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Transfer-Function Solution 
of the Kalman-Bucy Filtering Problem 

VLADIMÍR KUČERA 

A novel, transfer-function solution of the Kalman-Bucy time-invariant filtering problem is 
presented. It is assumed that both message model and noise intensities are time invariant and 
that the mixture of message and noise has been observed over an infinite interval. This transfer-
-function approach is based on matrix fractions and spectral factorization of polynomial matrices. 
It offers an interesting comparison of state-variable and trasnfer-function methods, provides a deep 
insight into the problem discussed and, what is most important, it is computationally attractive. 

INTRODUCTION 

Recently, transfer-function methods have been successfully applied to solve 
problems in which state-variable approach used to dominate. This trend is motivated 
by the hope to provide a deeper insight into the problem and to obtain more efficient 
computational algorithms. Kalman-Bucy time-invariant filtering is just a typical 
problem of this kind. 

The solution presented in this paper makes use of the classical notions of transfer-
function matrices and spectral factorization. This mathematical machinery has been 
profitably used to solve the Wiener filtering problem, but it is not adequate for our 
purposes in its original form. The essential trick required to systematically treat 
unstable systems by means of transfer functions is to use the matrix fraction repre
sentation of rational matrices and algebraic minimization of inner products. 

This paper is organized as follows. In the Formulation section, we begin with 
exact formulation of the Kalman-Bucy filtering problem to be studied here and then 
discuss its state-variable solution briefly. In the Solution section we proceed to trans
fer-function solution of the problem, the major contribution of the paper. In the Dis
cussion section we tie the two methods together and illustrate the whole procedure 
on simple examples. 



FORMULATION 

To begin, we shall give a precise formulation of the Kalman-Bucy filtering problem 
to be examined. 

The message y is an m-vector random process modeled by the equations 

(1) x(t) = F x(t) + G w(t) 

y(t) = Hx(t) 

where x is an n-vector state and w is a p-vector excitation noise. It is natural to assume 
that system (l) is completely controllable and completely observable. 

The observed mixture z of message y with an m-vector measurement noise v 
is modeled by the equation 

(2) z(t) = y(t) + v(t). 

The diagram of system (l), (2) is shown in Fig. 1. 

We assume that w and v are uncorrelated white noise processes with zero mean 
and intensities Q and R, respectively. Matrices F, G, and H are constant of dimensions 
n x n, n x p, and m x n and matrices Q and R are constant symmetric positive 
definite of dimensions p x p and m x m, respectively. 
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Fig. 1. Message and mixture models 

Given the observed values of mixture z over the interval ( - c o , f], our task is to 

find a linear estimate j)(r) of message y at time t so as to minimize the expression 

(3) Ee'(t) e(t) 

where E(-) is the expected value, e = y — $ is the filtering error, and the prime 

denotes transposition. 

Compared to the original Kalman-Bucy formulation [1], we have made two addi
tional significant assumptions: (i) both message model and noise intensities are 
time invariant and (ii) an arbitrarily long record of past measurements is available. 
The two assumptions guarantee that the optimal filter will be time invariant. 



112 (4) Remark. Note that the message model (i) is not bound to be asymptotically 
stable. This means that the message (and hence the mixture) need not be a stationary 
random process but, instead, its covariance matrix may grow indefinitely. Due to 
this fact even our simplified steady-state formulation of the Kalman-Bucy filtering 
problem is more general than the classical problem solved by Wiener. Indeed, 
Wiener specified all random processes by their spectral-density matrices and hence 
a priori assumed all processes to be stationary. This is a serious limitation in many 
practical applications. 

It is well known that our problem has a unique solution and that the Kalman-Bucy 
filter generating the best linear estimate y of y is governed by the equations 

(5) k(i) = (F-KH)x(t) + KZ(t), 

y(t) = Hx(t). 

The matrix K is given by 

(6) K^-.PH'R-1 

where P is the (unique) symmetric positive-definite solution of the matrix equation 

(7) FP + PF' - PH'R-'HP + GQG' = 0 . 

optimal filter 

Fig. 2. Optimal filter 

Note that the Kalman-Bucy filter is a feedback system obtained by taking a copy 
of the message model (omitting the input matrix G) as shown in Fig. 2. The matrix 
F — KH has all eigenvalues with negative real parts and hence the filter is asympto
tically stable. 

