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Classification of Linear Estimators 

PAVEL KOVANIC 

An attempt is made to find a system for classification of linear estimators based only on mean 
values and covariances. As a tool for such classification a generalized estimator is used called 
the minimum penalty estimator. It makes it possible to show connections between estimators 
seeming to be different and differences between estimators seeming to be related. A number 
of examples of linear estimators demonstrates the suitability of the approach. 

1. INTRODUCTION 

It has been shown by Swerling [ l ] that all results obtained via the linear filter 
theory and by modern estimation methods are special cases of results obtainable 
from the viewpoint of properly elaborated Gauss method of least squares. Some of 
such special cases are mentioned in [ l ] explicitly: they include all problems in opti
mum linear filtering or prediction of random processes including recursive solutions. 
But literature of the field and of related fields brings extremely great number of ela
borations of Gauss method of least squares, of its different extensions, modifications 
and generalizations (see e.g. [2]). This fact strengthens Swerling's statement as well 
as makes it more difficult to orient oneself in particular special cases. It is therefore 
worth trying to look out approaches covering as many as possible of particular cases. 
This paper is devoted to an attempt to use the minimum penalty estimator [3], [4] as 
a means for an unifying view on linear estimates based only on first two statistical 
moments. 



2. BASIC 

2.1. Model 

Observed data form an N x P random matrix 

(1) Y= Yx + Ye 

where Yx represents random signals and Ye noise components. Mean values and se
cond order statistical moments are supposed to be known a priori. A possible non
zero mean value <Ye> of the noise matrix Ye might be included into the signal matrix 
Yx, therefore one is free to take it equalling zero. Noise is uncorrelated with signals. 
Knowledge of covariances makes it possible to evaluate matrices <YXQYI> and 
<TeQTT> for a given positive definite symmetrical weighting matrix Q. (The symbol 
YX states for the centered variable Yx — <YX>.) For some purposes an another form 
of (l) is useful 

(2) Y = XA + Ye 

where X and A have dimensions N x L and L x P, respectively. The matrix X 
is a given nonrandom matrix chosen to satisfy equation 

(3) (xAQATxTy = <YxQyx
T> = xxT 

so that 

(4) <AQAT> = / 

for the centered value A = A — <A> of the coefficient matrix A. Denote the rank 
of the matrices 

(5) r{<YxeYx
T>} = r{*} = M 

and 

(6) r{<Yeeye
T>} = S . 

Ranks S and M are not necessarily full, 

(7) S | N , 

(8) M ^ N . 

An estimate having a general linear form 

(9) Z = WY+ C 

will be considered where Wand C are some constant matrices of dimensions T x N 
and T x P, respectively. Required results of estimation are defined separately for 



operations performed on pure signals 

(10) Zx = &X{YX} 

and for operations on noise 

(11) Ze = ife{Ye} 

where H?x and J2?e are some given linear operators. Required results of estimation 
when operating on actual observed data (l) are thus 

(12) Z0 = Zx + Zc. 

The problem under consideration is to find matrices Wand C minimizing a criterio-
nal function of deviations of actual estimates Z (9) from required results of estimation. 
Among possible criteria of optimality the one called the penalty is suitable for the 
purpose of this paper. 

2.2. The Penalty and Three Kinds of Errors Arising in Estimation 

As a norm of a random matrix E we introduce a scalar quantity 

(13) !|E| = [ t r {<EOE T >}]^ . 

(This is the square root of the trace of the mean value of the quadratic form EQET.) 
To evaluate the quality of results of estimation and to facilitate the discussion 

of different special cases we take into account three kinds of errors: 

1) The error of transformation of pure signals 

(14) |EX|| = | | W T X + C - Z X 1 

2) The error of transformation of signals contaminated by noise 

(15) | |£o| = \W(Yn + Ye) + C - Z0 | | 

3) The error arising in estimation by amplification of noise 

(16) INI = \\WYt\\. 

