
K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 2

Memory Complexity of Countable Functions

MILOSLAV NEKVINDA

In the article, countable functions are studied with respect to memory requirements. The
obtained results have an immediate relation to the classification of machine-operators which are
computable in real time.

1. INTRODUCTION

The basic theorems on classification of operators real time computable with respect
to memory complexity were formulated in [5]. It was shown that the classification
hierarchy is a consequence of existence of sufficiently rich class of simple i-functions.
In this article, theorems on construction of countable functions are given, the main
attention being concentrated on needed memory at their generating. As a consequen
ce we obtain analogical theorems for i-functions. These questions were reffered by
author on Symposium MFCS (1973), see [6]. The countable functions were carefully
being studied yet in [2], [3], no attention, however, being paid to needed memory.
A little other approach we see in [4], where the main interest is concentrated upon
needed time.

In the following, N denotes the set of natural numbers, N0 the set of nonnegative
integers and R the set of real numbers. Recall briefly some notions used in [5]. A
Y-automaton (automaton of Yamada's type) is a many-tape autonomous automaton
(i.e., without input) with output alphabet II = {0, 1}. Every Y-automaton A generates
thus an infinite sequence

(1.1) a = a,.a2 . . . a„ . . . , a< e {0, 1} , ieN,

where the symbol a,- appears on the output in i-th tact, i 6 N. Let a be any sequence
of form (1.1) with infinite number of l's. Then, we order to it a function / = F(a) :
:N -+ N defined by

(1.2) f(n) = min {p; p e N, £ at = n} , neAf,
; = i

and a function tp = F^a) : N ~> iV0 defined by

(1.3) (p(n) = X « i , neJV.
i = l

We call a function f: N -> N countable, if there exists a Y-automaton A which
generates a sequence a of form (1.1) such t h a t / = F(a). If / is countable, then the
related function q> = F1(F~1(f)) we call an i-function. In this case, we shall also say
that the automaton A generates the function / as well as the function (p, respectively.
We denote by C the class of all countable functions and by / the corresponding class
of all i-functions. Any nonnegative nondecreasing function L: N -* R we shall call
a complexity function. We shall say that an automaton A works with space limitation
L if for almost all n eN (i.e., for all natural numbers from a certain one), the number
of cells which A needs on any its tape during the first n tacts, is less or equal to L(n).
We say that a function / e C is generable with space limitation L if there is a Y-auto
maton A which generates / and works with space limitation L. The class of all such
functions we denote by C(L). Since we use the same terminology in the case of i-func
tions, we denote by I(L) the class of all i-functions which correspond to those of
C(L).

2. CONSTRUCTIONS OF COUNTABLE FUNCTIONS

This part contains theorems of constructing character which show how to construct
another countable function in the case some of countable functions are given.
The special attention is paid to the memory needed by generating automata. Theorems
2.1-2.5 are proved yet in [2], [3] without attention to needed memory. The given
proofs, however, can be modified for our purpose. Thus, because of illustration,
we shall present only the proofs of theorems 2.1 and 2.5.

We begin with two following lemmas which serve as a technical means at proving.

Lemma 2.1. There exists a one-tape automaton A which codes nonnegative integers
in such a way that

1. the length of code of number n is at most log n (log = log2) for almost all
neN;

2. from the code of n e TV, A can transfer to code of number n — 1 or n + 1 exactly
in one tact. (The demand of transfering is supposed to be given by the input of A.)

Proof. Obviously, the starting point of the proof is the binary coding of non-
negative integers. Unfortunately, it is not possible to transfer from the binary code

of number n to the binary code of number n + 1 in one tact only. To avoid the diffi
culty, each number neN0 will be coded by the configuration (i.e., instantaneous
description), in which a one-tape automaton coding subsequently all nonnegative
integers transfer in n-th tact. We can, e.g., choose a sequence of configurations in the
following way:

pB, z l , pi, qO, pBO, zlO, zlO, plO, z l l ,

pl\, qlO, p\l, qOO, pBOO, zlOO, zlOO,

zlOO, plOO, zlOl, plOl, glOO, plOO,

In the sequence, B denotes a blanc symbol, 0, 1 are digits of the binary system and
bold symbols show the position of the read-write head. The symbols p, q, z are internal
states of the automaton, their meaning being as follows: p — the number 1 shall be
added at bold type place in the next tact; q — the number 1 shall be transfered
into the higher order (to the left); the symbol z denotes that a binary code of some
integer m has been already made, so that the automaton seeks for the right end
of the code in order to manage the binary code of the following integer m + 1.

