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Two Infinite Hierarchies of Languages 
Defined by Branching Grammars 

GHEORGHE PÄUN 

Two types of branching grammars are introduced inspired from Havel's works about branching 
automata. They naturally define two infinite hierarchies into the family of regular, respectively, 
linear languages. Homomorphic characterisations of regular and linear languages >n terms of 
branching languages are obtained. Finally, the relations between branching grammars and 
contextual grammars of [5] are investigated. 

1. INTRODUCTION 

In the last time, in the formal languages theory many generative devices different 
from the Chomsky grammars were considered. The present paper deals with two 
known such devices from "unusual automata theory", namely, finite branching 
automata (shortly, FBA) of Havel [2] and contextual grammars of Marcus [5]. 
The FBA's recognize families of languages by specifying how their strings branch 
to the right. The latter devices generate languages starting from a finite set of strings 
and adjoining contexts selected by means of a choice mapping. 

The branching grammars incorporate features of both the two devices: they define 
languages by branching the strings in dependence on their suffixes and prefixes of 
a bounded length. 

Two types of branching grammars (shortly, BG) are considered: simple BG's 
(SBG) and double BG's (DBG). In the former kind of BG's only prolongations to the 
right are possible whereas in the latter, the words may be prolonged in both sides. 

The two types of BG's introduce infinite hierarchies of regular and, respectively, 
linear languages. Two interesting results about these generative devices are Theorems 
2 and 6 giving homomorphic characterisations of regular and linear languages in 
terms of simple and double branching languages, respectively. The connection 
between DBG's and contextual grammars (simple and with choice) is investigated, 
as well as the closure properties of the considered families of languages. 



2. SIMPLE BRANCHING GRAMMARS : 

Let V be a vocabulary. We denote by V* the free monoid generated by V under 
the operation of concatenation and the null element X. The length of x 6 V* is denoted 
by |x|. 

For further notions concerning the formal languages theory see [9]. We merely 
specify that we denote by G = (VN, VT, S, P) a Chomsky grammar with the non
terminal vocabulary VN, the terminal vocabulary VT, the start symbol S and the set of 
production rules P. Also, we denote by if,, i = 0 ,1 , 2, 3, the four families of lan
guages in Chomsky's hierarchy. 

Let L Z V*. (We use ^ for inclusion and c: for strict inclusion.) Following [2] 
we put 

Pref L = {u e V* | there is veV* such that uv e L) . 

For ueV* we define 

duL = {v e V* | uv e L} . 

Then, the branching structure of Lis described by the mapping AL : V* -* 3?{VX) 
(Vx stands for Vu {X}) defined by 

AL(w) = (Pref duLn V) u (3uLn {X}) . 

The language Lis completely identified by AL. 
Now, let us recall from [2] the definition of EISA's: 

s* = (V Q, S, q0, B) 

where Vis a vocabulary, Q is a set of states, q0 e Q is the initial state, S : Q x V-+ Q 
is the next-state function and B £ Q x SP{VX) is the set of branches. 

This automaton was intended to recognize families of languages and not single 
languages ([2], [3]). In what follows, we consider that B £ Q x Vx and thus the 
automaton naturally identifies one language. 

In this aim we extend S to Q x V* in the usual way and say that a string x = 
= x, ... x,„ x ; e Vis accepted by s/ if and only if there exist q0, qx, .... q„ jn Q such 
that d(qt-lt x;) = q-t and (qh x ; + 1 ) e B for any i and (a,„ A) e B. (The null string is 
accepted only if (q0, X) e B.) 

Two components of this machinery (which is, in fact, a finite automaton with 
a branching controller) co-operate in selecting the strings of the recognized language: 
the mapping 5 and the branch set B. 

It is easy to see that a language is recognized by a FBA as above if and only if it is 
a regular language. Thus, we have two possibilities to go further: either to renounce 
to some conditions in the FBA definition or to impose additional restrictions in order 
to recognize a larger family of languages. In this paper we follow the first alternative. 



