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A general coding problem is formulated. The special cases are the coding problems of the 
distortionless coding theory, of source coding with a fidelity criterion, and of the source coding 
with side information, respectively. All sources examined in the paper are assumed to be discrete 
in time and stationary. Also the sources, the statistical properties of which are described by finitely 
additive probabilities, are admitted. The paper is devoted mainly to the problems of the distor
tionless coding. Further a generalization for the pairs of information sources is given. The corres
ponding coding theorems are established and the important properties of the resulting quantities 
are studied. Some applications are given concerning statistical problems of the random processes. 
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INTRODUCTION 

Practically all information-theoretical quantities can be derived from a properly 
chosen set of postulates. However, to obtain a reasonable interpretation of these 
quantities based on the set of the postulates needs, in general, very sophisticated 
arguments. A natural interpretation is provided by the coding theorems of informa
tion theory. The coding theorems constitute a bridge connecting these quantities 
with the practical problems concerning an optimal characterization of a sequence 
of letters randomly chosen from a given alphabet. 

The paper consists of five parts. The first part deals with a general formulation 
of the coding problem. We are starting with four examples motivating our approach. 
The first two are taken as the distortionless coding problems (cf. [34] and [40]). 
The third example concerns the rate distortion function, i.e. the source coding with 
a fidelity criterion [22]. The last one deals with the source coding with side informa
tion [1]. All coding problems mentioned in the examples are shown to be the special 
cases of a general coding problem, which is formulated in Section 2. 

In the first part the arguments are given for the existence of the information 
sources, the statistical properties of which are described by finitely additive pro
babilities. The ergodic theory of finitely additive invariant probabilities is developed 
in the second part of the paper. Actually, only the ergodic decomposition theorem 
will be used in the subsequent sections. But the structure of ergodic finitely additive 
measures seems to be of the separate interest, too. 

The third part deals with the distortionless coding problem for discrete in time 
stationary information sources with a general alphabet. The results extend those ob
tained in [40] and [41]. 

The fourth part of the paper is devoted to the information-theoretical quantities 
defined for the pairs of information sources. The coding theorems are established. 
The resulting quantities generalize the notions of inaccuracy [18] and of/-divergence 
[21], respectively. 

The methods used throughout the paper do not exceed the frame of the ergodic 
theory of invariant set functions. Therefore in the last part, devoted to the applica
tions, we are dealing only with such problems, the solutions of which are obtainable 
within the framework used in the first four parts of the paper. 

The paper is finished by an Appendix. In the appendix, we investigate another 
method for proving the main results concerning the asymptotic rate. The method 
provides another natural interpretation of the quantities introduced in the third part. 



PART I: PRELIMINARIES AND THE GENERAL CODING PROBLEM 

1. Basic Notations and Terminology 

The following notations will be used throughout the whole paper. Let A denote 
an arbitrary set. The symbol ^S(A) will be used to denote the family of all subsets 
of the set A. The symbol %A will designate the indicator function of the set A. For 
finite A only, card (A) will mean the number of elements in A. If B denotes another 
set, the symbol AB will be used to designate the set of all mappings which map the set 
B into the set A. 

The basic space of all possible messages will be represented by the set X1 of all 
doubly-infinite sequences z = {zj}jZ~m of letters (i.e. elements of) in X. The set X, 
called the alphabet, will be a separable metric space. The set / of all integers repre
sents the discrete time. If X is a finite set and card (X) = n, we shall identify X with 
the set {l, 2, . . . , n}. If X is countably infinite, it will be represented by the set N 
of all positive integers. The symbol 3$(X) will denote the c-field of Borel sets in X. 
Let us note that @)(X) = ty(X) for at most a countable alphabet X. 

The «r-field in X1 will be the usual product a-field. This means it is generated by 
the field s4x of all finite-dimensional cylinders in X1. A finite-dimensional cylinder is, 
by definition, any set of the form 

(1.1) [ ^ - { z : . 6 J [ ' , { . ; W e £ } 

with J c I and 0 < card (J) < oo. Here, the set E is a Borel measurable subset 
of the space X1, in symbols E e 38(XJ). Clearly, for an at most countable set X, @)(XJ) = 
= ^(XJ). In accordance with (1.1) we shall use the following notations: 

(1.2) [E]j = [£],,„ if J = {/, . . . , i + n - 1} , 

(1.3) [EL = [ E ] if ./ = {0, . . . , „ - 1} , ' 

(L4) [{*}]/-K/ for x*xJ-

Further, let us set 

(1.5) ^ " = {[*],,„ : X E X " } . 

If X is at most countable, the family 2Pl
x* is a countable partition of X1 for any i e I 

and ne N. However, this fails to be true in the general case. The members of the 
family 

(1.6) 0>x = u { ^ " : i s / , neN] 



are said to be elementary cylinders. For a countable alphabet X the family SPX 

generates the product cr-field as does the field s4x; in symbols 

(1.7) c{0>x) = a{s4x). 

In any case the cr-field a{stfx) will be denoted by !FX. To simplify the notations the 
following conventions are addopted. Let us have a mathematical object & related with 
the alphabet X. If X = {l, 2, . . . , n}, we shall write &x = &„. If X = N, the sub
scripts are omitted. E.g. sdn, .#"„, sd, etc. 

All stationarity properties are defined relative to the coordinate-shift transforma
tion Tx of the space X1. The latter is defined by the property that 

(1.8) (Tfz); = z i + 1 for zeX',ieI. 