Of course, such an automaton must be provided, in addition, with the ability
of recognizing the leftmost as well as the rightmost symbols of the written word.
Obviously, the proposed automaton fulfils the conditions of our lemma.

Lemma 2.2. Let A be a Y-automaton which works with space limitation L, and
let r e N. Then there exists an automaton B such that

1. B works r-times faster than A; the output symbols of B are, of course, r-tuples
of output symbols of A;

2. B works with space limitation L1 ; where Lx(n) = L(rn) for almost all neN.

Proof. The first assertion of the lemma is well-known, see, e.g., [2]. A rather
mote detailed analysis of the proof shows that B may be construct in such a way
that the second condition is also true.

Theorem 2.1. Let Lx, L2 be two complexity functions and let Jj 6 C(Lt), i = 1, 2.
Define / by

/ («) - = / i (n) + / 2 (n) , neN.

Then / e C(L), where

L(n) = max (Lx(n), L2(n)), neN .

Proof. Let At be a Y-automaton which generates f, with space limitation L„
i = 1,2. Now, we shall construct a compound automaton A by appropriate composi
tion of Alt A2 (the details on construction we shall omit here as well as in all following
proofs, they follow from what A is to act) which is to act as follows: At first, e.g.,

A! will work until it prints its first 1. Then A1 stops and A2 begins to work. Whenever 91
A2 prints its first 1 it stops and Ax will continue, in the same configuration which it
had reached before. As soon as Ax prints its following 1 its stops and A2 will run
again. In this manner, Ax will always interchange with A2 in acting. In addition, A
will print l's just in tacts in which A2 will. Clearly, A generates/. To complete the
proof we estimate the space limitation of A. Assume that A is performing n-th tact.
Then A,- is in fe,-th configuration, ;' = 1, 2, where k1 + k2 = n. Using the monotony
of functions L;, we have Lt(k,) ^ Lt(n), i = 1,2. Thus A works with space limitation
L, where L(n) = max (Lx(n), L2(n)), neN.

Theorem 2.2. Let L1(L2 be two complexity functions and let /,• e C(Lt), i = 1, 2.
Define / by

f(n)=f2(n)-f1(n), neN.

Suppose that

1. / i s increasing,/(l) = 1.

2. There are constants C > 1 and m eN such that

/-(» + m) ~/-(") = c(/i(" + m) -M n)) - neN-

Let reN be such that r(C - 1) > C.
T h e n / e C (L) , where

L(n) = max (Lt(rn), L2(rn), log n) , neN.

Proof. By modification of [2].

Theorem 2.3. Let Lbe a complexity function and l e t / e C(L). Define g by

9(n) = tf(i), neN.
i = l

T h e n / e C (L i) , where

Lx(n) = max(L(n), log n), neN .

Proof. By modification of [2].

Theorem 2.4. Let Llf L2 be two complexity functions and let /,• e C(L,), i = 1. 2.
Define / by

/ (n) - / i (n) / 2 (n) , n e i V .

T h e n / e C (L) , where

L(n) = max (Li(n), L2(n), log n) , neN .

Proof. By modification of [2].

Theorem 2.5. Let L1; L2 be two complexity functions and let / e C(Lt), i = 1, 2.
Let <p2 denotes the i-function related to/2 . i.e., q>2 = Fi(F~1(f2)). Define/by

/ (» W 2 (/ i (»)) . neN.
Then/ e C(L), where

L(n) = max (L^y^n)), L2(n)), neN .

Proof. We shall construct a Y-automaton A that will generate/. Let Au A2 be
a Y-automaton which generates fuf2 with space limitation Lx, L2, respectively.
A will consist of At and A2, the organization of its program being as follows: A2

will run continuously without stopping generationg thus the function f2 (i.e., the
related binary sequence). At will perform just one tact of its own program whenever
A2 prints 1, the remaining tacts being stopped. Moreover, A will print l's just in tacts
in which Ax will. Obviously, A fulfils all conditions of the theorem.

Remark. Using obvious relation q>2(n) :g n, neN we obtain for L a more simple
estimate

L(n) = max (L^n), L2(n)), neN .

Before the next theorem, we introduce the following notations. Let / : N -» N,
g : N -* N be any two functions. Setting /(0) = 0, g(0) = 0 we define functions
u : N0 -* N, v : N0 -» N by

u(n + 1) = min (f(n + l) - /(«); a(n + 1) - g(n)), neN0;

v(n + 1) = max (f(n + l) - /(/.); o(« + 1) - o(n)), n e N0 .