Thus, let us consider that the mapping 5 depends only on its second argument, 
that is, d(q, a) = d(q', a), for any q, q' e Q, a e V Then the branches depend only 
on symbols in V. The recognized language is determined by q0, the allowed branches 
and the "final" states of Q (states for which a pair (g, X) is in B). We completely 
eliminate the states but we extend the dependence of the branches to more symbols. 

Definition 1. A simple branching grammar of degree k (a k-SBG) is a system 

s4 = (V, L0, B), 

where V is a vocabulary, L0 c V0 and B £ V* x VA (where V{ = {x e V*| i S 

= H = )))• 
Two languages generated by this grammar are defined in the following way. 
For two languages Lu L2 on an arbitrary vocabulary V let D(LU L2) be the 

smallest language L £ V* which includes L t and has the following property: if 
x e L, x = xxx2 and x2a e L2 for some xu x2 e V*, a e V, then xa e L. 

Then, for a given SBG, sf, as above, the weakly generated language is D(L0, LB), 
where LB = {xa | (x, a) e B}. Denote it by W(sf). 

The strongly generated language is 

Lfy) = W(s4) n ({1} u {x,x2 \ xt e V*, (x2, A) e £}) . 

We denote by SPk the family of strongly generated languages by k-SBG's. Ob
viously, yk c £fk + u We define then 

sr° = u ^ i -
i = l 

Theorem 1. We have ^ c y 2 c . . . c r c i ? 3 . 

Proof. In [7] it was proved that for any regular languages Lu L2, the language 
D(LU L2) is regular. As SC3 is closed under intersection, it follows that L(s4) is 
regular for any sd'. 

To prove that ^; c_i £ Sfk is a proper inclusion, let us consider the language 
Lk = {ak}. Obviously, Lk = L(s4) for si = ({a}, {ak}, {(a, X)}). Therefore, Lk e £fk. 
Let us suppose that Lk 6 £fk-u Lk = L(s4') for sJ' = ({a}, L0, B). Any x 6 L0 has 
M r» fc — 1 hence at least a pair (a1, a) exists in B. A pair (aJ, X) belongs to B too. 
It follows that L(sd') is infinite. Contradiction. 

Let us consider now the regular language 

L = {a"bamc | n, m ^ 1} 

and suppose that L = L(s4) for s4 = (V, L0, B), B c v\ x VA. In L there are strings 
containing sequences of a of arbitrary length and therefore a pair (a1, a) must belong 
to B. On the other hand, pairs (aJ, b) and (ar, c) exist in B as well as a pair (a'c, X). 



Consequently, in L(sJ) there are strings which contain more than one symbol b. 
Such strings are not in L hence L -"= L(si). • 

A homomorphism n : vi -* F2 is called a coding. An interesting property of 
SBG's is the following. 

Theorem 2. A language L is regular if and only if there is a coding h and a language 
L e S/'1 such that L = h(L'). 

Proof. Let si = (V, 2 , S, q0, F) be a deterministic finite automaton. We construct 
the following l-SBG: si' = (V, L0, B), where 

V = {[a, g] | a e V, g e S} , 

I-o = {[«, «] | %o> a) = g, g e Q, a e V} , 

B = {([a, g], [a', g']) | % , a') = g', g, g' e Q, a, a' e V} u 

u {([a, g], A) | g e E, a e V} . 

Let h : V' -t> V be the coding defined by h([a, g]) = a, a 6 V, g e Q. We have 

L(si) = h(L(^'))-
Indeed, let x 6 L(.E>f), x = x% ... x„, x ; 6 V for all i. There exist g0, g,, ..., q„ e Q 

with qt = % , - 1 ; X;), i = 1,2,..., n, g„ e F. Consequently, [x,, g j 6 L0, ([x ;, g ;], 
[x i + 1 , g i + 1 ] ) e B , i = 1, 2 , . . . , n - 1 and ([x„, g„], 1) e B. Hence, [ x , , g , ] . . . 
• • • [*,.> <7n] e L(J</') and xt ... x„ = /^([x,, g,] . . . [x„, g„]) e h(L(si')). 