It is necessary to note that the mean value is taken in (13) (and consequently in 
(14) —(16) as well) over the set of all realizations of the errors, i.e. over the set unde
fined fully before estimation, at the moment when matrices W and C should be 
calculated. Judgements on "future" behavior of random quantities must be therefore 
based on a priori known statistical characteristics (obtained from "past" observations) 
and on subjective factors or on an additional information. To incorporate the un
certainty of the particular significance of the error ||EX|| in relations to errors |E0[ | 



196 or |£ . | | a scalar quantity 

(-7) P = r-5-— IN2 + r - 2 ^ INI2 

2p0 + Px 2p0 + px 

called the penalty ([3], [4]) can be used. The weight p0 is positive, the weight px 

has reasonable values when taken from the interval 

(18) - p 0 < px = oo . 

Definition of the penalty (17) differs slightly from that of [3], [4] by the normalizing 
factor to ensure that (17) is finite for all values of px from the interval (18). 

2.3. The Minimum Penalty Estimator 

Minimum penalty estimator is the estimator minimizing the penalty (17). Under 
mentioned conditions it follows from [4] as a special case that (9) takes the form 

(19) z ^ (zy + W(Y- <Y» 

where 

(20) W= (s<ZeQFe
T> + <ZXQYT» (s<YeQYT> + <YxQYx

T»e 

and where 

(21) s = p0/(p0 + px) 

is the penalty factor. The matrix of the type Kg is the one-condition generalized 
inverse of the matrix K, i.e. a matrix satisfying the condition 

(22) KKgK = K . 

The estimate (20) exists always. 

In (20) a generalized inverse of a matrix of the "big" size N x N appears. An equi
valent of this formula can be developed as in [4] having form 

(23) W = Wx + Wc = <ZXQYX
T> (XT)g [sXgX + XTBgX]g XTBg + 

+ <ZcQYj} Bg[I - X(sXgX + XTBgX)g XTBg] 

where 

(24) B = <YeQYe
T> 

and where / states for the unity matrix. 

Two notes are in order here: 

1) To obtain (23) from (20) one assumes that there is no subspace of the range-
space 0i(X) of the matrix X within which no noise exists, i.e. one takes that 

(25) BBgX = X 



holds. In an opposite case it would be possible to treat the noise-free signals separa
tely as may be shown analysing results of consideration a problem of a similar type 
[5]. 

2) In the limit case s —> 0 the same formula (23) can be used as shown in [4]. 

3. CLASSIFICATION OF LINEAR ESTIMATES 

Formulae given above may be used for an attempt to introduce a classification 
of linear estimates based only on first and second statistical moments. Three aspects 
may be of interest here: 

1) The class of required result of estimation 

2) Usage of a priori information on signal components 

3) The choice of the value of the penalty factor s in (23). 

3.1. Classification According to Goals of Estimation 

3.1.1. Class A: Zero operation on the Noise 

This is the most usual case for which the most possible suppression of noise is 
required 

(26) Ze = 0 

and the second part of (23) denoted We is a zero operator. 

3.1.2. Class B: Zero Operation on the Signal 

In this case the goal of estimation is defined by a nonzero Ze and by 

(27) Zx = 0 . 

Consider an example: It is required to obtain a best estimate Ye of the noise part 
Y. of observed data so that Ze = Ye. We obtain from (23) 

(28) Ye = BBS[I - X(sXqX + XTBSX)SXTBS] Y. 

This is the same result as if Yx would be estimated by a corresponding estimator 
Wx of the class A for Zx = Yx and if the formula 

(29) Ye = Y- Wxf 

would be applied as usually. It might seem therefore that it is not necessary to intro
duce the concept of the estimator We and of classes differing from A. But an expres
sion of the type (29) cannot be found for a general type of Ze although usefulness 



198 of such generalization is obvious. Let us demonstrate it by a simple practical example 
of prediction of the noise component, 

(30) (Z.)t = (Y . ) t + t . 