In addition, we define functions U :N0 -> N0, V:N0 -* N0 by

(2.1) U(n) = t "(0 , " e JV , U(0) = 0 ;
1 = 1

V(n) = 2 X 0 , «£iV, V(0) = 0 .
i = l

Theorem 2.6. Let L1; L2, be two complexity functions, l e t / e C ^) , geC(L2).
Using (2.1) we define a function r :N -* N as follows:

1. r(U(n))= V(n), neN;
2. r(U(n) + i) = V(n) + i, i = 1, 2, ..., u(n + 1) - 1; n eN0.

Then r 6 C(L), where L is a complexity function defined by

L(n) = max(Lv(n), L2(n)), neN .

Proof. Let Al5 A2 be a Y-automaton generating/, g with space limitation L\% L2

respectively. We construct A as a compound automaton consisting of Au A2- We

divide its acting into stages, the n-th stage, neN, being related to tacts V(n — 1) + 1,
V(n - 1) + 2, . . . , V(n). Suppose that, at the beginning of n-th stage, At occurs
in its own j(n - l)-th configuration (just after having printed its (n — l)-th 1) and
that, analogously, A2 occurs in its own g(n — l)-th configuration. Now, both At

and A2 will run independently (but synchronously) until one of them prints its
following 1. In all these tacts except the last one A prints l's on its output. In the
following tacts, this of Au A2 which had just printed its 1 stops waiting for the
moment in which the other prints also its next own 1. In all these tacts but the last
one A prints O's. In the last tact of this time interval A prints 1 having ended the
n-th stage. Clearly, A generates the function r with desirable space limitation.

Remark. In order to indicate the dependence on functions f, g we write r = r(f, g).
Define e, the identity function by e(n) = n, neN.lt is easy to see that

1. r(f,f) = e ;

2. r(f,g) = r(g,f);

3. r (j , e) = j .

Now, we shall state a special important case of previous theorem.

Theorem 2.7. Let / , g be two countable functions such that

f(n + 1) - f(n) ^ g(n + l) - g(n), neN.

Then the function r = r(f, g) (also countable) fulfils the following conditions:

1. r(g(n)) = f(n), neN;

2. r(g(n) + i) = f(n) + i , i = 1,2, ..., g(n + l) - g(n) - 1; neN0.

Proof. It follows immediately from the previous theorem. Note that, in this case,
the function r -* r(j, g) is, roughly speaking, equal to the function j(iA(.)), where \]/
is the i-function related to g. More precisely, they have the same values at points
g(n), neN.

In previous theorems we constructed new countable functions from given ones
using algebraical or other operations. In further theorem we shall operate with
functions that are inverse to countable functions; i.e., with i-functions.

Definition. Let cp be an i-function. We shall call it almost concave, if there is a con
stant C(C > 1) such that for almost all n e N

<p(2n) = C <p(n) .

Theorem 2.8. Let Lu L2 be two complexity functions. Let q> e /(Lx), \// e l(L2) and
let q>, ifr be almost concave. Let for almost all n e N

(p(n) ijj(n) = n .

94 Define the complexity function L by

L(n) = max (Lt(n), L2(n), log n) , neN .

Then there exists an i-function n e I(L) such that

1. For almost all neN

ei <P(«) <K") _ n(") _ C2 <?(«) "H"),

where Cx > 0, C2 > 0 are certain constants;

2. n is almost concave.

Proof. I. By hypotheses of the theorem, a constant C > 1 (common for both <p
and i/f) and fieN exist such that

(2.2) <p(n) $(n) <i n ,

cp(2n) g C <p(n), \p(2n) ^ C ij/(n) , n = n .

Define a sequence nx, n2, • • • °f positive integers by

(2.3) n1 = 4fi; nt = 2 ' _ 1 n. , i e i V .

Let n : iV -> iV0 be any nondecreasing function (we do not suppose it to be an i-func
tion) such that

(2.4) „(„.) = <p(„./4) ^ . / 4) , ieN.

We shall show that, under this assumption, n fulfils both assertions of the theorem.
Let keN, k > nv Take ieN such that nt + 1 2» k j j n i + 1 . Since each n ; in the
sequence (2.3) is an integral multiple of 4, there is neN such that nf = 4n. Hence

4n + 1 ^ k = 8n .