Conversely, let x = [x., g j ... [x„, g„] e L(si'). As [xx, g j e L0, it follows that 
%o>Xi) = 9v As ([xi; g ;], [x i + 1 , qi+1])eB, it follows that S(q(, x i + I ) = g i + 1 , 
2* = 1, 2, ..., n — 1. Moreover, ([x„, g„], 2 ) e B implies that g„ e F. In consequence, 
h(x) = x, . . . x„ e L(j/), hence h(L(^')) £ L(.s/). 

The other implication obviously follows from Theorem 1. (The family £C3 is 
closed under arbitrary homomorphisms.) • 

Definition 2 [9]. A family Jz? of languages is called AFL iff it contains a non
empty language different from {X} and is closed under union, concatenation, + , 
A-free homomorphisms, intersection with regular languages and inverse homo
morphisms. A family ££ which is not closed under any of the previous operations is 
called anti-AFL. 

Any AFL includes the family J£3. According to Theorem 1, neither S*'„ nor £/"° 
are AFUs. In fact, we have, 

Theorem 3. All the families y ; , i = 2 and 9"* are anti-AFVs. 

Proof. 1) Union. Let us consider the languages 

L t = {a"b I n = l } + , L2 = {a"c \n = l}+. 



Obviously, L. = L(si1) where s4x = ({a, b}, {a}, {(a, a), (a, b), (b, a), (b, X)}), 
therefore L1 e Sp

1. Analogously, L2e Sfl. The language L1 u L2 is not in S^™. Let 
si = ({a, b, c}, L0, J3) be generating Li u L2. The set B must contain a pair (a', a), 
a pair (aJ, b), a pair (a'\ c), one (a''&, a) and final pairs of the form (a"b, X),(a'c, X). 
By such branches we can obtain strings of the form a"bamc. Such strings are not in 
Lx u L2, therefore Lx u L2 cannot be in Sf*. 

2) Concatenation. Let 

Lt = {a"/? | n = 1} , L2 = {a"c | n = 1} . 

Obviously, L., L2 6 ^ t . From the proof of Theorem 1 it follows that LtL2 £ 9"*. 

3) Iteration +. Consider the language 

L = {ab"a \ n £ 0} . 

We have L = I(jrf) with si = ({a, &}, {aa, ab}, {(a, 1), (fo, b), (b, a)}), therefore 
Le y 2 . However, L+ is not in Sf™. Indeed, let si = ({a, b}, L0, B) be generating L+. 
Since aa 6 L+, there is in B either a pair (a, 1) or a pair (aa, A). On the other hand, 
there are in L+ strings of the form ab"aabma. Consequently, there are in W(si) 
strings of the form ab"aa. As either (a, X) or (aa, X) is in B, it follows that ab"aa is 
in L(si) too. Contradiction. 

4) Homomorphisms. In view of Theorem 2, the families Bfi
i, i = 2, S"00 are not 

closed under 2-free homomorphisms. 

5) Intersection with regular languages. The language V* is in Sf1 for any finite 
vocabulary V. For any Le £f3 — Sf™ we have then LnV*<£ S/"". 

6) Inverse homomorphisms. Let L = {be} and consider the homomorphism 
h : {a, b, c} -+ {b, c}* defined by h(a) = X, h(b) = b, h(c) = c. Then 

fc~*(L) = {a"bamcap \ n, m, p = 0} . 