A measure /.i defined on the cr-field 2FX is called Tx-invariant (or shift-invariant) 
provided n{Tx

 XE) = fi{E) holds true for any set E e 2FX. The latter fact will be 
symbolically denoted by /i = /J,TX

 1 (cf. e.g. [13]). 
The product toplogy in the space X1 is always metrizable and yields a separable 

metric space [17]. For at most countable X, the corresponding distance function 
can be given by the formula 

— - ;zt * z\, isl\, if z 4= z' , 
(1.9) e(z, z') = U 

I 0, if z = z'; z, z'eX1. 

The equality #"x = ^{X1) is an immediate corollary to the definition of the product 
topology. If card {X) < GO, the metric space {X1, Q) is compact by Tichonov's 
theorem. In any case the transformation Tx is a homeomorphism of the space X1 

onto itself. Some more information concerning the topological properties of the space 
X1 will be given in Section 9. 

The ergodic theory of finitely additive probabilities will differ from the <r-additive 
theory. The basic notions of the cr-additive theory are the notions of quasiregularity 
and of regularity, respectively. As far as concerns the notion of the quasiregularity, 
we shall addopt for countable alphabets the definition of Winkelbauer [40]. A point 
z e X1 is said to be quasiregular provided there are the limits 

(1.10) ^ ( A ) = l i m n - 1 X z i 7 ^ z ) , AeS?x. 
„-+& j = 0 

A quasiregular point z e X1 is called regular if there is an ergodic probability measure 
\iz on the cr-field J*x such that (1.10) takes place. It turns out that the measure fi. 
is uniquely determined by the regular point z. Let us recall that a Tx-invariant 
probability measure \x is called ergodic if and only if 

(1.11) E = Tx
xEe^x and ^(E) > 0 imply //(E) = 1 . 



We shall often use a seemingly weeker form: 

(1.12) j . (£)e{0, l} for all Ee&x such that 

fx(EATx
1E) = 0 

In the context of the present paper the definitions are equivalent and the latter one 
is sometimes easier to work with. Here and in the sequel the symbol A will denote 
the symmetric difference: 

E AF = (E - F) v (F - E). 

Turning back to (1.10) we can easily conclude that \iz is finitely additive and Tx-'m-
variant on the family 0>x. It is tr-additive if and only if 

(1.13) £ ^ ( A ) = l(/t e # i " ; ieI,neN). 

The conditions (1.13) imply that the formula 

^[£],„ = Mx],>» Eetyr) 

uniquely determines the set function //, on the family ff(^x") for any i e I and n e N. 
The Kolmogorov Extension Theorem (cf. e.g. [13], Chapter 9) then provides a unique 
a-additive extension of jiz to a shift-invariant probability measure (denoted by the 
same symbol «z) on the cr-field ?FX. Let us note that (1.13) is obviously satisfied 
when card (X) < co. As was pointed in [37], the conditions (1.13) fail to be true 
for X = N (cf. also Section 3). This in turn implies that the quasiregular points 
do not determine, in general, a c-additive probability measure. 

If X is uncountable metric space, the family 3?x does not generate the cr-field 
fFx. Hence even the validity of (1.13) does not assure the existence of a probability 
measure on ?FX extending the set function n, defined on the family SPX. However, 
we can assume that the metric space X1 is complete (performing its completion, 
if necessary). Then the notion of the quasiregulatity can be redefined in the sense 
of Fomin (cf. e.g. [26], Sect. 7). 

Summarizing, a stationary discrete information source (briefly a stationary 
source) will be identified with a finitely additive, not necessarily tr-additive, Tx-inva-
riant probability defined on the field s/x. In the paper we shall not distinguish the 
source and the corresponding set function. 

2. The General Coding Problem 

We shall start with some well-known illustrating examples. Then we shall formulate 
the general coding problem. 

Example 1. Let X = {xu x2, ..., xN}. Let p be a probability N-vector (pu p2, ... 
. . . , pN), Pi being the probability of the outcome xt; i = 1, 2 , . . . , N. A sequence 



x(1>, . . ., x("> of outcomes is obtained by means of the repeating the random experi
ment (X, p) n-times independently. We want to characterize this sequence by binary 
sequences, with the length of the binary sequence as small as possible. The asymptotic 
behaviour of the minimal length of such binary sequences is given in the following 
simple form of the source coding theorem. 

Theorem 2.1. There exists a nonnegative real number H such that for arbitrary 
e > 0 the sequence x(1), . . . , xM of outcomes of n independent trials can be charac
terized by 0 — 1 sequences of length n(H + s) with probability as close to unity as 
wanted, if n is large enough, but cannot be characterized, with any fixed positive pro
bability, by 0— 1 sequences of length n(H — E) if n is large enough. Further we actu
ally have 

(2.1) H = - I f t l o g a f l . . 
k = i 

The statement of the theorem can be shown to be valid for discrete memoryless 
source with the finite alphabet X. Let us recall that a discrete memoryless source 
produces the sequences of independent indentically distributed random variables. 
Hence, given the finite set X and a probability vector p as above, we define the measure 
on ty(X") simply as the product measure: 

p"(x) = n p(xd f o r x = * i . *2 , • • • , * „ • 
i = i 

Example 2. Let X be a countable set. Assume we are given a a-additive Tx-invariant 
probability measure /. on the <r-field 2P'x (i.e. a stationary source) and a positive 
number e such that e < 1. Since \i = \xTx , the formula 

(2.2) /.„(£) = u[£] ; ,„ , Ee^(X") 

defines a probability measure//,, on the ff-field SJJ(X") independently of what iel 
was chosen. Let us define 

(2.3) L„(e, /.) = min {card (E) : E c X", £ fi„{x} > 1 - e} . 
xeE 

Theorem 2.2. [41]. The limit 

(2.4) lim n-1 log2 L„(e, p) = Vt(fi) 

exist except at most a countable set of numbers e. The function Vs(fi) monotonically 
increases for e -> 0 to a limit, which will be denoted by V(p) and called the asymptotic 
rate of the source \x. 

