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On a Characteristic Property 
of the Asymptotic Rate 

ŠTEFAN Š U J A N 

The asymptotic rate [4] is shown to be the only effective element of the family of all admissible 
;asures of uncertainty for the set of all discrete stationary information sources. measures 

1. INTRODUCTION 

The concepts of sufficiency, regularity of conditional probabilities, and ergodicity 
are strongly related (cf. [ l ] , and [3] in a more general setting). In the present note 
a new justification of the asymptotic rate [4] is given by means of these interrelations. 
The reasoning is independent on the information-theoretical concepts (such as 
communnication channels, transmission rate, capacity, etc.). Thus the results complete 
in a sense the program of [5]. According to [5] all the relevant properties of the 
asymptotic rate have to be established within the framework of the ergodic theory 
only, i.e. without calling attention to the information-theoretical concepts mentioned 
above. 

2. SUFFICIENCY AND WEAK CONVERGENCE OF SAMPLE 
DISTRIBUTIONS 

We shall follow the notations of [4] and [5]. Let M denote the family of all 
stationary sources discrete in time (the time being represented by the set / of all 
integers) and having acountably infinite alphabet (say, the alphabet N = {1, 2, ...}). 
Hence the space of all messages (or, the sample space) will be identified with the set 

(2.1) N1 = {z:z = {zi},zieN for iel}. 

Let x e JV" (n e JV), let i e / , respectively. The sets of the form 

(2.2) M , . . - - { z : z 6 i V ' , ( Z f , . . . , z l + . . , ) - - x } 



are said to be the elementary cylinders. Let J5" denote the product a-algebra in N1 

(we consider the family of all subsets as the u-algebra in N). AS well-known, the 
countably infinite family 3P of all elementary cylinders generates 3F; in symbols 
& = <s(3P). Let T denote the shift-transformation in N1, i.e. 

(2.3) (Tz); = z i + 1 for zeN',ieI. 

In what follows we shall identify the family Ji with the convex family of all pro
bability measures fi on (N1, J5") such that 

(2.4) n(E) = ti(T~lE), Ee#\ 

A measure fi satisfying (2.4) is called T-invariant. Let 

(2.5) #-„ = { £ : £ e ^ , r 1 £ = £} 

be the suba-algebra of J^ consisting of all T-invariant measurable sets. To finish the 
preliminaries let us introduce the following notations: 

a. e. \[i\ - for all z e N1 except a measurable set A with fi(A) = 0, 
a. e. \Ji\ - for all z e N1 except a measurable set A with n(A) = 0 for all fi e Ji, 
Ll(N', <§, Ji) — the space of all real-valued ^-measurable functions integrable with 

respect to every fie Ji, 
<S = j4f\Ji\ — given any set G e <§ there is a set H e Jf such that for the symmetric 

difference G A i / w e have \i(G A H) = 0 for all fie Ji. 

Proposition 1. The cr-algebra J% (cf- (2-5)) is sufficient with respect to the family Ji. 

Proof. We have to prove that given any functionje L}(NT, J5", Ji) we can choose 
the versions E„{j || J^o} of the conditional expectations independently on /i e Ji. 
The individual ergodic theorem gives 

(2.6) £„{ j || J%} (z) = lim 1 "X / (TV) a. e. [>] 
»-<» n j=o 

for all /i e ^#. For fixed j , the right-hand side of (2.6) does not depend on \i e Ji. 
Hence the sufficiency follows. 

Remark. It is possible to prove a stronger result. Actually, a. e. \(i\ can be replaced 
in (2.6) by a. e. \Ji\ and, moreover, by a. e. \Ji\ simultaneously for a l l je l}(N', 3F, 
Ji). The proof depends on the topological properties of the space N1 ([4], p. 810) 
and the resulting topological properties of the space Ji (cf. e.g. [2], especially Sec
tion II. 6). 

The family M contains, in general, an uncountable infinity of pairwise singular 
probability measures. Consequently, it is not dominated. It follows that there is no 



single sufficient statistics Y: N1 -> R1 such that 

Y"1^ = ^ 0 [ 1 ] . 

Here, Jf. designates the Borel <x-algebra in R1. On the other hand, we shall obtain 
another useful characterization of SF0. 