Since n is nondecreasing, then, using (2.4), we have n(k) = n(8n) = (p(2n) i//(2n). Since
q>, i/> are also nondecreasing, we obtain <p(2n) ip(2n) <; <p(4n + 1) i//(4n + 1) g
^ cp(k) i//(/c), which gives

(2.5) n(k)^cp(k)^(k).

Now, with respect to (2.2), we have cp(n) ̂ C~3 (p(8n), ip(n) >= C"3 <A(8n), so that
C~3 <p(8n) I>(8II) ^ i>(n) (//(«) - w(4n) ^ w(fc). Since <p(fc) Hk) = <K8") ^(Sn), we
thus obtain

(2.6) C-6cp(k)t(k)Sn(k).

Obviously, the relations (2.5), (2.6) prove the first assertion of the theorem. In addi

tion, applying (2.2), (2.5) and (2.6) we have

n(2k) = cp(2k) i//(2fc) = C2 cp(k) i]/(k) = C8 n(k), 9 5

which proves that w is almost concave.

II. In the following, we shall try to construct an automaton A which generates an
i-function n with the property (2.4). According to the previous part of proof, n will
then fulfil both assertions of our theorem. We divide the acting of A into
stages. The preliminary stage is given by tacts 1, 2, . . . , nu the i-th stage as a time
interval from tact nt + 1 to 2nt = n i + 1 , ieN. As we have mentioned above, for
a given i eN, there is an integer neN such that nt = An. The i-th stage is thus given
as a time interval from (4n + l)-th to 8n-th tacts. Obviously

(2.7) cp(2n)^(2n)-cp(n)^(n) =

= cp(2n) (>(2n) - <//(«)) + <A(n) (cp(2n) - cp(n)) .

Denoting d„ = cp(2n) \p(2n) - cp(n) \J/(n), e„ = cp(2n) (i^(2n) - \jj(n)), f„ = i^(n) .
. (<p(2n) — <p(nj), we can rewrite (2.7) in the form

(2.8) d„ = e„+f„.

Because of definition of n (see (2.4)), A must print d„ l 's during the investigated
i-th stage. Using (2.2) we have d„ = <p(2n) ij/(2n) _ 2n and, consequently

(2.9) e„ = 2n , / . | 2 n .

Thus, we suggest a construction of A as a compound automaton consisting of three
blocks _<, _2 , D, with the following properties. According to (2.8), (2.9), the block
_ ! will produce e„ l's during the interval <4n + 1, 6n>. Analogously, B2 will produce
/„ l's during the interval <6n + 1, 8n>. The block D is a device for signalizing the
4n-th, 6n-th and 8n-th tacts, i.e. the beginning, middle and the end of each stage.

III. The construction of D. D will consist of three tapes, say Tu T2, T3. Suppose
that, at the beginning of the stage, the number 2n is encoded on tape Tt in the sence
of Lemma 2.1 and the tapes T2, T3 are empty. During the interval <4n + 1, 6n>,
subtracting subsequently l's, the code will be erased on tape T1 being again repro
duced, by adding l's both on T2 and T3. In following 2n tacts, the tape T2 will be
erased by subtracting l's per tact. At the same time, by adding l's per tact, the
code of number 4n will be formed on tape T3. Thus, at the end of the stage, the tapes
Tu T2 are empty and T3 contains the code of number 4n. Hence, all three tapes are
ready for acting in the next stage, the roles of tapes Tu T3 being changed to each
other. Obviously, D is able to signalize the needed tacts.

IV. Now, we describe a construction of Bu Let F, G be automata generating the
i-functions cp, \\i with space limitation Lu L2, respectively. J3. will consist of two
copies Fu F2 of F, one copy of G and five additional tapes Tu T2. ..., T5. Suppose
that, at the beginning of the stage, the following situation occurs:

(i) F1 is in its 2n-th configuration (this means that Ft had just performed 2n
tacts of its own program), F2 is in initial configuration (with empty tapes) and G is
in its 2n-th configuration;

(ii) The number q>(2n) is logarithmically encoded (i.e., in the sence of Lemma
2.1) on tape Tu the tapes T2, T3 are empty;

(iii) the number ij/(2n) — \\>(n) is logarithmically encoded on tape T4, the tape
T5 is empty.