A "coding theorem-like "form of Theorem 2.2 is the following one: 



Theorem 2.2 [40]. On the space of all stationary discrete information sources 
with a given at most countable alphabet X there is one and only one non-negative 
extended real-valued function V such that 

(1) VA > 0 V0 < e < 1 Vi e / 3n0 e N Vn > n0 33 c ^ " [ / ^ ( u g) > 1 - E] 
et[card(<?)<2" [ K (" ) + ; - ] ] ; 

(2) VA > 0 30 < t] < 1 Vs £ Tj Vi 6 / 3 n 0 e J Y V n ^ n0 WT c ^ " 
with ju(u g) > 1 - e , 

(a) card(<?) > 2"[K( '"-A:| if F(/.) < oo , 

(b) card (g) > 2nX if V(p) = oo . 

Example 3. Source coding with a side information (cf. [l]). We are given two 
finite sets X, Y and the transition probabilities p(y | x) for x e X, y e Y. We set 

P"(Y I *) = n ?bi i *») 
1 = 1 

for y = j ! ^ , • • •, y„, -f = XJIX2, . . . , xn. The transition probability p( . | .) represents 
the fact that the Y-outcomes are correlated with the X-outcomes, respectively. A set 
B c Y" is said to e-decode the sequence x e X" if 

p"(B | x) > 1 - e . 
Let 

<Ff(B) = {x : x is e-decoded by B) . 

We assume we are given a probability measure P on X and a probability measure 
Q on Y i.e. we are given two memoryless sources. It is assumed further that P and Q 
never vanish. 

Theorem 2.3. [1]. There is a function T(c) of non-positive real numbers c such that 
the limit 

l imn" 1 log S„(c, e) = T(c) 

exists and is independent of e for any choice of c. Here 

- S„(c, e) = min {Q"(B) : B a Y", n" 1 log P"(T(n)(#)) > c} . 

Example 4. Let us consider a discrete memoryless source with the finite alphabet 
X - {0,1, . . . , / - 1} and a finite reproducing alphabet Y= {0,1, . . . , K - 1}. 
We assume that the source is determined by a probability /-vector p = (p(0), p(l), ... 
. . . , p(J — 1)). Assume p(i) > 0. Let Q : X x Y-» R+ be a single-letter distortion 
measure satisfying the conditions: 

for any j e X, min {g(/, fe) : k e Y} = 0 . 

iO 



Put 

e(x> y) = X e(xh yt) 
1=1 

for x = xix2, ..., x„ e X", y = y1y2, • • •, y„ e Y". For fixed d ^ 0 and for any set 
B„ c Y" we shall define a subset //(R„, rf) of X" by the relation 

H(Bm d) = { x e r : e(x, B„) ^ nd} . 

For R > 0 let us set 

P"(R, d) = min {p"(H(B„, d)) : B„ a Y", card (B„) < e"K} . 

It is natural to say that an error occurs when x e H(B„, d). Thus the problem formally 
described above can be interpreted in the following way. We are given the encoding 
rate R. Within all coding sets B„ with a fixed code-length we look for the B„ with the 
smallets probability of an erroneous decoding, the error being expressed by means 
of a single-letter distortion measure Q. 

Theorem 2.4 [22]. Let Q be the set of all probability /-vectors q. LetR(q, •) be the 
rate distortion function of the discrete memoryless source uniquely determined by 
vector q. Let 

Fd(R) = min (J(q : p) : q s Q, R(q, d) ^ R} . 

For any R, R(p, d) < R < max R(q, d), 
qeQ 

0 < Fd(R -0)< liminf [-(1/n) logp"(R, d)] = 

S lim sup [-(1/n) log P"(R, d)] S Fd(R + 0) < oo . 
n-*a> 

If Fd is continuous in R, then 

0 < lim [-(1/n) log P"(R, d)] = Fd(R) < 03 . 

Now we shall formulate a general coding problem. All coding problems mentioned 
in the above examples will be shown to be the special cases of the general problem. 

Let X and Ybe two, not necessarilly distinct, separable metric spaces. Let S denote 
an abstract set (usually S <= Rt). For any fixed n e N, the set S determines a one-
parameter family {t/^'0 : ee <f}, where either \jj(n) : Y" ->• X" is Borel measurable 
or \l/(n) : ®(Yn) -* @(X"). Further we are given two set functions K(,X) : m(X") -• Rt 

and K<r) : 0l(Y") -• Rx. Let q> <= Rt x Rj be a fixed binary relation, let {c„},:ssN 

be a fixed sequence of real numbers. 
We shall formulate now two versions of the general coding problem. They are 

in a sense dual. 

11 



General coding problem (I): The w-sequences x e i^(n)(5) for B e 3S(Y") are said 
to be e-decodable by means of the set B. We are interested in the minimum "size" 
of a B which satisfies a prescribed bound for the "size" of 4i("\B). The "sizes" are 
measured using the functions K(Y> and K(x>, respectively. Hence we are interested 
in the quantity: 

S'n = min {K(Y\Bn) : B„ e @(Y"), (K(X\ip(f\Bn)), c„) e cp} . 

General coding problem (II): Given a bound for the "size" of the set B of the 
codewords itself, we are interested in the minimum "size" for i^(w)(J5). The "sizes" 
are again measured using K(X> and K(Y). Hence we are interested in the quantity: 

S" = min {K(X)W\B„)) : B„ e ®(Y"), (K(Y)(B„), C„) e cp} . 