Obviously, L e ^ but h-1(L) is not in $f"°. The proof of the last assertion is 
similar to that used when we showed that {a"bamc \n,m — 1} is not in S/"^'. • 

Remark. The family S/p
1 is not an anti-AFL since it is closed under + . Indeed, 

let si = (V, L0, B) with L0 Z Vx, B c V x Vx. We construct the l-SBG, si' = 
= (V, L0, £'), with B' = BVJ {(a, b) \ (a, X)eB, beL0}. The inclusion L(si)+ £ 
£ L(j/ ') is obvious. Conversely, let X = xt ...x„eL(si'), xt e L0, (xt, xi+1) e B, 
i = 1, 2 , . . . , r — 1, (xr,xr+1)£B for the smallest r. It follows that (xr,xr+1)e 
eB'— B, hence (xr, A ) e £ and x r + 1 6 L o . Consequently, xx ...xreL(si) and 
y = x r + 1 . . . x„ e L(si'). By the iteration of this procedure, a decomposition x = 
— y^i ••• y& w i t n J; e L(si) can be obtained, therefore L(si') £ L(si)+. 



3. DOUBLE BRANCHING GRAMMARS 

In SBG's the strings can be prolonged only to the right. In what follows we consider 
devices which allow prolongations to the right as well as to the left. 

Definition 3. A double branching grammar of degree k (a k-DBG) is a system 

si = (V, L0, B) , 

where Vis a vocabulary, L0 _ V0 and B _ (Vx x V*) x (V* x VA). 

The weakly generated language, denoted W(si), is the smallest language L _ V* 
for which 

i) L0 S L, 

ii) if xeL and there are w, x „ x2, w' in V* such that x = wxj = x2w' and 
((a, w), (w', /?)) e .B for some a, /? e VA, then ax/? e L. 

The strongly generated language is L(si) = W(si) n ({A} u {x e V*| there are 
x1 ; x2, w, w' in V* such that x = wxt = x2w' and ((A, w), (w', A)) e B}). 

We denote by 3k the family of languages strongly generated by k-DBG's. Ob
viously, 3t S Bi+1. We define 

_>» = IJ gsi. 
« = 1 

Remark. The family 3X contains non-regular languages. Indeed, let us consider 
the l-DBG 

si = ({a, b}, {a}, {((a, a), (a, b)), ((a, a), (b, b)), ((A, a), (b, A))}). 

It is easy to see that L(si) = {a"^'1 \ n ^ 2} and this language is not a regular 
one. 

Theorem 4. We have ^ ; - 3t <= 3i + 1 for any i g; 1. 

Proof. Let ^ = (V, L0, B) be a fe-SBG. We construct the k-DBG si' = (V L0, £ ') , 
where B' = {((A, a), (x, a))\ae V, (x, a)eB}. 

Obviously, L(si) = L(si'). 
According to the inclusions 3t s 3i+1, the above Remark and Theorem 1, it 

follows that Sfi - 3t. 
Now, let us consider again the language Lk = {ak}. 
Clearly, Lke3k. Let us suppose that L ^ e ^ - j , Lk = L(si) for some JZ/ = 

= ({a}, L0, B). Any x e L0 is of the form a' with i = fc — 1. In B there is at least 
a pair ((a, a'), (aJ, 0)) with a, /? e {a, A}, «/3 =i= A- It follows that W(si) is infinite. 
Because there is in B a pair ((A, a1'), (a-7', A)), it follows that L(si) is infinite too. 
Contradiction. • 



Let .S?;;„ be the family of linear languages. 

Theorem 5. _?°° c _?;,„. 

Proof. Let Le@k, L= L(srf), for s4 = (V L0, B). We construct the following 
linear grammar G = (VN, V, S, P), where 

Vv = {S} u {[w, w'] | w, w' E V*, \w\ = |w'| = k} , 

P = {S-+w\weL, \w\ = 2k + 1} u {S -» [z, z ' ] | there is ((A, x), (x', A)) in B 
such that z = xy and z' = / x ' for some y, y e V*} u {[w, w'] -> a[z, z'] a'| 
there are y, y' in VA such that wy = az, j ' w ' = z'a', a, a' e Vx and there is ((a, x), 
(x', a')) in B such that z = xu and z' = vx' for some M, V e V*} u {[w, w'] -> 
-> WXW' I X 6 VA, WXW' 6 PV(j/)}. 