Predicted value (Ye),+T is dependent on correlations of (Ye)t with (Yc) t+ t but they 
do not play any role for Wx. Therefore, an expression similar to (29) does not exist 
in this case. 

3.1.3. Class C: Non-Zero Operations on Both Data Components 

In this case neither Zx nor Zc is zero matrix. An example: it is required to predict 
observed data. 

3.2. Classification According to Usage of a priori Information 

In our problem is the a priori information represented by the mean values < Yx> 
of signal component and by covariances appearing in the expression (fxQYx). 
There is no necessity of having anything more to evaluate the expression <2 IQYJ> 
as for the considered case when all operators are linear the quantity Zx is obtainable 
via the formula 

(31) Zx = LA 

where L is a given matrix. It is not essential for the classification if such a priori 
information is available or not but if it is used in estimating formulae or not. 

3.2.L Class a: Estimators Making Use of a priori Information 

In this case formulae (19), (20) and (23) hold without any change. 

3.2.2. Class b: Estimators Based on no a priori Information 

This case may be considered to be a limit case of the previous one when the mean 
value <YX> is taken to equal zero and when variances of the signal components 
increase unlimitedly. Instead of (3) one has 

(32) <YxQtJ) = d 2 X b X T . 

where Xb is a fixed matrix and d2 reaches in a limit the infinity. Formulae (19) and 
(23) take form 

(33) Z = WY 

and for an arbitrary but finite s 

(33) W = L(XTB+Xb)
+ Xr

bB
+ + iZeQYT) B+\I - Xb{XTB+Xb)

+ XTB+T 



where the well-known Moore-Penrose pseudoinverse K+ is used instead of a general 19! 
inverse Ke of a matrix K. Pseudoinverse will be used also in all cases considered 
below because of its uniqueness and additional favorable features. 

3.3. Classification According to the Relative Penalty Factor 

Consider the interval of s corresponding to (21) 

(35) 0 < s g oo . 

There are three cases of special interest relating to this interval: 

1) s -» oo 

2) s = 1 

3) s -» 0+ 

Three errors mentioned in Chapt 1. are functions of the factor s. Three cases consi
dered here are connected with extremal values of some of the errors. Therefore, 
a fourth case may be included: 

4) Other values of s 

This classification is not usable for the estimates of class b for which the factor s 
does not play a role. 

3.3.1. Class 1: Zero Estimator 

For an s approaching the infinity all terms of (23) vanish excepting one 

(36) W = <ZeQY£
T>B+ . 

Note that this case differs essentially from the class B which should suppress the 
signal. Estimating according to class 1, one wants to obtain an non-zero estimate 
of the signal but one has no subjective confidence in "new" data. Therefore the best 
estimate of the signal is its a priori ("old") mean value, as results from (19) for the 
considered case in which 

(37) Wx - 0 . 

The error ||Ee|| reaches its minimum value. 

3.3.2. Class 2: Unconditional Estimators 

The error ||EX|| is fully ignored in this case, 

(38) P l = 0 

and the error | E 0 | reaches its minimum as shown in [4]. 



3.3.3. Class 3: Conditional Estimators 

Subjective weight px/p0 —> oo is given to the error | |£ x | in this case. As shown 
in [4], it is equivalent to the requirement of constrained minimalization of |E0 | | 
under condition that |JSX| reaches its minimum. It is clear that an unconstrained 
minimum |£o|js=i taking place for the class 2 can be smaller than the constrained 
one | £ 0 | s _ 0 + of the class 3. 

3.3.4. Class 4: Other Estimators 

This class includes all cases of estimators for which s differs from 1 and from both 
bounds of its interval. Single error of no type is minimized in this case but a compro
mise solution is possible of a particular problem when both error |j£x|| and ||£0 | | 
are of importance. One example will be mentioned later in connection with the ridge 
regression. 

4. DISCUSSION ON THE CHOICE OF THE PENALTY FACTOR 

The choice of the relative penalty factor s is the matter of subjective approach 
always. Its role has been explained by its consequences on each of three estimating 
errors. But it is useful to take into account further explanation. 

