De Bruijn Cycles and their Application for Encoding of Discrete Positions

Čestmír Šimáně

By following the line of de Bruijn in studying the P_{n} cycles by the method of graphs, an algorithm leading directly from a known P_{n} cycle to a cycle P_{n+1} has been derived by the author. At least a part of all possible P_{n} cycles can be constructed by this procedure. The applicability of P_{n} cycles in position encoding systems using one path coding scale is demonstrated both for P_{n} in fundamental as in the transformed form.

In accordance with [1] a complete de Bruijn cycle P_{n} is a cycle of 2^{n} digits (elements) 0 or 1 ordered in such a way, that the 2^{n} possible sets (combinations) of n consecutive digits in the cycle are all different. All cycles derived from an original one by cyclic permutation are considered to be the same cycle.

Let us denote by a_{j} the elements of P_{n}. The n-tuple of consecutive digits a_{i}, a_{i+1}, \ldots \ldots, a_{i+n-1} be a combination C_{i}. The neighbouring combination C_{i+1} starting with a_{i+1}, has on the first $n-1$ places the same digits as C_{i} on the last $n-1$ places and on the end the element a_{i+n}, which can be either 0 or 1 . We can assign to the n-tuple forming the combination C_{i} significance of a binary number A_{i}, the decimal value of which is given by

$$
\begin{equation*}
A_{i}=a_{i} 2^{n-1}+a_{i+1} 2^{n-2}+\ldots+a_{i+n-1} 2^{0} \tag{1}
\end{equation*}
$$

The decimal value of A_{i+1} is evidently related to A_{i} by the relations

$$
\begin{equation*}
A_{i+1}=2 A_{i} \quad \text { or } \quad A_{i+1}=2 A_{i}+1 \tag{2}
\end{equation*}
$$

depending on whether the element a_{i+n} is 0 or 1 . Note that if $A_{i+1}>2^{n}-1$, the modulus 2^{n} has to be subtracted.
The following formula was derived by de Bruijn [2] for the total number N_{n} of complete cycles of the length 2^{n} elements

$$
\begin{equation*}
N_{n}=2^{2 n-1-n} \tag{3}
\end{equation*}
$$

In any sequence of two kinds of elements one can define groups of m elements as sets of m consecutive identical elements limited on both sides by at least one element of the other kind. These two limiting elements are thus unseparable from the group. A group of $m=n$ elements can occur in P_{n} once, because there exists but one combination of n identical elements of one kind. A group $m=n-1$ must not occur at all, because combinations, in which such a group would occur, are formed already by four elements of the group $m=n$ with one of the limiting elements. The group $m=n-2$ gives, with the two elements of other kind, just one combination of n elements. There are two groups of $m=n-3$ elements, because $n-1$ places in the combination are occupied by the group with the two limiting elements, so that one place is left free to be filled either by 0 or 1 . By analogous reasoning we derive a formula for the number N_{m} of groups consisting of m elements of one kind, valid for $m \leqq n-2$

$$
\begin{equation*}
N_{m}=2^{n-m-2} \tag{4}
\end{equation*}
$$

and for the total number of elements of one kind

$$
\begin{equation*}
N=n+\sum_{m=1}^{n-2} m \cdot 2^{n-m-2}=2^{n-1} \tag{5}
\end{equation*}
$$

so that the total numbers of the elements 0 or 1 in a P_{n} cycle are equal and the total number of elements in the cycle equals to 2^{n}.

Cycles for $n=1,2$ and 3 are very simple

$$
\begin{aligned}
n=1 & P_{1}: 01, \\
n=2 & P_{2}:
\end{aligned}, 0011, ~ \begin{aligned}
n=3 & P_{3}: \\
& 00010111, \\
& 11101000 .
\end{aligned}
$$

The $16 P_{4}$ cycles are presented in Table 1, some of the P_{5} in Table 3 and one P_{6} in Table 5. The heuristic method of constructing the de Bruijn cycles becomes more and more difficult with increasing n, although the knowledge of number of groups can be of significant help. Therefore some methods are needed, leading directly to a P_{n} cycle.