Let us firstly observe that if a string in W(srf) can be obtained from another the 
lengths of the two strings differ by 1 or 2. As L0 contains only strings with |x| = k, 
it follows that any string in L(sd) has in its derivations a string y e W(stf) of length 2fe 
or 2/c + 1. 

The equality L(stf) = L(G) holds. 

Let xeL(s/). If |x| = 2k + 1 we have obviously xeL(G). For x with Jx| > 
> 2/c + 1, let us suppose that x = x r . . . x ^ .. . y2k + ix'i ••• xr with x ;, x-, yte Vx 

such that y1 ... y2k+1 e W(stf) and for each i = 1 we have ((x;, M ; _J) , (MJ-J., x;)) e B 
and M^jWMj-i = X;-! ... xtyt ... y2k+ix'i • •• x ;_j for some w 6 V*. 

Moreover, ((A, Mr), (Mr, X)) e JB and u,ww| = x for some w e V*. Consequently, 
in P there are the rules 1) S -> [Mrt>r, i?rur] with vr and v'r such that \urvr\ = \v'ru'r\ = k, 
2) \ufii, v'iu'il -> Xiliii-iVi-!, t)J_1M;_1] x ; with \u-vt\ = |t>;M;| = k for i = 1, 2 , . . . , r, 
3) [u0u0, v'0u'0~\ -> j t ...y2fc+i-

Using these rules, we can obtain a derivation of x in the grammar G, therefore 
L ( ^ ) £ L(G). 

Conversely, let x e l ( G ) . If |x| g 2fe + 1, then x can be derived directly from S 
hence x eL(.s/). If |x| > 2/c + 1, then x = xr... x1y1 ... y2k+1x[ ... x'r, x;, x ;, >>; e 
e VA and there is a derivation of the form 

s => [wr, wr] => x r[w r_1; w;_i] xr =>... 

... - > x r . . . x 1 [ w 0 , w 0 ]x j . . . x ; = > x r . . . x 1 j ; 1 . . . .v2„+1xi . . . x ; . 

From the definition of G it follows that there are M;, MJ and vt, v't such that w( = 
= M;U;, w\ = v'^ and ((X ;M ;), (MJ, X-)) e _?, i = l, 2, ..., r. In addition, ((/I, Mr), 
(M;, X)) e 5 and j ^ ... y2k+1 e W(s4). It follows that x e L(.af) hence L(G) £ L ( J / ) 
and the equality L(ss?) = L(G) is proved. 

Let us now consider the regular language L = {a3n | n = l } . 

This language is not in _?°° as follows from the following Lemma. 



404 Lemma 1. For any L £ {a}*, L e 3>x, there is a positive integer p such that for any 

x e L, \x\ > p, there is x' e Lsuch that \x'\ — \x\ ^ 2. 

Proof. Let stf = ({a}, L0, B) be a k-DBG and let 

px = min {max (|w|, |w'|) | ((A, w), (w', X)) e B} , 

p2 = max {\x\ \x e L0} . 

Then we take p = max [pu p2}. 

Indeed, if there is x in L(s4) with |x| > p, it follows that L(sf) is infinite. Moreover, 
any string in W(st) of length greater than or equal to pt is in L(srf). As the lengths 
of two strings in W(s/) which can be obtained one from another, differ by 1 or 2, 
the lemma follows. • 

An interesting result about DBG's, corresponding to Theorem 2 for SBG's is the 
following 

Theorem 6. A language L is linear if and only if there is L' e Q!^ and a homo-
morphism h such that L = h(L). 

Proof. From Theorem 5 we have <?j <= Sflin. As S£Vm is closed under homo-
morphisms, one implication holds. 

Conversely, let Le £?Un, L = L(G) for a given A-free grammar G = (VN, V, S, P). 
(If there is a rule A -> 2 in P then A = S and S does not occur in the right side of 
any rule.) 