Let us note that in all cases the dependence on n of the constants c„ can be removed 
using a modified version of the corresponding function K„. Hence the corresponding 
coding theorem can be formulated in the following form: 

General coding theorem: There is an extended real valued function T" = T*(e, c) 

(a = I, II) such that 

l imn" 1 log S"n = Ta(a = 1,11). 

The strong converse (cf. [42]) states that the function Tis independent of s for any 
choice of the constant c, hence it depends only on the functions K(X) and K(Y), res
pectively. 

First of all we shall show that all coding problems met in the above examples are 
the special cases of the general coding problem. 

1. Let X = Y = [1,2, . . . ,JV}, let c„ = 1 - 5 for any neN. The mappings 
i/^n) are assumed to be the identity transformations. The relation cp is specified by 
xcpy iff A- 2: y. Finally, let us choose 

K(Y\B) = p"(B), B e W(X"), 

K(„X\B) = card (B) , Be y(X"). 

Then 

S" = min {card (B) : B c X", p"(B) k 1 - 3} . 

However, we can choose K(X> and K(
n

Y) conversely, and then 

Sl
n = min {card (B) : B c X", p"(B) ^ 1 - 5} . 

Hence the distortionless coding problem of the Example 1 can be viewed as the special 
case of both coding problems. The same argument can be used for the problem of the 
second example. 

12 



2. Let X, Ybe finite sets as in the Example 3. For any 8, 0 < e < 1, we shall set 

\i/("](B„) = (x : x is s-decodable by B„} 

Let x (p y iff x ^ y. Finally, let us set 

K„X) = P", K„Y) = Q". 

The constants c„ depend on a fixed nonpositive number c through the relation c„ = 
= e"c. Then 

S„ = min {Q"(Bn) : B„ c Y", P"(^\B„)) > e"c} = 

= min {Q"(B„) : B„ <=. Y", n~l log P"(i1V<")(5B)) ^ c} . 

Hence the source coding problem with side information is a special case of the general 
coding problem (I). 

3. Let us consider the Example 4. Now the parameter set is Rt- Given B„ c Y" 
and de Rx we define 

ip^\Bn) = {x : x e x", g(x B„) ^ nd} . 

Let R > 0 be given. The constants c„ are then defined by c„ = e"R. Choose K**' 
as the n-th power of the given probability J-vector p. Take K„Y) as the counting 
measure on the finite set Y". Then 

Sl
n

l = min {p"(il/d(B„) : Ba a Y", card (B„) < e"R} . 

In the paper we shall deal mainly with the problems of the distortionless coding. 
Further we shall study the cases in which both criteria K„ arise from information 
sources.- Let us note that none of the examples given above deals with such a situa
tion. In Section 4 we shall show, however, that it is possible to prove the coding 
theorems in much more elementary setup. 

3. Existence of Finitely Additive Probabilities 

This problem was discussed by the author in [37]. The problem was reduced 
to the problem of the existence of finitely additive probabilities on the <r-field ty(N) 
of all subsets of the set N of all positive integers. There were given simple examples 
of such set function in [37]. However, these set functions have no natural interpreta
tion. The aim of this section is to give another justification for finitely additive pro
babilities in N, based on the notion of the quasiregularity. It follows from (1.10) 
that only one-sided sequences are to be considered. Let z e NN. We shall say that a set 

13 



A <= N possesses the z-density (and we shall write A e J?(z)) provided there exists 
the limit 

(3.1) hz(A) = ] i m n - 1 i Z i z , ) . 

If z e N1 is a quasiregular point, then the definition of the elementary cylinders 
together with the finite additivity of fiz imply that hz(A) exists for all finite sets i c J V . 
Thus we are restricted ourselves to the set Q c NN defined by the relation 

(3.2) Q n {{z : z e NN, 3/.z(A)} : card (A) < 00} = 

= n{z:zeiV",3hz{fc}}. 
* = i 

We shall classify the points in Q by partitioning it into the following three disjoint 
sets: 

Cx = {z : z e Q, sup Zj < 00} , 
jeN 

C2 = {z : z e Q, sup zj = co , 

lim lim fc_1 card {; : 1 < ; = k, z} > n - 1} = 0} , 

C3 = Q ~ (C, u C2). 

Proposition 3.1. (l) Let Z E ^ U C2. Then JS?(Z) = ty(N) and ftz is a <r-additive 
probability measure on 3?(z). (2) Let z e C3. Then ^?(z) is a logic of subsets of N with 
respect to the set-theoretical operations of union and complementation. The set 
function hz is a finitely additive non c-additive probability on =Sf (z). 

Let us note that a family if of subsets of a given set X is called a logic if it has the following 
three properties: 

(i) if Ee & then Ec = X - Ee Se , 

(ii) if E, F e i ? and £ n i 7 = = 0 thrn FuEeSC, 

(iii) ifjE,Fe.S? and £ c F then F-Ee^C. 

Proof . The properties (i) and (ii) of logic obviously hold true for the family Sf(z) 
for any z, z e Q. 

(la). Let z e Cv let iC = sup {zj :jeN}. Given a set E <= N there is a partition 
of it in the following form: 

E = [ E n {1,2, . . . , K } ] u [ E n { i C + 1, K + 2, . . . } ] . 

By the definition, E n {1, 2, . . . , £ } e Se(z). Since z,- = K for j = 1, 2, . . . , E n 
ft {J? + 1, K + 2, . . . } 6 Se(z) and the z-density of this set equals 0. Hence E e J§f(z) 
by the property (ii). The cr-additivity of hz is obvious. 
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( l b ) . Let z e C 2 . W h e n denot ing by a„ the limit 

(3.3) l im k'1 card {j : 1 z% j = fc, zy > n - 1} , 
i-mo 

we have hz({n, n + 1, . . . } ) = a„. Since z e C 2 , l im a„ = 0. Moreover a„ = d , t l 

for any neN. Consequently, we have hz{n) = a„ — a„ + 1 St 0 and £ hz{n} = 1. 