One of the methods of constructing the de Bruijn P_{n} cycles is based on finding solution of a recurrence formula of the form

$$
\begin{equation*}
a_{i+k}=\sum_{j=0}^{k-1} h_{j} a_{i+j} \tag{6}
\end{equation*}
$$

which leads to a periodical sequence $a_{0}, a_{1}, a_{2}, \ldots$ of $m \leqq 2^{n}-1$ elements of the field $\mathrm{GF}(2)$. By proper choice of the coefficients h_{j}, one can obtain the maximum possible periodicity (length) of the sequence equal to $2^{n}-1$. The length cannot be 2^{n},
because obviously combination C_{i} consisting of all 0 must be in this method excluded. For detailed information on this method and its relation to so called shift register generators of maximum length sequences see [3], [4].

Here another method is presented based on the theory of graphs (networks), which has been used by de Bruijn for derivation of his formula (3) and which is in details described either in [1] or [2]. We shall briefly review this method in a bit different

a

8

Fig. 1a-c

Fig. 1d
form more suitable for our purposes. The essence of the method consists in the construction of an oriented graph with 2^{n-1} junctions p_{j} and 2^{n} roads A. This graph will be called G_{n}. The p_{0} junction is denoted by 0 , the p_{1} by the number 1 and so on, until the last junction with the number $2^{n-1}-1$, so that under p_{j} we can simply understand the number of the junction. Each junction has two inputs and two outputs

Fig. 1e

412 for roads A, connecting all the junctions. Let one of the road start in junction p_{r} and end in junction p_{s}. The rule for connecting the junctions is given by a relation between the numbers p_{r} and p_{s}

$$
\begin{equation*}
p_{s}=2 p_{r} \quad \text { or } \quad p_{s}=2 p_{r}+1 . \tag{7}
\end{equation*}
$$

We see, that each of the junctions is a starting point of two roads, one leading to an even and one to an odd junction. Note that if p_{s} exceeds $2^{n-1}-1$, then 2^{n-1} must be subtracted.
Each road starting in p_{r} and ending in p_{s} is denoted by a number A given by

$$
\begin{equation*}
A=2 p_{r} \text { for even } p_{s} \tag{8}
\end{equation*}
$$

or

$$
A=2 p_{r}+1 \text { for odd } p_{s} .
$$

The graphs G_{2} to G_{6} are shown on the Figures 1a to 1e. The close relation of the graphs G_{n} to the cycles P_{n} can be most easily seen, if instead of decimal numbering of junctions and roads we use binary numbers. Then the passage (road) from p_{r} to p_{s} is denoted by the n-digital number A of the road, where the first digit is the first digit (standing to the left) of p_{r}, followed by the $n-2$ overlapping digits of p_{r} and p_{s}, and the last digit is identical with the last digit of p_{s}, which can be either 0 or 1 . The passage from the road A_{i} to the road A_{i+1} through junction p_{s} is described by two successive passages, namely from junction p_{r} to p_{s} and from p_{s} to p_{t}. Respecting relations (7) between the numbers of the junctions and using (8) for numbering the roads we obtain relations between numbers of two successive roads

$$
\begin{equation*}
A_{i+1}=2 A_{i} \quad \text { or } \quad A_{i+1}=2 A_{i}+1 \tag{9}
\end{equation*}
$$

Again, if A_{i+1} becomes larger than $2^{n}-1$, the modulus 2^{n} is to be subtracted. All A numbers are n-digital numbers and we can identify them with combinations of n digits. We see, that relations between successive A_{i} 's are the same as between successive C_{i} 's (relations (2) and (9)). By accomplishing a so called complete walk in graph G_{n}, which crosses all the junctions twice and uses all the roads just once in prescribed direction, we do the same as if we would pass through all the combinations C_{i} in the cycle P_{n}. The problem of constructing a cycle P_{n} is in this way reduced to design a complete walk in G_{n}, it is to find the corresponding sequence A_{i} of roads. To go back from A_{i} to P_{n}, we have simply to write 0 instead of an even A and 1 instead of an odd A.