There exists an obvious procedure transforming the grammar G into an equi
valent linear grammar G' whose rules are of the form 

A —> a , a e V, 

S - A , 

A-*aBp for a, p e VA. 

Assume hence that G has only rules of these forms. 
We construct the DBG si = (V, L0, B), where 

V = {[a, A] | a e VA, A e VN u {T}} , 

L0 = {[a, T] | A -> a is in P} u {A | S -> A e P} , 

B = { ( ( [ a 1 , A 1 ] , [a2, A2]), ([a3, A2], [a4, AJ)) | a1; a2, a3, a4 e VA and 

A! --> a2A2a3 is in P} u {((X, [a2, A2]), ([a3, A2], A))| for a2, a3 e Vx and 

S -> a2A2a3 is in P} u {(([a,. A,], [a2, T]), ([a2, T], [a4, AJ)) | al5 a2, a4 

in Vk and At -> a2 in P} . 



Then L(G) = h(L(s/)) for the homomorphism h : V -+ V defined by /<[a, A]) = 405 
= a, aeVA , AeVw u {T}. 

Indeed, let x 6L, x = xx ... xnzyn... yt with x;, yh z e VX be such that there is 
the derivation S => x ^ } ^ => x1x2A2>'2>'j =>...=> x t . . . xnAnyn ... yj => x. Then, 
we have [z, T] e L0 and (([a;, A£_j], [x ;, A;]), ([y ;, A,], [ft, A;_j])) e B, a;, ft e V„ 
i = 1, 2 , . . . , n, ((A, [x1 ; A,]), Q>1; Aj], A)) e B and (([a„ + 1, A„], [_, T]), ([z, T], 
[<9B+1, A„]))eB, a„ + t , Pn + 1e Vx. For a ; = x ;_j and ft = y ;_j we obtain a derivation 
in _/ for the string w = [xj, Aj] [x2, A2] ... [x„, A„] [z, T] [y„, A„] ... \yu AJ, 
hence w e L(_/). Obviously, x = fc(w) thus L _; h(L(s/)). 

Conversely, let w e i ( i ) , w = [xx, Aj] ... [x„, A„] [z, T] [y„, A„] ... [y1; At] 
with x ;, y;, z e VA be obtained using [z, T] e L0, ((A, [x l f Aj]), ([yj, Aj], A)) e B, 
(([x ;_ t , Aj.J, [x;, AJ), ([y ;, AJ, [x ; _j , A;_j])) e B for i = 1, 2 , . . . , n and(([x„, A„], 
[ z ,T ] ) , ( [ z ,T ] , [y„ ,A„ ] ) )eB. 

From the definition of si it follows that there are in P the rules S -» x1A1y1, 
Ai^1 -* XiAtfi, i = 2 , . . . , n and A„ -» z. Using these rules we can obtain the deriva
tion S => xx . . . x„zy„... y t in G. Since h(w) = x it follows that h(w) e L(G'), hence 
h(L(st)) _; L(G) and the equality is proved. • 

From Theorems 5 and 6 it follows that _?; and S>x are not closed under homo-
morphisms. From Lemma i it follows that there are regular languages that are not 
in _?°°. Consequently, 3>; and @°° are not closed under intersection with regular 
languages. 

Open problem. Are the families _?; and S?00 anti-AFL'sl 

4. BRANCHING GRAMMARS AND CONTEXTUAL GRAMMARS 

There is a strong connection between DBG's and contextual grammars defined 
in [5]. 

Definition 4. [5] A simple contextual grammar (shortly, SCG) is a triple G = 
= (V, L0, C), where Vis a vocabulary, L0 is a finite language on Vand C is a finite 
set of contexts on V (pairs <u, v} with u, ve V*). The language generated by G is the 
smallest language L _: V* for which 

i) L0 S L, 
ii) if x e L' and <u, u> e C, then uxi> e L'. 