A measure \i e Ji is said to be ergodic (in symbols, \i E ^#*) provided /i(E) e {0, 1} 
for all E e J%. The family Ji* can be parametrized by the set R of all regular points 
N1 ([4], p. 808). Recall that z e R iff there is /i2 e ^#* uniquely determined by the 
point z via the relations 

(2.7) iiz(A) = lim - £ ^ ( T ' z ) , A 6 0» 
n-»oo n j ' = 0 

(X^ denotes the indicator function of the set A). Then R e !F0 and /j(R) = 1 for all 
neJi ([4], p. 809). Consequently, 

(2.8) JU = {M,: Z e «} • 

According to (2.7) the one-parameter family ^#* is ^-measurable , i.e. 

(a) for every fixed z e R, jiz(-) is a probability measure on (N1, 2F); 

(b) for every fixed E e J5", H(.}(E) is .^-measurable (only on R, but since fi(R) = 1 
for all ju e . # , we have ,^ 0 = R n J ^ 0 [ ^ ] ) . 

Note that the parametrization by means of the set R is not identifiable, i.e. there may 
be many points z e R yielding the same measure /x e Ji*. It is possible (of course, 
only by means of the axiom of choice) to get an identifiable set R', however, we need 
not this property. 

Proposition 2. The c-algebra &0 is the least c-algebra such that the one-parameter 

family {/xz: z e R} is measurable. 

This means that if {\it; z e R} is ^-measurable then either ^ - ^0 or <S = ^0[Ji]. 

Proof. Assume ^ is such that there are a set F0 e &0 — & and a measure fi e Ji 
with fi(F0) > 0. Let ^ [ 0 , l ] denote the Borel cr-algebra of the unit interval [0, 1]. 
Given F0, the function f0(z) — p.z(F0) maps R.into [0 ,1] . By the assumption 
jo ^ [ 0 , 1] c <g. Let us consider the set {1} e ®[0, 1], Then jo ]{l} = R n F0 = 
= F0[Ji]. Consequently,/o'{l} $ 0 , a contradiction. 

Let !„(-, z) assign the mass l/n to every of the points z, Tz, ..., T"_1z. If /. e Ji 
is the product measure (i.e. a memoryless source) then the weak limit of the sequence 
{A„(*, z)}„eN of the sample distributions a.e. [/i] equals the "true" measure n; in 
symbols 

li{z:zeN', A„(-, z) =>/*(•)} = 1 



288 (cf. [2], Sect. II.7). In the general case start with (2.6). Since N1 is a complete separable 
metric space in its product topology ([4], p. 810) there are regular versions of the 
conditional probabilities P„{- || J ^ } (cf. [2], Sect. V. 8), especially 

(2.9) Elt{f\\^0}(z)=jf(y)P,l{dy\\^0}(z) a. e. [>] 

for all /i e Jt, f e l}(Nl, IF, Jt). According to the definition of the sample distribu
tions, both (2.6) and (2.8) imply 

(2.10) lira !f(y) Xn(dy, z) = (/(>•) P„{dy || J%} (-) a. e. [>] . 

Using (2.7), (2.6), and (2.9) one easily concludes 

H{z: z e R, P„{- 1 ̂ o } (z) = Mz(-)} = 1 . M6UT; 

hence 

(2.11) n{z:zeR,X„(;z)=>nz(-)} = l 

for all / i e l (cf. also Theorem VI. 9.1 in [2]). Rewriting (2.11) we obtain the fol
lowing 

Proposition 3. The family of all weak limits of the sample distributions coincides 
with the J s r

0 " m e a s u r a t , l e one-parameter family {fiz: z e R} of all ergodic measures. 

Remark. It follows from the above proposition that it is unpossible to recover 
by means of a sample path the measure ft e Jt unless fi is ergodic. Hence in order to 
construct some reasonable testing and parameter estimation procedures for stationary 
processes, one is forced to implement also some additional constraints upon the 
underlying stationary process. The author hopes to deal with the related problems 
in a separate paper. 