The aim of this contribution is now to demonstrate a method, which leads directly to the construction of at least a part of all possible cycles. We shall start with the construction of so called doubled graph G_{n}^{d} with respect to G_{n}. The doubled graph [2] consists of 2^{n} junctions, the numbers of which are identical with the road numbers A_{i}^{n}
in G_{n}. The index n at the road number A indicates, that we deal with roads in G_{n}. If two successive roads A_{i} and A_{i+1} cross a junction in G_{n}, then in G_{n}^{d} the junctions numbered A_{i}^{n} and A_{i+1}^{n} must be connected by a road A^{n+1} starting in A_{i} and ending in A_{i+1}. According to (8), which is valid for any n, the road numbers in G_{n}^{d} will be either $2 A_{i}$ or $2 A_{i}+1$, depending on whether A_{i+1} is even or odd. Because the relation (9) for roads in G_{n} is in G_{n}^{d} valid for junctions and because (9) has the same form as (7), the doubled graph G_{n}^{d} is identical with the graph G_{n+1}.

Let us assume, that we know already a complete walk in G_{n}, described by a road sequence A_{i}^{n}. We can reproduce this complete, closed walk in G_{n+1}, going successively through junctions in G_{n+1} denoted by the numbers A_{i} of the sequence in G_{n}. We obtain a walk in G_{n+1}, which is closed but not complete. All junctions have been crossed only once except the junctions 0 and $2^{n}-1$, which have been crossed twice. In such a way, $2^{n}-2$ junctions, each with one input and one output not used in previous walk, are disponible for performing another closed walk in G_{n+1}. We shall denote the first walk by Q_{n+1}, the second by R_{n+1}. All junctions connected by R_{n+1} are common to both Q_{n+1} and R_{n+1}. The simplest way to combine these two walks in a complete one is to start the walk in Q_{n+1}, then in any of the $2^{n}-2$ common junctions pass to R_{n+1}, accomplish the walk in R_{n+1}, return to Q_{n+1} and finish the walk. From one known P_{n} we can construct by the above procedure $N_{n+1}^{\prime}=2^{n}-2$ cycles P_{n+1}, so that

$$
\begin{equation*}
N_{n+1}^{\prime} / N_{n}=2^{n}-2 . \tag{10}
\end{equation*}
$$

According to (1), the fraction

$$
\begin{equation*}
N_{n+1} / N_{n}=2^{2 n-1-1} \tag{11}
\end{equation*}
$$

and we see, that

$$
\begin{equation*}
N_{n+1}^{\prime} / N_{n+1}=\left(2^{n}-2\right) /\left(2^{2 n-1-1}\right) . \tag{12}
\end{equation*}
$$

The last fraction is equal for $n=3,4$ and 5 to $3 / 4,7 / 64$, and $15 / 16384$ respectively. Its value decreases rapidly with increasing n, obviously, because the role of more than one interconnection between Q_{n+1} and R_{n+1} becomes more and more important.

The above procedure can be performed by a simple algorithm, by the use of which the necessity of designing the graphs is fully eliminated. It is deduced from relations (9), valid for road numbers in G_{n} and G_{n+1}. We start with a sequence A_{i} in G_{n}. Before using (9) we have to write a new sequence A_{i}^{\prime}, differing from the previous one by writing twice the road numbers 0 and $2^{n}-1$, because there are loops in these junctions in G_{n+1}. Now we write the sequence Q_{n+1} by multiplying the road numbers in A_{i}^{\prime} by two and adding 0 or 1 , depending on wheter the next road number in A_{i}^{\prime} is even or odd. The results are written below the road numbers A_{i}^{\prime}. The sequence R_{n+1} must contain all numbers from the interval 0 to $2^{n+1}-1$, which didn't appear in Q_{n+1}

414 in the order given by (9). The whole procedure is illustrated by the following example, where starting from a P_{3}, one P_{4} and one P_{5} have been constructed:

$P_{3}:$	0	0	0	1	0	1	1	1	
$A_{3}:$	0	1	2	5	3	7	6	4	
$A_{3}^{\prime}:$	0	0	1	2	5	3	7	7	6
$Q_{4}:$	0	1	2	5	11	7	15	14	12
$R_{4}:$	3	6	13	10	4	9			

if Q_{4} and R_{4} are combined in 2 and 4 , then

$A_{4}:$	0	1	2	4	9	3	6	13	10	5	11	7	15	14	12	8		
$P_{4}:$	0	1	0	0	1	1	0	1	0	1	1	1	1	0	0	0		
$A_{4}^{\prime}:$	0	0	1	2	4	9	3	6	13	10	5	11	7	15	15	14	12	8
$Q_{5}:$	0	1	2	4	9	19	6	13	26	21	11	23	15	31	30	28	24	16
$R_{5}:$	3	7	14	29	27	22	12	25	18	5	10	20	8	17				

if Q_{5} and R_{5} are combined in 4 and 8 , then

| $A_{5}:$ | 0 | 1 | 2 | 4 | 8 | 17 | 3 | 7 | 14 | 29 | 27 | 22 | 12 | 25 | 18 | 5 | 10 | 20 | 9 | 19 | 6 | 13 | 26 | 21 | 11 | 23 |
| :--- |
| $P_{5}:$ | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| | 15 | 31 | 30 | 28 | 24 | 16 | |
| | 1 | 1 | 0 | 0 | 0 | 0 | |

In such a way we can obtain a P_{n} for any n.

POSITION ENCODING SYSTEMS USING DE BRUIJN CYCLES

An interesting field of application of this type of cycles is the encoding of discrete positions i for example of a rotating wheel. One can materialize the cycle P_{n} either on the periphery or on some circle of diameter r on the wheel in form of two kinds of elements, one corresponding to 0 , the other to 1 , and use some type of sensors looking at n neighbouring elements and reproducing their values at their outputs. Their output of the sensors interpreted as A_{i} is in encoded form the position i of the wheel. To get i from A_{i}, some type of decoder $i\left(A_{i}\right)$ has to be incorporated into the system.

The position code P_{n} on the wheel needs but one coding path in the coding scale. This is perhaps the most important feature as compared with the standard systems using one path per every bit of the binary output. Fig. 2 a and 2 b illustrate in schematic way the difference between these two systems for encoding of 16 positions. It is clear, teresting, because after the transformation it has the same form as P_{4}^{1}. The sequence
that one path scale using de Bruijn cycle is much more compact, but necessitates an additional decoder.

Sometimes it may be advantageous to have the sensors separated by more than the distance between two neighbouring scale elements. In this case we can transform the cycle P_{n} into another cycle P_{n}^{m}, which is felt by sensors separated by m distances between the code elements. The length of the cycle P_{n} must not be divisible by m.

Fig. 2
The transformation goes ahead in such a way, that the elements a_{i} of P_{n} are written in P_{n}^{m} (of the same length) in the same order, but separated by m distances between the code elements. If the end of the cycle is reached, one continues cyclically from the beginning, filling the places left free. Three transformed cycles P_{4}^{3}, obtained from P_{4}^{1} number 1, 2 and 3 in Table 1, are given in Table 2. The P_{4}^{3} number 1 is in-

416 of A_{i} as seen by the sensors, is of course different. The P_{4}^{3} numbers 2 and 3 are cycles with a minimum number of groups. There are only one group of 5 , one of 2 and one of 1 elements in the code scale. A transformed P_{5}^{5} is presented in Table 4. Two schemes of systems using transformed P_{4}^{3} cycles for encoding of 16 positions are shown on Fig. 3a and 3b.