The penalty introduced by (17) as 

(39) 

may be presented also in an equivalent form 

(40) 

The minimum penalty estimator minimizes the penalty for each particular value s. 
But we see that this minimal penalty value equals to | |£x | | s_0 for s -> 0 (class 3), 
to i | |£0 | | s=i for s = 1 (class 2) and to |jE,||s-.«. for s -> oo (class 1). 

It has been already mentioned that there are two different sets of realizations of 
random variables under consideration. The first one ("old") is used to evaluate 
mean values and covariances for calculations of the matrices W and C: The second 
set of realizations includes values which variables attain during applications of these 
matrices i.e. during estimation. This "new" set relates thus to observations "future" 
in relation to the moment when the choice of s should be made. A question therefore 
must be answered: will the statistical characteristics of the "future" set equal to that 
of the "old" set? If there is no confidence in stationarity of processes it is necessary 
to choose the estimator of the class "a". But consider case when one has reasons 
to suppose that mean values of processes are constant but that the matrix XTB+X 



determined from the "old" set of observations will change so that the "future" 
value of this matrix will equal to k2XTB+X where k2 is a scalar. The estimator (23) 
will change only in that instead of s the value s/k2 will take place. The quantity k2 

is related with anything like a "signal-to-noise" ratio. For k2 = 1 we take a "conser
vative" point of view: The signal-to-noise in the future will be the same as it was 
in the past. For k2 > 1 and k2 < 1 we take an optimistic and pesimistic point of view, 
respectively. We have already mentioned that the estimating error | |E0 | is minimal 
for s = 1. Thus, the class 2 of estimators is connected with a conservative expecta
tion on processes. The class 1 represents an extremaly pesimistic point of view, while 
the class 3 corresponds to an unlimited optimism: furure signal-to-noise ratio will 
be much better than it has been up to now. 

For stationary conditions, unchanged measuring techniques and so on, the "conser
vative" class 2 may be quite reasonable especially because of the minimal estimating 
error | |£2 | | . 

Another comment on the factor s is mentioned below in connection with Swerling's 
estimator. 

5. CLASSIFICATION OF PARTICULAR TYPE OF ESTIMATORS 

5.1. Gauss-Markov Estimator and its Generalizations 

The well-known Gauss-Markov estimator exists if it is possible to find such matrix 
If that 

(41) | |£ x | = 0 . 

If it does not exist then a generalization of Lewis and Odell [6] can be used according 
to which the error ||£x|| should be made as small as possible. The Lewis-Odell esti
mator is thus classified as an estimator of the type Ab for which 

(42) L = / . 

5.2. Discrete Zadeh-Ragazzini (Blum's) Estimator 

Zadeh and Ragazzini generalized in 1950 the Wiener problem of filtering and 
prediction of continuous signals. Blum [7] gave the solution of a discrete analogue 
of Zadeh-Ragazzini problem. In our notation is the Blum's estimator of class Ab. 
An extension (which can be characterized as Ca 3) is described in [8]. 

5.3. Discrete Semyonov Estimator 

As mentioned in [9] Semyonov (1954) formulated and solved an another generali
zation of Wiener problem for continuous variables. A discrete version of Semyonov 
estimator has been given in [9] which can be classified as Aa2. 



5.4. Random Coefficient Regression 

There is a lot of statistical results on this subject reviewed in [2]. Classification 
is again Aa2. 

5.5. Goodman's Estimator 

According to [10] the a priori information represented by means and covariances 
of coefficients of a linear model can be incorporated into least squares estimation. 
The quadratic form to be minimized includes not only squares of estimating errors 
but also squares of deviations of the new estimated coefficients from their a priori 
estimates weighted by an inverse of their a priori covariance matrix. Goodman's 
formula seems to be of similar form as estimators Aa2 but actually it corresponds 
to the class Aa3 if the variables have zero mean values and Ab if they have not. 