In equations (5) the x(t) is an n-vector state of the filter. It is the best linear esti
mate of x, the state of the message model, at time t in the sense of minimizing the 
expression Ee'x(t) M ex(t), in which ex = x — x and M is an arbitrary symmetric 
positive-definite matrix. Therefore, the Kalman-Bucy filter can be used not only 
to separate random message from random noise but also to reconstruct the state 
of a system (or any linear combination of its state variables) from incomplete and 
noisy measurements. 



The reader's attention is also drawn to the fact that the filter is optimal among 
linear systems only. It is apparent that we could obtain better results by nonlinear 
processing of the observations. On the other hand, if the noises v and w are gaussian, 
the Kalman-Bucy filter is optimal without any qualifications. 

SOLUTION 

The mathematics of the following derivations is based on real rational or poly
nomial matrices in complex variable s. For any rational matrix R(s), let R'(s), det R(s) 
and tr R(s) denote the transpose, determinant, and trace of R(s), respectively. For the 
sake of simplicity, denote R*(s) = : R'( —s). A rational matrix R(s) is said to be strictly 
proper if R(oo) = 0. 

In particular, if P(s) is a polynomial matrix, we define its degree deg P(s) as the 
highest degree among its polynomial entries and similarly deg; P(s) for the i-th row 
of P(s). Further denote PH the matrix composed of the coefficients at highest powers 
of s in each row of P(s) and call the P(s) row reduced if PH is nonsingular. 

Any m x p rational matrix R(s) can be written as the matrix fraction 

R(s) = D_1(s)JV(s) 

where D(s) and N(s) are left-coprime polynomial matrices of the dimensions m x m 
and m x p, respectively, and the matrix D(s) is row reduced. Then R(s) is strictly 
proper if and only if deg; N(s) < deg; D(s) for all i = 1, 2, . . . , m. We remark 
that the condition deg N(s) < deg D(s) is necessary but not sufficient for this purpose. 

To simplify the notation we shall drop the argument s wherever convenient. 
The transfer-function solution of the above specified Kalman-Bucy filtering 

problem can be obtained as follows. Let 

(8) S =:H(sI„- F)'1 G 

denote the transfer-function matrix of the message model (1) and write it in the form 
of the matrix fraction 

(9) S = A_1B 

where the polynomial matrices A and B of respective dimensions m x m and m x p 
are left coprime, A is row reduced, and deg; B < deg; A. Due to complete control
lability and observability of (l) 

n = deg det A = £ deg; A . 
;=i 

The diagram of the filtering problem is shown in Fig. 3, in which W is the transfer-
function matrix of the optimal filter to be found. 



The major result of the paper can be summarized in the following 

Fig. 3. Transfer-function diagram 

(10) Theorem. The Kalman-Bucy filtering problem studied has a unique solution, 
which can be found as follows: 

a) Calculate the real polynomial matrix C satisfying 

(11) BQB* + ARA* = CRC* , 

(12) C-1 analytic in Res ^ 0 , 

(13) CH = AH • 

b) The transfer-function matrix of the optimal filter is then given as 

(14) W=C~1D 

where D =: C - A. 

(15) Remark. The procedure described in a) is called the spectral factorization [5]. 
The spectral factor C with its inverse C-1 analytic in Re s > 0 always exists for any 
matrices A, B and Q, R provided the left-hand side of (ll) is a full rank matrix. 
Analyticity on Re s = 0 is then guaranteed by left coprimeness of A and B and by 
nonsigularity of Q and R. The spectral factor C is determined uniquely by (13). 

Proof. To prove Theorem (10), rewrite expression (3) as 

(16) Ee'(/) e(t) = tr Ee(t) e'(t) 

1 fjc0 

= _ L t r <l>e(-s
2)ds 

2>ij J _ j 0 0 

for it is nothing else but the trace of the error covariance matrix. The spectral-density 
matrix <PC of the filtering error e can be written as 

<Pe =WRW*+ (Im - W) SQS*(lm - W)* 

using the definition of the error and the diagram shown in Fig. 3. It is clear, therefore, 
that integral (16) converges if and only if the two rational matrices Wand (lm - W) S 
are both strictly proper and analytic in Re s 5; 0. 