Fig. 3

SHORTENED (INCOMPLETE) CYCLES

The method of graphs offers the possibility to find easily walks, which are closed but not complete. These walks represent then shortened, incomplete cycles, suitable for encoding of number of positions smaller than 2^{n}. We can perform for example

Table 1. P_{4} Cycles

Cycle number	i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	P_{4} A_{i}	0 0	0	0 3	0 6	1 13	1	0 4	1	0 2	0 5	11	0 7	15	1 14	11	1
2	P_{4} A_{i}	0	0	0 3	0	1 13	11	0 7	1 15	14	1 12	1	0 2	0 5	1 10	0	1
3	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	1 15	$\begin{array}{r} 1 \\ 14 \end{array}$	12	1 9	0	0	1 8
4	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0 4	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	14	1 13	1 10	0 5	11	0 6	1 12	1
5	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0 4	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	0 5	$\begin{array}{r} 1 \\ 11 \end{array}$	0	1 15	1 14	12	1 8
${ }_{6}^{5}$	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0 5	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	0	1 13	$\begin{array}{r} 1 \\ 11 \end{array}$	0	1 15	1 14	12	1 8
7	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	1 13	1 11	0	$\begin{array}{r} 1 \\ 12 \end{array}$	1
8	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	0	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 12 \end{array}$	1 8
9	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 1 \\ 12 \end{array}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$		0 7	$\begin{array}{r} 1 \\ 15 \end{array}$	1 14	1 13	1 10	0 4	1
10	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$		$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 13 \end{array}$		$\begin{aligned} & 0 \\ & 4 \end{aligned}$	9	0 3			8
11	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$		1	$\begin{aligned} & 0 \\ & 3 \end{aligned}$					1
12	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 11 \end{array}$	0	$\begin{array}{r} 1 \\ 12 \end{array}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0 5	$\begin{array}{r} 1 \\ 10 \end{array}$	0 4	1
13	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	0	1	0 2		1 11	0		1
14	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	0	$\begin{array}{r} 1 \\ 11 \end{array}$	0	$\begin{array}{r} 1 \\ 12 \end{array}$	1		0	1
15	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{array}{r} 1 \\ 12 \end{array}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	1 11	0	$\begin{array}{r} 1 \\ 15 \end{array}$	1 14	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	1
16	$\begin{aligned} & P_{4} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	0 7	$\begin{array}{r} 1 \\ 15 \end{array}$	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 1 \\ 12 \end{array}$	1	0 2	0 5	11	0	1 13	1 10	0 4	1

Table 2. P_{4}^{3} Cycles

| Cycle
 number | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | ---: |
| 1 | P_{4} | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| | A_{i} | 0 | 7 | 4 | 1 | 15 | 9 | 3 | 14 | 2 | 6 | 12 | 5 | 13 | 8 | 11 | 10 |
| 2 | P_{4} | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| A_{i} | 0 | 2 | 7 | 1 | 5 | 15 | 3 | 10 | 14 | 6 | 4 | 12 | 13 | 8 | 9 | 11 | |
| 3 | P_{4} | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| A_{i} | 0 | 12 | 5 | 1 | 9 | 11 | 3 | 2 | 7 | 6 | 4 | 15 | 13 | 8 | 14 | 10 | |