As we know, Bx has to print e„ = q>(2n) (i]>(2n) — <A(n)) of l's during the time
interval <4n + 1, 6n>. This may be done in ^(2n) — \j/(n) intervals, each of them
will take just q>(2n) tacts. During the first interval, by subtracting l's per tact, the code
of q>(2n) will be erased on tape Tlt being at the same time reproduced on T2. The end
of this interval will be marked on T4 by subtracting 1. The acting in the second inter
val proceeds in the same way as in the previous one, the role of Tt being interchanged
with T2. This process passes again and again, until the tape T4 ocurs empty. At this
moment, the needed number of en tacts are just counted out.

V. Besides counting en tacts Bt will have to get ready for acting in the next stage.
So, Tu will transfer into the initial configuration (all tapes will be erased). Since Fx is,
at the beginning of the stage, in 2n-th configuration, the length of words on each
its tape is at most 2n. Hence, every tape of F t can be erased in 4n tacts, i.e., in time.
The automaton F2 will run in all tacts of the stage, so that it will print q>(4n) l's which
will be subsequently encoded on tape T3.

The automaton G will perform just 2n tacts of its own program (in the first half
of the stage or in the second one, it does not matter), producing thus q>(4n) - q>(2n)
l's which will be encoded on T5.

At last, both Tx and T2 will become empty during the second half of the stage (as
a matter of fact, one of them will be already empty at 6n-th tact).

Thus, B2 is able to get ready for acting in the next stage in time. We shall not
describe the construction of the block B2, for it may be done in analogical way.

Summarizing we see that the i-function n generated by A fulfils the needed condi
tion (2.4).

VI. It remains to estimate the needed memory space. Consider again the time
interval <4n + 1, 8n>. Let k e N, 4n + 1 ^ k ^ 8n. Since numbers coded on tapes
of D equal at most 4n, the number of needed cells on each tape of D is at most
log 4n ^ log k. Because of inequalities q>(j) ^ j , ij/(j) = j , j e N, the sairie estimate
is true for tapes Tj — T5 of Bx.

Since each copy of automata F, G in block By as well as in B2 reaches in this
time interval at most its 4n-th configuration, the number of needed cells on every its
tape is bounded by max (Lx(k), L2(k)).

On the whole, the space limitation L of A fulfils the desirable condition which
completes the proof.

Theorem 2.9. Let p e TV", let L} be a complexity function, let <p} e l(Lj) be almost 97
concave, j = 1,2, . . . , p. Let for almost all n e N

(Pi(n) (p2(n) ... (pp(n) < n .

Define the complexity function L by

L(n) = max (Lx(n), L2(n), ..., Lp(n), log n) , neN .

Then there exists an i-function n e I(L) such that

1. For almost all n e N

Cx ep.(n) (p2(n) . . . <pp(n) < n(n) < C2 cp^n) cp2(n) ... cpp(n),

where C t > 0, C2 > 0 are certain constants;

2. n is almost concave.

Proof. It follows from previous theorem by induction.

3. EXAMPLES OF SIMPLE i-FUNCTIONS

In following, any two function <p : N0 -> R+, \j/ : N0 -* R+ we shall call equiva
lent (R+ denotes the set of nonnegative real numbers), if there are constants Cl > 0,
C2 > 0 such that for almost all n e N

C! cp(n) < ijj(n) < C2 cp(n) .

Lemma 3.1. Let s be a rational number, 0 < s <. 1. Then there exists an almost
concave /-function (p e /(log) equivalent to i[/, where

il/(n) = ns, neN .

Proof. The assertion is trivial for s = 1. Suppose that 0 < s < 1. The identity
function e (e(n) = n, n e N) is generable by finite automaton. It means that e e C(l).
Let m e N, define h by h(n) = nm = (e(n))m, neN. Using Theorem 2.4 we obtain
h e C(log). Now, let p, q e N be such that s = p\q; thus p < q. Define/, g by f(n) =
= nq, g(n) = np, ne N, we have f,ge C(log). In accordance to Theorem 2.7, let
r = r(f, g) and let cp be the i-function which corresponds to r. Then <p e /(log). Mo
reover, by the first assertion of Theorem 2.7 we have

(3.1) cp(nq) = n"

for all neN. Since q> is nondecreasing, it is therefore equivalent to I/J, where \\/(n) =
= ns,ne N. Besides, from (3.1) we can obtain

lim (p(n)jns = 1 .

Now, since \jj is concave in the interval <0, + oo) and q> is equivalent to \f/, so <p
must be almost concave which completes the proof.