3. ADMISSIBLE AND EFFECTIVE MEASURES OF UNCERTAINTY 

Let V(*): Jt —> (0, oo] be assumed as a candidate for a measure of uncertainty. 
Given jx e Jt, let l(z; n) denote the amount of information provided by the sample 
path z. Let P(n, z) denote the posterior distribution given \x and the sample path z. 
According to the usual interpretation of uncertainty and information we shall 
require that the information provided by a sample path equals the difference between 
the prior and the posterior uncertainties, respectively. In symbols, 

(3.1) l(z;n)=V(n)-V(P(n,z)). 



In spite of (2. II), 

(3-2) l(z;n)=V(n)~ K ^ ) M 

for all \LeJi. In information theory, the statistical properties of the information 
sources are assumed to be known. Since they are described by the corresponding 
probability measure JX on the sample space N1, all the relevant information before 
sampling is given by the prior distribution fi. If /t e Jt*, then 

(3.3) li{z:zeR,iiz = [i\ = l 

([4], p. 810). In this case, the posterior distribution coincides with the prior one 
almost everywhere. Consequently, sampling cannot provide us with an additional 
information. This fact is conform with the intuitive meaning of sufficiency, since for 
JX e Jt*, the prior information is measurable with respect to a sufficient a-algebra. 
On the other hand, it is reasonable to take as a measure of uncertainty in the ergodic 
case the "least possible" one. This means that a reasonable measure of uncertainty 
should be J^-measurable. The entropy rate H(A (cf. [5], Lemma 5 and (1.8)) has 
the required property. Thus, our first requirement is 

(3.4) V(/iz) = H(nz) for all zeR. 

On the other hand, if the prior information is not immeasurable then the sampling 
can provide us with some additional information. Thus, we require 

n{z: zeR,l(z;ii) = 0} = 1 ; fieJt, 

i.e. 

(3.5) n{z: z e R, V(fx) - H(nz) ^ 0} = 1 ; fxeJt. 

Definition 1. A measure V('): Jl —> [0, oo] of uncertainty is said to be admissible 
for the family Jt provided (3.4) and (3.5) take place. In (3.5), we addopt the con
vention co — oo = 0. 

If V(-) is admissible, define V'(-) by the properties 

V'(n) = V(fi) for all ft e Jt* , 

V'(n) = V(n) + 5 for all ne Jt - Jt* . 

Clearly, V'(A is again admissible. In order to avoid such pathological situations, we 

introduce the following 

Definition 2. A measure V0(-): Jt -» [0, co] of uncertainty is said to be effective 

provided 

(I) V0(-) is admissible for the family Jt; 



290 (2) for any other admissible V(-) we have the inequalities 

V0(fi) ^ V(n) , neJt. 

Proposition 4. The entropy rate H(-) is not an admissible measure of uncertainty 

for the family Jl of all stationary information sources. 

Theorem. The only effective measure of uncertainty is the measure V0(-) defined 

by the relations 

V0(^) = ess. sup H([iz) ; \ie Jt , 
zsR[,<] 

i.e. the asymptotic rate. 

Due to (3.5) the above statements are almost self-explanatory. For the sake of 

completeness the proofs are presented below. 

Proof of P r o p o s i t i o n 4. Let fie Jt. Then 

H(n) = f H(fiz) fi(dz) 

(cf. e.g. [5], Lemma 5 and (1.9)). Choose fie Jt such that 

H{z: z e R, H(n) * H(nz)} > 0 . 

It is well-known that such sources p. always exist. The exceptional ones are the so-

called strongly stable sources (cf. [4], esp. Sect. 11). Then we can find a set Rx a R 

such that 

fi(Ri)>0, 

H(fiz)>H(n), zeR,, 

a contradiction with (3.5). 

P r o o f of the T h e o r e m . Let fi e Jt*. Then 

\i{z: z e R, fiz = ft] = 1 , 

hence V0(^) = H(n). Clearly 

n{z:zeR, V0(n) - H(nz) ^ 0} = 1. 

Let V(-) be any other admissible measure of uncertainty. Let \i e Jt be such that 

V0(/i) > V(,x). 

Since 

ess. sup H(џz) = inf {ř: џ{z: zєR, H(џz) ^ í} = 1} , 



it follows that 

li{z:zeR, H(fiz) > V(M)} > 0 

The latter relation contradicts (3.5) for V(-). 

(Received March 1, 1977.) 
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