Table 3. P_{5} Cycles

1	$\begin{aligned} & i \\ & P_{5} \\ & A_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 8 \end{aligned}$	$\begin{array}{r} 5 \\ 1 \\ 17 \end{array}$	$\begin{aligned} & 6 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 8 \\ 0 \\ 13 \end{array}$	9 1 26	$\begin{array}{r} 10 \\ 1 \\ 21 \end{array}$	$\begin{array}{r} 11 \\ 0 \\ 11 \end{array}$	$\begin{array}{r} 12 \\ 1 \\ 22 \end{array}$	$\begin{array}{r} 13 \\ 0 \\ 12 \end{array}$	$\begin{array}{r} 14 \\ 1 \\ 25 \end{array}$	$\begin{array}{r} 15 \\ 1 \\ 18 \end{array}$
	$\begin{aligned} & i \\ & P_{5} \\ & A_{i} \end{aligned}$	$\begin{array}{r} 16 \\ 0 \\ 5 \end{array}$	$\begin{array}{r} 17 \\ 0 \\ 10 \end{array}$	$\begin{array}{r} 18 \\ 1 \\ 20 \end{array}$	$\begin{array}{r} 19 \\ 0 \\ 9 \end{array}$	$\begin{array}{r} 20 \\ 1 \\ 19 \end{array}$	$\begin{array}{r} 21 \\ 0 \\ 7 \end{array}$	$\begin{array}{r} 22 \\ 0 \\ 14 \end{array}$	$\begin{array}{r} 23 \\ 1 \\ 29 \end{array}$	$\begin{array}{r} 24 \\ 1 \\ 27 \end{array}$	25 1 23	26 0 15	27 1 31	$\begin{array}{r} 28 \\ 1 \\ 30 \end{array}$	29 1 28	30 1 24	31 1 16
2	i P_{5}	0 1	1	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	3 1	4	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	7 1	8 0	9 1	10 1	11 0	12 0	13 0	14 0	15 0
	i P_{5}	16 1	17 1	18 1	19 1	20 1	$\begin{array}{r} 2 \mathrm{I} \\ 0 \end{array}$	$\begin{array}{r} 22 \\ 0 \end{array}$	23 1	24 0	25 1	26 0	27 0	28 0	29 1	30 0	31 0
3	P_{5}	1	0 0	0 1	1	1 0	1 0	1 0	1	0 0	1	1 0	1	0 0	0 1	1	0 0
4	P_{5}	0 0	1 1	0 1	0 1	1	0 1	0 0	0 0	1	1	0 1	0 0	0 1	0 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
5	P_{5}	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
6	P_{5}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	1	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
7	P_{5}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	1 1	1	1	1 0	1	0 0
8	P_{5}	0 0	0	1 0	0 1	1 0	0 0	0 1	1	0 1	0 1	1	1	0 1	1 0	1	1

Table 4. P_{5}^{5} Cycle (obtained from cycle 1 in Table 3.)

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P_{5}	0	0	0	0	1	0	1	1	0	0	0	. 1	1	1	0	0
A_{i}	0	12	15	6	19	1	25	31	13	7	2	18	30	26	14	4
i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
P_{5}	0	1	1	1	0	0	1	0	1	1	1	1	1	1	0	0
A_{i}	5	28	21	29	8	10	24	11	27	17	20	16	22	23	3	9

Table 5. P_{6} Cycle

in the graph G_{4} (Fig. 1d) a closed walk $1,2,4,9,3,7,15,14,12,8$, which gives a cycle of ten elements 1001111000 , applicable for encoding of 10 positions, the problem which often occurs in decimal mechanical counters.

CONCLUSION

The method of construction of P_{n} cycles described above was derived by the use of the theory of graphs and differs from the method based on shift registers, used as codes generators. It offers the possibility of construction of a relatively large number of P_{n} cycles, which are either in their fundamental or transformed form suitable for one path coding scales in position encoders.

420 The author would like to express his gratitude to professor A. Apfelbeck and to Dr. M. Driml for encouraging discussions and interest in his work.
(Received January 25, 1978.)

REFERENCES

[1] Marshall Hall Jr.: Combinatorial Theory. Blaisdall Publishing Company, Toronto-London 1967, chapter 9. (Russian translation.)
[2] N. G. de Bruijn: A Combinatorial Problem. Nederl. Akad. Wetensch. Proc. 49 (1946), 758-764.
[3] W. Wesley Peterson, E. J. Weldon, Jr.: Error-Correcting Codes. The MIT Press, Cambridge, Massachusetts and London, England 1972 (second edition). (Russian translation Mir, Moscow 1976.)
[4] A. Culek et al.: On a Method of Pseudo-Random Numbers Generation. Kybernetika 2 (1966), 1, 215-225.

Prof. Ing. Čestmir Šimáně, fakulta jaderná a fyzikálně inženy̌rská ČVUT (Faculty of Nuclear Science and Physical Engineering - Czech Technical University), Břehová 7, 11000 Praha 1. Czechoslovakia.