Rearranging, 

<Pe = SQS* - SQS*W* - WS2S* + W$ZW* 

where 

<PZ = : SgS* + R 

= A-^BQB* + ARA^A-1 

= A-'CRC^A-1 

The <PZ can be interpreted as the spectral-density matrix of the mixture z, if it exists 
(i.e., if the message model is asymptotically stable). At any rate, we can write 

(17) t>e= <P0 + ^y - ^y^^y 

where 

<P0 =:(A~1BQBifC*1R-112 - WA'^R1'2). 

.(A-1BQB*Cl1R-U2 - WA-'CR112)*, 

$y = : S 6 S * . 

Since the last two terms in (17) do not depend on W, it is sufficient to minimize (16) 
for $ 0 instead of <Pe. Rearranging, we obtain 

A-'BQB^C^R'112 = A-^CRC* - ARA*) C _ 1 R" 1 / 2 

= A-'CR112 - A-'AR1'2 + 

+ RC^C^R-112 - RA^C^R'112 

= A~1DR1/2 + RD^R-112 

where D =: C - A. Denoting 

(18) T = :A'1DR112 - WA-'CR1'2 

we finally arrive at 

(19) <2>0 = (RD^R-112 + ^(RDxC^R-1'2 + 7% . 

We infer from (13) that 

(20) deg; C = deg,- A , 

deg; D < deg; A 

and from convergence of integral (16) that W is a strictly proper rational matrix* 
Hence both rational matrices T and R _ 1 / 2 C _ 1 D R are strictly proper. Further, 
convergence of integral (16) entails analyticity of (lm - W)S in Re s ^ 0 and hence 



the product 

T. R-l'2C~1DR = A~\C - A) C~1DR - WA'^DR 

= (Im - W)A~1DR - CDR 

is analytic in Re s 2: 0, too. The product being analytic in Re s St 0 with both factors 
strictly proper, the following integral vanishes: 

1 f*jco 

tr TR-'^C^DRds = 0. 2~i J -jo 

Thus (19) and the above combined give 

— tr j ' <£0ds = — t r {"* (RDmC~lR~lC~1DR + 1Tm)ds. 
2nj J _ j 0 0 2nj J _ j o o

V 

The first term of the integrand on the right-hand side above is independent of W 
and hence the best we can do to minimize the integral is to set T = 0. The transfer-
function matrix of the optimal filter then follows from (18) 

W= A~lDC~lA 

= A~\C - A)C~1A 

= /„, - C~XA 

= C_1D 

To complete the proof, it remains to check whether or not the two rational matrices 

W = C_1D, 

(Im - W)S = C~\C - D) A-'B 

= C~XB 

are strictly proper and analytic in Re s ^ 0. The affirmative answer, however, can 
easily be deduced from (20) and (12). Existence and uniqueness of the optimal filter 
is a direct consequence of existence and uniqueness of the spectral factor C. 

DISCUSSION 

Two different approaches have been used to solve the steady-state Kalman-Bucy 
filtering problem and two seemingly different results have been obtained. The optimal 
filter produced by the state-variable method is realized as feedback system (5) around 
a copy of the message model. On the other hand, the transfer-function approach 
specifies the optimal filter by its transfer-function matrix (14). 



It is instructive to make the relation between the two results explicit. The transfer- 117 
function matrix of the filter shown in Fig. 2 is 

W= H(sl„ - F +KH)~1K 

= [Jm + H(sl„ - F)~1Kyi H(sl„ - ET1 K 

while (14) can be rearranged as follows 

W = C-VD 

= (A-1C)-1A~1D 

= \_A-\A + D)]'1 A-'D 

= (lm + A-'D)-1 A~lD. 

The identity 

A~'D = H(sl„ - F)'1 K 

is then evident and it results in 

(21) LK = D 

where L = : AH(sI„ - E)"1 is a polynomial matrix. 

Thus if we are given the transfer-function matrix PFof the optimal filter, its realiza
tion in terms of matrices H, F, and K can be obtained by determining the (unique) 
solution K of linear equation (21). 

Of course, the optimal filter can be realized in any other way. But only the realiza
tion containing a copy of the message model has the additional property that its state 
is the best linear estimate of the state of the message model. 

Two simple examples are included to illustrate the preceding discussions. 

Fig. 4. Problem model 

(22) Example. A particai moves as a result of random force described as white 
noise with zero mean and unit intensity. The position of the particle was being obser
ved for arbitrarily long period of time in the presence of additive white noise with 
zero mean and intensity 1/16. We are to find the best linear estimator of position. 

A model of the problem is shown in Fig. 4, in which w is the acting force, y is the 
actual position, v is the measurement noise, and z is the observed position of the 
particle. 