The proof n o w follows because of the relat ion 

hz(E) = Y > z { n } , Ee%N). 
neE 

(2). Let z e C 3 . Then hz({n, n + 1, . . . } ) = a„ converges to a positive cons tant 

L(0 < LS i). Since the decreasing sequence {{n, n + 1, . . . } } „ = ! has a void inter

section, the set function nz cannot be c-addit ive. Finally, the proper ty (iii) of ^ ( z ) 

can be proved easily using the mathemat ica l induct ion. This finishes the proof 

of the proposi t ion . 

Remark 3.2. Let z e N1 be a quasiregular point with the coordinates 

1 if . " ^ 0 , 

if i >0, iel. 

The corresponding one-sided sequence is in Q with lim a„ positive and equal to unity. Hence 
zeC3. Let us define a set A(z) cz N recursively by the following list of instructions: 

print the first positive integer (1), 
do not print 2 subsequent (2,3), 
print 3 subsequent (4, 5, 6), 
do not print 6 subsequent (7—12), 
print 3 x 4 subsequent (13 — 24), 
do not print 6 x 4 subsequent (25—48), 
print 3 x 4 x 4 subsequent, etc. 

Let 

*•-= a ' 1 ! £ * . « , ) ( / ) . « = 1 , 2 , . . . 
J ' = I 

Assume {cJ^Lj be a recursive subsequence of the sequence {&„}"= t defined inductively as follows 

ci = b3; if ct=b„ then c ; + 1 = 6 2 „ . 

Then 

1/3 if i is odd, 

2/3 if i is even. 

Thus the sequence {(\jn) E^(z)0')}»°°=i contains an oscillating subsequence, i.e. A(z) £ -S?(z). 
J = 1 

Let us note that to any recursive sequence ze C3 it is possible to construct sets A(z) which are 
not members of «S?(z). 
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The latter remark implies that the family of sets, to which a finitely additive pro
bability can be reasonably assigned, forms merely a logic of sets. Generally speaking, 
an extension of a finitely additive set function defined on a logic to the cr-field generat
ed by this logic is not possible. However, the following proposition is valid: 

Proposition 3.3. Let z e C3. Then there is a finitely additive probability h, on the 
cr-field ^(N) such that 

hz(A) = hz(A) for A e £e(z). 

Proof. Let us consider the linear space /°°(iV) of all bounded sequences of real 
numbers. The norm will be the usual supremal norm. The space Jf(N) of all conver
gent sequences is a normed linear subspace of lx(N). By definition, 

2{z) = {A : A c N, {(IIn) £ XA(zj)}^t e JT(N)} . 
J = I 

The limit can be considered as a bounded linear functional on the space Jf(N). 
By Hahn-Banach Extension Theorem (cf. e.g. [8]) there is a bounded linear functional 
Lim on /"(/V) such that 

Lira {a,,} = lim a„ for {a,,} e JtT(N). 

If E c N then {xE(")}™= I ' ^(N). Let us set 

H(E) = Lim {xE(n)} • 

The set function fj. is a finitely additive probability. Moreover, it can be easily shown 
that 

Lim {a„} = í a„ џ(dn), {a„} є ľ°(N) . 
JN 

The integral on the right-hand side of the latter relation is a finitely additive integral 

(cf. e.g. [8], Chapt. III). Given E c N, the sequence {n"1 £ XB(ZJ)}n=i i s i n l°°(!V). 
The relation J~l 

ВД=f n--ІxA*jЫàn) 
J N i-l 

determines a set function hz on the cr-field ty(N) such that the proposition is valid. 
The proof is complete. 

Remark 3.4. A completely different approach can be investigated within the frame of the 
constructive theory of probability (cf. e.g. [33]). In this approach it is assumed that the quasi-
regular points are only the random sequences. The resulting set functions are always <r-additive 
on a ff-field, the notions of <r-additivity and of the cr-field being constructively redefined. 
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4. The Main Tools 

The basic method used to prove the coding theorem 2.2 was investigated in [27] 
and further developed in [41]. We shall use a modification of this method as the 
main tool for proving our statements. In this section, unless explicitely stated the 
opposite, we shall confine ourselves to an at most countable alphabet X. The im
portant results will be stated for the purpose of the later reference. 

Let us start with the notion of the entropy rate for a stationary source fi with 
a countable alphabet (cf. e.g. [40]). The entropy rate ff(u) is defined as the limit 

(4.1) H(n) = - lim tt-1 f log/x[z0, . . . , z ._ t ] rfdz) . 
j 

Let us note that the quantity H(ji) is actually nothing but the entropy of the homeo-
morphism Tx as defined originally in [19]. The main idea consists in the introducing 
a measurable function a„ on X1 such that 

(4.2) H(n)= - [\oggJz)n(Az). 

If we assume H(n) < GO, the latter relation means that the function gjz) is integrable, 
more precisely, that the function log gjz) is integrable. Hence, according to the 
individual ergodic theorem, there is the limit 

(4.3) hjz) = - lim (1 / „ ) £ log gjT'z) a.e.fr,] 
n^uo j = 0 

satisfying the equality 

(4.4) jhjz),idz) = H(n). 

Theorem 4.1 [41]. If /.t is a stationary source with H(n) < oo then the sequence 
— (l/n) log n [z0, . . . , z„_i] converges in mean (w.r. to p) to the function hjz). 

The following necessary facts from the ergodic theory are based on the notion 
of regularity as defined in the first section. For the original contribution see [20]. 

