961 

c o s ( - 1 - 8 4 0 ) = -0-266 
cos( 1-695)= - 0 1 2 4 
c o s ( - 1-054)= +0-494 

Pз 14 

8p3 

8Xj 

/ = 1 
/ = 2 
/ = з 

-0-024 +0-611 . i 
+ 0-087 -0-283 . i 
-0-076 +0-121 . i 

+ 0-189 +0-339. i 
-0-093 - 0 - 3 3 5 . i 
+ 0-010 +0-311 . i 

-0-127 
-0-036 
-0-010 

+ 0-001 
+ 0-004 
+ 0-021 

5. CONCLUDING REMARKS 

The preceding considerations have shown the possibility of generalization of the 

method of D-decomposition to parametric spaces of more than two dimensions and 

of more general regions of the root plane. The problem may be formulated as the 

problem of mapping of pairs of roots (pairs of complex conjugate roots; pairs of 

double real roots) on the parametric space. Every pair of such roots is mapped into 

a straight line of the parametric space with the root values as parameters of the 

coefficients of the equations, which are linear in respect of the structural parameters 

X]; . . . ; xm. The set of these systems of two linear equations, formed along a closed 

boundary, gives a skew surface in the parametric space. The considered region of 



the root plane may be defined as the interior or the exterior of the closed boundary and 
effective methods are described to obtain the image in the parametric space. Single 
real roots are mapped into planes of the parametric space. 

Performing such a mapping for several single roots or pairs of roots we get that part 
of the parametric space, which corresponds to the simultaneous occurence of all 
considered roots, as the intersection of those parts of the parametric space that are 
limited by the images of singular roots or pairs of roots. This intersection may be 
an empty set of the parametric space, thus indicating the incompatibility of the given 
roots in respect of the given algebraic equation with coefficients represented by linear 
functions ot the structural parameters. 

The result of the mapping has a quite clear geometrical sense. But the situation 
is complicated in the three-dimensional parametric space, and the more in para
metric spaces of more than three dimensions, the space being decomposed by the 
skew surfaces and by the singular planes usually in a very intricate manner. Therefore 
an analytic solution is more convenient in most cases, making possible the discus
sion of any point of any boundary. The respective methods have been described. 

The preceding discussion is aimed at the methodology and at the analytical and 
geometrical interpretation of the matter. Some arbitrary assumptions, such as the 
choice of a constant value of a parameter, used in the illustrative example, do not 
give a clear idea of the practical applicability of the method. As a matter of fact the 
multidimensional decomposition is a powerful tool for the solution of many problems 
of important practical value, such as the design and setting of multiparametric 
controllers with inherent interaction and other problems of this kind. The problems 
of practical applicability of the results and methods are worth more detailed consider
ation and further elaboration. 

(Received July 17, 1978.) 
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