Before the next lemma we introduce a notation for iterated logarithm. For each
k e N we define a function lg^ : R -* R+ by recursion scheme:

jg x = / lo82 x for x = 1 ;

\ 0 for x = 1 ;

lg t +1 x = lg t (lg4 x) for all x e R ; k = 1,2,

Lemma 3.2. Let k e At, let r > 0 be a rational number. Then there exists an almost
concave i-function <p e /(log) equivalent to \p, where

"K") = Igfc «, n e N .

Proof. At first, it is easy to see that the function/, where/(n) = 2", n 6 At, belongs
to the class C(log). E.g. it was shown in [5] tha t / i (n) = 3-2" -1 — n — 1 belongs
to C(log). Define gt(n) = n + 1, then we have f2 = / . + gt e C(log), and again,
f3 =f2 + fz e C(log). Since f3(n) = 3-2", then, using speed-up Lemma 2.2 (r = 3)
we obtain our result.

Now, define a sequence / . , , / - , • • • of functions by

/1(n) = 2», A + 1 (n) = / 1 (/ f c (n)) , n e i V ; fee At.

Using Theorem 2.5 we have / t e C(log) for each k e N. Let p, qeN, r = p\q. Define
A by fl(n) = nq; we have g e C(log), see the proof of Lemma 3.1. Using again Theorem
2.5 we see that h e /(log), where h(n) = fk(g(n)), neN. Let C be the i-function which
corresponds to h. Then

C(«) - [(W 9] . «eIV,

where the square brackets denote the entire part of the number. Obviously, { is an
almost concave function, £ e/(log). Setting q>t = q>2 = . . . = <pp = C in Theorem
2.9, we find out that an almost concave function n e /(log) exists which is equivalent
to Cp- Since the functions £p, i/f are obviously equivalent to each other, we conclude
that n is equivalent to ij/, completing the proof.

Example 3.1. Let p e N, let r be a rational number, 0 < r < 1, let -•., r2, ..., rp

be nonnegative rational numbers. Then there exists a simple i-function (p equivalent
to n, where

n(n) = nr lgj r 'n lg2
 r2n . . . lgp

 r'n , neN .

Proof. By Lemma 3.1, there is an almost concave i-function <p0 e /(log) equivalent
to ^ 0 , where ift0(n) = nr, n e At.

By Lemma 3.2, for each j = 1,2, p there is an almost concave i-function

q>j e /(log) equivalent to ij/j, where \j/j(n) = lgj rjn, n e AT.

Now, by Theorem 2.9, there is an (almost concave) i-function q> e /(log) equivalent

to \j/, where \jj(n) = cp^njy^n) . . . <Pp(n), neN. Since q>j is equivalent to ij/j for

each j -» 1, 2, . . . , p, <p is equivalent to ^. Now, since «(n) = log n for almost all

n 6 At, we conclude that <p e/(n) and furthermore, q> el(q>), for n is equivalent to <p.

Thus, the i-function q> is simple.

Example 3.2. Let p e At, let rlt r2- • • •, rp be arbitrary nonnegative rational numbers

/•j = 1. Then there exists a simple i-function <p equivalent to n, where

n(n) = l g l
r i n l g 2

r 2 n . . . l g / ^ n , neN.

Proof. It is analogical to the proof of the previous example. Again, it may be shown

that q> e /(log).

(Received March 25, 1977.)

REFERENCES

[1] J. Hartmanis, P. M. Lewis II, R. E. Stearns: Classifications of computations by time and me
mory requirements. IFIP Congress in New York, 1965.

[2] H. Yamada: Counting by a class of growing automata. PhD Thesis, Moore School of Elect.
Eng., University of Pennsylvania (1960).

[3] H. Yamada: Real-time computation and recursive functions not real time computable. IRE
Trans, on Electronic Computers, EC-11 (1960).

[4] P. C. Fischer, A. R. Meyer, A. L. Rosenberg: Time-restricted sequences generation. Journal
of Computer and System Sciences 4, (1970) 50—73.

[5] M. Nekvinda: On the complexity of events recognizable in real time. Kybernetika 9, (1973),
1, 1 -10 .

[6] M. Nekvinda: On the complexity of countable functions. Proceedings of Symposium and
Summer School on Mathematical Foundations of Computer Science, High Tatras, Czechoslo
vakia, 1973.

RNDr. Miloslav Nekvinda, CSc, strojni fakulta CVUT {Faculty of Mechanical Engineering —
Czech Technical University), Karlovo nam. 13, 13135 Praha 2. Czechoslovakia.