Lemma 4.2 [41, Lemma 2]. Let Rx denote the set of all regular points in X1. 
Then Rx e ^x and fi(Rx) = 1 for every stationary source fi with the alphabet X. 

Lemma 4.3 [41, Lemma 3]. For every ergodic source ji, 

(4.5) n{z : z 6 Rx, fi, = fi} = 1 . 
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Lemma 4.4 [41, Lemma 4]. For any nonnegative measurable function / on the 
space (X1, $FX) the integral f/d/f- is a measurable function of the variable z on Rx, 
and 

(4.6) [fd!i= f |"f/d//2L(dz) 

for all stationary sources \x. 

Lemma 4.5 [41, Lemma 5]. If /* is a stationary source with finite entropy, i.e. 
if H(fi) < co, then 

(4.7) ^ : : e % ^ ) - % ) } = 1. 

The following version of McMillan's theorem for countable alphabets is an 
immediate corollary both to Theorem 4.1 and the last lemma. 

Theorem 4.6 [41, Theorem 2]. If n is a stationary source with finite entropy, 

then the sequence 

- ( l / n ) l o g / t [ z 0 , . . . , - _ _ , ] 

converges in mean (w.r. to fi) to the function H(j.iz), i.e. to the entropy rate of the 
ergodic component JXZ of the source given. 

Let JX be a finite-alphabet source, i.e. there is a positive integer k such that 

(4-8) A<{1,2 /<))'= 1. 

For any stationary source satisfying (4.8) we have the inequality 

(4.9) H(ii) <, log2 k 

(cf. (4.1)). In this case the McMillan's theorem stated above enables to prove two 
basic lemmas desired for the proof of the coding theorem 2.2. However, if the alpha
bet is infinite, it may happen that H(fi) = oo. Hence Theorem 4.6 is not directly 
applicable. The proof is then performed using an approximation property of the 
entropy rate, as proved by Sinaj [36] and Parthasarathy [28]. Let xk be the mapping 
of Nl onto {1,2, . . . , k + l}1 defined by the properties that 

(4.io) M ; = {2; if Zi = fc' 
V ' K h \k+ 1 if -, > k; zsN1, lei. 

Theorem 4.7 ([36], [28]). Let ft be a stationary source with the alphabet N. 
Let nxk

 1 be the finite-alphabet source induced from fx by the mapping xk (k -= 1,2, . . . 
. . . ) . Then 

% " ' ) - % ; ' ) (k = l ,2 , . . . ) 
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and 

(4.11) % ) = l im%T ; ; 1 ) 

To motivate the further discussion we shall give now the main idea of the proof. 
Let 

C = { [ / c ] : fc - l ,2 , . . .} 

be a countable partition of the space N1. The partition is a generator [32]. Let us 
define, for k = 1,2, . . . , the partition Ck by 

U = { [ ! ] , . . . , [fc],[{fc+ l,/c + 2, . . .} ] } . 

Then Ci < • • • < U < • • • < C (cf. [32]). But H(C) = H(fi) and J9(C») = H^1). 
Hence a general result of [36] applies (cf. also [32], p. 15, Proposition (b)). 

If X is an uncountable metric space, the partition {[x] : x e X] is uncountable, 
hence it cannot be a generator in the sense of Rochlin [32]. This in turn implies 
that the approximation property of Theorem 4.7 cannot be used in the general 
case. Hence, we are forced to consider the finite partitions of the alphabet, thus 
obtaining finite-alphabet sources. It will be proved in the third part of this paper 
that this approach gives the same results in the special case of a countably infinite 
alphabet as the approach of Winkelbauer [41] described above. 

PART II: ERGODIC THEORY OF FINITELY ADDITIVE 
PROBABILITIES 

5. Preliminary Discussion — The Markovian Case 

In this section we shall study some questions connected with the denumerable 
Markov chains. The purpose of this investigation is to illustrate some problems of 
the ergodic theory of finitely additive probabilities. At the same time, the Markov 
chains will provide a lot of interesting examples concerning the information-theore
tical quantities studied in the subsequent parts of the paper. An exhausting reference 
concerning Markov chains may be found in [7]. 

Let us start with the following special type of a finite Markov chain. The states 
will be identified with the elements of the finite set {1,2, ...,k). The one-step 
transition probabilities pi} are assumed to form the following k x fc-type stochastic 
matrix: 

(5.1) P = 

/0 I 0 
0 0 1 

0 0 0 
VÍ o o 

0 Q\ 
o o 

0 1 
0 0/ 
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The symbol p("' will be used to denote the (i, j)-th entry of the matrix P"; to p'ff's 
we are referred as to the H-step transition probabilities. The matrix P has the follow
ing property: 

(5.2) P* = I (the identity matrix), 

hence 

(5.3) P t + I = P . 

The classification of the states follows from the above properties of the matrix P. 
Let (i,j) be any pair of states. Due to (5.3) there are positive integers nt and n2 

such that p(
;"° > 0 and p("2) > 0, respectively. Hence the corresponding Markov 

chain is irreducible, its state space consisting precisely of a single essential set of states. 
Moreover, the matrix P is obviously indecomposable. The relation (5.2) can be re
written in the form 

P S J ' - I . j=l,2,...,k. 

Thus 

n = i n = i 

i.e. all states are recurrent. From (5.3) it follows all states are periodic with the same 
period d} = k, j — 1, . . . , fc. The ergodic theorem for Markov chains implies that 

lim p $ = djl = 1/jfe ; ; = 1, 2, . . . , fc . 

As well-known, for irreducible periodic Markov chains the above limit determines 
uniquely a probability /c-vector p = (p t , ..., pk) such that 

(5.4) P P = p . 