Clearly 

' -Г.Ü e-
- - [ ю ] 

and 

Є - [ i ] . Ä = И . 

The state-variable approach revolves around equation (7). Denoting ptJ = p}i 

the elements of matrix P, we are to solve the system of quadratic equations 

16Pii - 2 p 1 2 = 0 , 

16Pnpl2 - P22 = 0, 

16p 2

2 - 1 = 0 . 

This system has the unique positive-definite solution 

8L 2 4^2 J 

Using (6) we calculate 

*-m 
and hence the optimal filter is realized by the matrices 

' — [ Г 3- -[?]• 
Я = [1 0] . 

To apply the transfer-function approach, we first determine the transfer function 

(8) of the message model, 

S = — . 

Thus 

A = s2 , 5 = 1 

in (9). Further we calculate the polynomial 

BQB* + ARA* = 1 + xVs4 



and its spectral factor satisfying ( l l ) through (13) 

C = s2 + 2 7(2) s + 4 . 
Now 

D = 2 7(2) s + 4 

and the transfer function (14) of the Kalman-Bucy filter becomes 

w 27(2)s + 4 
s2 + 2 7(2) s + 4 

Given W, the feedback-gain matrix K needed to realize the filter by means of the 
message model can be found by solving equation (21): 

[s 1] K = 2 7(2) s + 4 . 

(23) Example. Consider the situation described in Example (22) but now both 
the position and velocity of the particle can be observed in the presence of noise. 
The velocity measurement noise is a white random process with zero mean and unit 
intensity. What is the best linear estimate of the position and velocity? 

Fig. 5. Problem model 

A model of the problem is shown in Fig. 5, in which vv is the acting force, y1 and 
y2 is the actual position and velocity, v1 and v2 is the position and velocity measure
ment noise, and z t and z2 is the observed position and velocity, respectively. 

Clearly 

and 
- P . 3 



The state-variable solution is obtained by solving the set of quadratic equations (7) 

16p 2 ! + p\2 - 2pi2 = 0 , 

16/>iiPi2 + P12P22 ~ P22 = ° . 

16p 1 2 + Ph - 1 - 0 , 

for elements p^ = pJt of matrix P. The only positive-definite solution is 

_ip *] 
20 L4 12j 

and hence 

x = Ip 2 1 l 
5 Ll6 3j 

on using (6). The optimal filter is then realized by the matrices 

5 L-16 - 3 j 5Ll6 3j 

To demonstrate the transfer-function solution, we first write down the transfer-

function matrix (8) of the message model, 

5 = 

and its matrix fraction representation (9), e.g. 

We further calculate the matrix 

= " 1 - s 2 s 1 

L - s i-тVs2J 



and its spectral factor satisfying (11) through (13) 

c = 1 I" 16 5s + 31 

5 [-5s-12 4 J ' 

A simple calculation yields 

1 f 16 31 

--iU-J 
and the transfer-function matrix (14) of the optimal filter is found to be 

w = r 16 5S + 3 1 - T 16 31 

L-5s - 12 4 J [-12 - l j 

[12s + 20 s + 31 

16s 3s + 4 ] 

5 s2 + 3s + 4 

The matrix K needed to realize the filter from a copy of the message model can 
uniquely be determined from equation (21): 

[-;a*-[-iî-з 

CONCLUDING REMARKS 

Several authors have tried to solve the Kalman-Bucy filtering problem by means 
of transfer functions. However, all of them adhered to the traditional use of rational 
matrices. To overcome the difficulties arising from unstable message models they had 
to resort to generalizations of the classical notion of spectral factorization to that 
with prespecified poles [3]. This seems to be too complicated, computationally 
tedious and above all unnecessary. It proves much better to work with polynomial 
matrices, which can do the same job neatly and in full generality. Moreover, this 
approach is computationally attractive. Common methods for solving the matrix 
quadratic equation (7) take at least n3 operations while iterative algorithms with 
linear convergence [2] to perform spectral factorization (11) through (13) do not 
exceed m3n operations and one can hope for iterative algorithms featuring quadratic 
convergence [4] at about m3n2 operations. The merits of the transfer-function 



solution are especially pronounced when m ^ n . Compared to the classical Wiener 
solution, the need for partial fraction expansion of rational matrices is completely 
obviated. 

(Received August 23, 1977.) 
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