Definition 5. [5] A contextual grammar with choice (shortly, CCG) is a system 
G = (V, L0, C, <p) where V, L0, C are as above and cp is a mapping 9 : F* 
The language generated by G is the smallest L' S V* for which 

i) L0 S L, 
ii) if x e L and <u, u> e <p(x), then uxv e L. 



Let us denote by c£s and < ĉ the two families of contextual languages. 
According to the above definitions, double branching grammars can be viewed as 

contextual grammars with choice, the choice depending on the leftmost and rightmost 
subwords of length k. However, there are essential differences between the two 
"unusual" generative devices: in DBG's the end of derivation is controlled, whereas 
this is not the case in CCG's; on the other hand, the choice in CCG's by means of (p 
is a stronger one. 

Theorem 7. The family 3>™ and any family in {# s , < ĉ} are incomparable. 

Proof. The following results about contextual languages were proved in [6]: 
< ŝ c; <€(., < ŝ cz Sfn„, Sf3 — < ĉ 4= 0. Moreover, < ĉ and < ŝ are closed under homo-
morphisms [6]. If ^°° <= <gc then, from Theorem 6, it would follow that Sflin £ <gc. 
Contradiction. 

In [6] the following necessary condition for a language to be contextual with choice 
was given. 

For x, y e V* let x < y iff y = uxv. If L c y* w e define 

K*(L) = {x e L| there is no y e L such that y < x} , 

Ki+1(L) = Kl(L-K\L)). 

For any Le <?c and for any i — 1 the set K'(L) is finite [6]. 
Now, consider the language L = {ab"a | n — l } . Obviously, Kl(L) = L, therefore 

this language is not in <<?c. However, the 

DBG tf = ({a, b}, {b}, {((b, b),(b, X)), ((a,b), (b, a)), ((A, a), (a, X))}) 

obviously generates L, hence Le f^. 

In view of the inclusion (€s c <g"c, the theorem is completely proved. • 

Let 2W be the family of weakly generated languages by DBG's. 

Theorem 8. l) The families &w and # s are incomparable. 2) 3>w c: <^c. 

Proof. 1) Clearly, the language 

L = {a"bmamb" \m = \,n= 0} 

is in 2lw. It is easy to see that Var (L) = 2. (Following [1], Var (G) = card VN for 
G = (VN, VT, S, P), and Var (L) = min {Var (G) | L = L(G)}.) Following [5], for 
any Le <^s, Var (L) = 1. Consequently, the above language is not in c@s. 

On the other hand, Lemma 1 is true also for S>w. Thus the language L = 
= {a3n | n = 1} is in <tfs but not in 2)w. 

2) Let s4 = (V, L0, B). We construct the following CCG, G = (V, L0, C, q>), 
where 



C = {<a,/}>|((a,w),(w',/}))6£} 

and <p : V* -» ^(C) is defined by 

(p(x) = {<a, /?> | there are w, x«, x2, w' in V* such that 

x = wxj. = x2w' and ((a, w), (w', /?)) e B] . 

It is easy to see that W(jtf) = L(G). D 

An intermediate family between ^ s and ^ was considered in [8]: the programmed 

contextual languages (shortly, PCL). 

Definition 6. [8] A programmed contextual grammar is a system G = (V, L0, C, <p), 

where V, L0, C are as above and </> is a mapping <p : L0 u C -> _?(C). The generated 

language is 

Up) = L0 U {u„ . . . MjXD, . . . P. I n 2j 1, X6_o, <M,, »!> £ <p(^). 

<«„.,> 6<?(<«/_i, »,-!>), i = 2, 3, . . . ,«} . 

Open problem. Does the family of PCL's include the family _?w? 

The converse is not true according to Theorem 8 and the inclusion of <tfs in the 

family of PCL's ([8]). 

Note: Many useful remarks of the referee, allowing us to improve the form of this paper, 
are acknowledged. 

(Received February 18,1977.) 
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