Any probability vector p satisfying (5.4) (if it exists) is said to be absolute stationary 
distribution of the Markov chain corresponding to the matrix P. Hence, in our case, 
the absolute stationary distribution is the uniform distribution on the set {l, 2, . . . , k] 
of all states. 

Recall now the usual construction of the Markov chain corresponding to the 
initial distribution p and the transition probability matrix P. First of all we shall 
define the set function P = P(p, P) on the family of all elementary cylinders in the 
space {1, e . . , k}N by means of the formula 

(5-5) P(li0,--;in-i]o,n) = Pi"f[Pit-iit 
( = 1 

for i0, . . . J i ( I _ 1 e { l , . . . , k}. Using Kolmogorov Extension Theorem (cf. [13], 
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Chapter 9) the set function P can be extended to a c-additive probability measure on 
the o--field generated by the family of all elementary cylinders. Let 

X„(z) = z„ for ze{\, ...,k}N ; neN 

be the coordinate random variables. The sequence {X„}ni.0 is the Markov chain 
corresponding to the initial distribution p and the matrix P, respectively. The statio
nary behaviour of the transition probabilities itself does not assure that the Markov 
chain {X„}„^0 is stationary with respect to the shift-transformation Tin the space 
{1, . . . , fc}^. Let the matrix P be given by (5.1). Then we have the following criterium 
of stationarity. 

Lemma 5.1. The Markov chain {X„}„^0 corresponding to the initial distribution 
P = (Pu Pi- • • •> Pu) and t o t n e matrix P is stationary if and only if 

(5.6) pi = P 2 = ••• =Pfc(=l/fc). 

Proof. The "if" part follows from (5.5) and (5.6). Indeed, a random process is 
stationary if and only if the corresponding product measure is invariant. 

Conversely, let {X„}„^0 be stationary. Especially 

P{[n, n + 1]1>2) = P(Tk-\n, n + 1]1>2) - P([n, n + 1]2 ,2) . 

However, 
p(t">n + »]t,2] = Pn-l 

and, on the other hand, 

P([n, n + 1]2>2) = p„_2 

provided 3 <. n <. k - 1. The remaining possibilities can be examined by use only 
of the minor changes. Consequently pt = . . . = pk = 1/fc. 

A natural infinite-dimensional analogue to the matrices P introduced in (5.1) 
is the infinite-dimensional matrix P defined entrywise by the properties that 

I 0 otherwise; i,j — 1, 2, . . . . 

The matrix P is again indecomposable. However, all states are now transient, non
recurrent and aperiodic. The idea used in the proof of the preceeding lemma implies 
that the corresponding Markov chain (see the construction below) is stationary if 
and only if 
(5.8) Pl _ p2 = . . . 

Hence there is no cr-additive probability working as the absolute stationary distribu
tion. Usually this difficulty is avoided by admitting also a-finite measures as the 

21 



stationary distributions. An alternative approach admits finitely additive probabili
ties within the family of the absolute stationary distributions. However, there are 
infinitely many finitely additive probabilities on the a-field ty(N) possessing the pro
perty (5.8) (cf. [37] and Section 3 of the present paper.). We should like to choose 
such one from which the finite-dimensional cases mentioned above could be derived. 
Let p on $P(iV) be one of the extensions h, of the z-density hz (cf. (3.1) and Proposition 
3.3) with z being the sequence of all positive integers. This choice is justified by the 
following statement. 

Lemma 5.2. Let us consider the Markov chain with the stationary distribution 
hz and the transition probability matrix P defined by (5.7). For any k, keN, there is 
a mapping q> : N -> {1, . . . , fc} (called the collapse of the states) such that the col
lapsed process is a stationary finite Markov chain. The corresponding product 
measure P is the Markovian measure P = P(p, P) where p = (l/fc, . . . , 1/fc) and 
the stochastic matrix P is given by (5.1). 

Proof . Let us consider the partition of the state space N of the original Markov 
chain into the residue classes modulo k. The put 

<p(l) = j + 1 if le{kn +j:n= 1,2, . . . } 

for j = 0, 1, . . . , fc - 1. Then for any./, 0 | j g J c - l , 

pJ+i =K({kn +j:n = 1,2, . . .}) = k'1 , 

hence p = (l/fc, . . . , l/k). The one-step probability of remaining within a given 
collapsed state {kn + j : n = 1, 2, . . . } = j + 1 is zero. If we are in the state 
labeled by j , the one-step probability of the transition into the state labeled by 
/ + 1 (mod fc) equals unity. Hence the new transition matrix is that given by (5.1). 
The lemma is proved. 

Now we shall give the idea of constructing a finitely additive Markov chain given 
a finitely additive initial distribution and the stochastic matrix P defined by (5.7). 
Here, the importance of the set function E, will be manifested once more. Let us 
define the transition function p(.,..) :N x ^(JV) -> [0, l ] by the property that 

(5.9) p(n. A) = y_A(n + l ) . 

Clearly p(n, {n + l}) = 1. Consequently, the transition function p(., . .) induces 
the matrix P. Moreover, 

\p(n, A) hz(dn) = h._(A), A e ^(z). 

If A e ^(N) - <£(z\ then 

(5.10) K(A)= f - t jO /Md" ) 
J« » J=l 
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(cf. the proof of the Proposition 3.3). Hence 

L(n, A) hz(dn) = [lA(n + \)hz(dn) = L e i ( « ) *-(<-») 

where A Q k = [n : n + keA] (if there is no such n, we shall set A © k = 0}. 
But the right-hand side of the latter relation equals hz(A Q l). The invariance 
property 

Lim/(n) = Lim/(n + m), m § 0 

of the Banach limits implies, by the definition of h., the equality 

hz(AQ 1) = hz(A). 
Therefore 

(5.11) p(n, A) hz(dn) = hz(A), A e %N). 