5.6. Discrete Version of Karhunen-Loewe Expansion 

For the solution of a prediction problem a discrete Karhunen-Loewe expansion 
has been applied in [11]. The idea is to find eigenvectors of the covariance matrix 
of the "old" observed vectors, to fit a part of them into the last data using the least 
squares method and to a best linear combination of the ends of fitted eigenvectors 
to be estimates of future data. An analysis shows that this case is again Aa2. 

5.7. Swerling's Estimator and Discrete Filters 

The review of linear estimators in [1] relates to estimators of the class Aa2. As the 
criterion of optimality a quadratic form has been used including squares of reziduals 
as well as the squares of deviations of estimates from their a priori means weighted 
by the inverse of a priori covariance matrix. Introduce a subjective weighting factor 
to give to each of both parts of Swerling's quadratic form a weight. Then an additional 
explanation of the role of the choice of the relative penalty factor is obtained: In
creasing the factor s in (20), one decreases the weight given to a priori information. 
(Formula (20) is a generalization of the case considered in [ l]) . 

5.8. Ridge Regression 

In [12] an biased estimator of Hoerl and Kennard is further investigated having 
in our notation the form 

(43) Z = A = (k/ + XTAT)-,XTY 

where A is the estimate of A and k is a positive number. This estimator has been 
introduced because it was found that it lead to increased accuracy of estimation. 
Note that this estimator would be unbiased if the data matrix Y would have zero 
mean. In such case the ridge regression would be the case Aa4. 



6. CONCLUSION 

It has been shown that the formulae of the minimum penalty estimator is general 
enough to show the connections between seemingly different estimators, to introduce 
a classification of a number of estimators and to point out some new estimators. 

(Received October 4, 1977.) 

REFERENCES  

[1] P. Swerling: Modern estimation methods from the viewpoint of the method of least squares. 
IEEE Trans, on AC, AC-16, (1971) No. 6. 

[2] P. A. V. B. Swammy: Statistical inference in random coefficient regression models. (Lecture 
notes in operations research and mathematical systems, vol. 55.) Springer-Verlag, Berlin — 
-He ide lbe rg -New York 1971. 

[3] P. Kovanic: Minimum penalty estimate, Kybernetika 8, (1972), 5, 367—383. 
[4] P. Kovanic: Generalized linear estimate of functions of random matrix arguments, Kyberne

tika 10 (1974), 4, 303-316. 
[5] C. R. Hallum, T. O. Lewis, T. L. Boullion; Estimation in the restricted general linear model 

with a positive semidefinite covariance matrix. Communications in statistics, / (2), (1973), 
157-166. 

[6] T. O. Lewis, P. L. Odell: A generalization of the Gauss-Markov theorem. J. Am. Stat. 
Assoc. 61 (1966), 1063-1066. 

[7] M. Blum: An extension of the minimum mean square prediction theory for sampled input 
signals. IRE Trans., IT-2 (1956), 176. 

[8] P. Kovanic: Generalized discrete analogy of the Zadeh-Ragazzini problem. Automation 
and Telemechanics (In Russian) XXVII (1966), 2, 37. 

[9] I. D. Krutko: Statistical dynamics of impulse systems (In Russian). Sovetskoe radio, Moskva 
1963. 

[10] A. F. Goodman: Extended iterative weighted least squares: Estimation of a linear model 
in the presence of complications. Naval research logistics quarterly 18 (1971), 2, 243 — 276. 

[11] E. D. Farmer: A method of prediction for nonstationary processes and its application to the 
problem of load estimation. Transactions of IFAC 1963. 

[12] K. S. Banerjee, R. N. Carr: A comment on ridge regression. Biased estimation for non-
orthogonal problems. Technometrics 13 (1971), No. 4. 

Ing. Pavel Kovanic, CSc, Ustav teorie informace a automatizace CSAV{Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Pod voddrenskou vezi 4, 
182 08 Praha 8. Czechoslovakia. 