The relation (5.11) means that hz is invariant with respect to the transition function 
p(.,. .). Note that this property fails to hold, in general, for such initial distributions 
which are not resulting by the Banach limit procedure. 

The relation (5.5) is meaningless for finitely additive initial distributions, because 
it reduces to the tautology 0 = 0. Instead of (5.5) we shall use the well-known con
struction of a Markov process due to I. Tulcea. For the sake of simplicity, we shall 
confine ourselves to finite-dimensional cylinders with a low dimension. The ideas 
will, of course, work for arbitrary finite-dimensional cylinders. E.g. the measure of the 
two-dimensional cylinder [A, x A2~], 2 is given by the formula 

(5.12) P([A! x A 2 ] ) = f f"f X"i>^2)X"o,dn t ) lh" . (dn 0 ) . 

Now 

P([Ai x JV],,2) = [" F f p(nt, N) p(n0, d.<L)l hz(dn0) = 

= f T f P(n0, d" , ) l ^(dn0) = f p(n0, A,) fiz(dn0) = hz(A) = P([At]Ui) . 

The latter equality is a consequence of (5.10). The equality of the first and of the 
last member in the latter relation implies that by means of the formula (5A2) (and 
of its analogues for larger dimensions) it is obtained a consistent family of finitely 
additive probabilities. Hence we are given a finitely-additive process. Let {X„}„>0 

be the sequence of the coordinate variables. Then 

Prob (X2 e A2 | X0 e A0, X, e At) = 

= P(X0 e A0, Xx e AL, X2 e A2) [P(X0 e A0, X , ^ , ) ] " 1 
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with 0/0 interpreted as 0. Using (5.12) the right-hand side of the latter relation equals 

p(nu A2) p(n0, dn t) U z(dn0) U p(n0, At) h~z(dn0)> = 

= \xAo(na) XAz(n2) K"o, dn,) h\(dn0) x j ^ 0 ("o) XAl(
ni) hz(dn0)l . 

Using the definition of the transition function one obtains for the last member the 
expression: 

\xAo(
no) XAi(n0 + 1) ^2(tto + 2) n"z(dn0) x \ UAo(n0) xAl(

no + l) l>z(dn0)l = 

= pAo("o)z^1ei("o)^2e2(n0)/iz(d«0) x } \xAo{no) XAiei(no) K(&no)} = 

= ^0nU1ei)nu2e2)("o)^z(dn0) x I \xAoniAies)(n0) /?z(dn0)i = 

= n"z[A0 n (A t 0 1) n (A2 0 2)] {/7Z[A0 n (As Q l ] } " 1 . 

Consider first the case Af e ^(z), i = 0,1,2. Then we obtain the expression 

hz[A0 n (A t 0 1) n (A2 0 2)] {nz[A0 n (A , 0 l ) ] } " ' 

because hz = hz on -S?(z). The relative frequency of the transition from the set As 

into the set A2 does not depend on the relative frequency of the transition from A0 

into A.. In symbols 

card {j : 1 g j S n, j e AQ, ; + 1 e A,, ; + 2 e A2} x 

x {card {j A ^ j g n,' j eA0,j + le A,}}"1 = 

= card (j : 1 g j g n, j + 1 e At, J + 2 e A2} x 

x {card { j : I g j ^ n, j + l e A , } } " 1 . 

Consequently, 

hz[A0 n (A! 0 1) n (A2 G 2)] {hz[A0 n (A , 9 l ) ] } " 1 = 

= hz[(A, e i) n (A2 e 2)] {hz(As e i)}" ] = 

= P(X1sAs,X2eA2){P(XseAs}}-1 = P r o b ( Z 2 e A 2 \XS e As) . 

Hence we obtained the equality 

Prob (X2 e A2 j X0 e A0, Xs e A.) = Prob (X2 eA2\Xse A,) 
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valid for all Ac, A,, A2 6 i?(z). For general A,'s we have 

/L[A0 n (A , e 1) n (A2 0 2)] {n"z[A0 n (A, 0 l ) ]}" 1 = 

= \~ £ JU.0) Zx.eiO) ^2e2(./) Md") x j " Z )U>0") ̂ , e i O ) K d " ) [ • 

Since ja(n) n(dn) = Lim a(n) for any a(«) e /^(N), we have ja(n 4- /c) ^(dn) = 
= J«(n) /<(dn). Hence the same argument as before applies to obtain the equality 

1 " fl " "I"1 

- Z Xx„0)^1eiO)z^e20) x \~ £ ^„0)^ iei0)> = 
n j = i ( H J = I J 

= - Z Zx .e iCO^ .eaO) ] - £ XA.BIO) 
n j = i (n j = i 

It follows from the last equality that 

Prob (X2 e A2 \ X0 e A0, Xt e At) = Prob (X2 e 42\X1e A,) 

for all A0, A1; A, e ^p(A'). Note that the markovian property was established using 
the invariance properties of the Banach limits. On the other hand, if we should use 
finitely additive initial distributions which were not defined by means of the Banach 
limits, the markovian property could possibly fail to hold. 

The functionals of the Markov processes are not, generally speaking, Markov 
processes. Lemma 5.1 showed that for a special type of the functional the induced 
process is again a Markov process. Now we shall prove a more general statement. 

Proposition 5.3. Let {Xn}n^0 be the finitely additive Markov process with the 
distribution P = P(hz, P). Let £ be a finite partition of the state space N. If for any 
Ce£, Ce£?(z), then the induced probability measure P; on the space {1, . . . 
. . . , card (C)}N corresponds to an ergodic finite Markov chain. The measure P? is 
given explicitely by the formula P? = P(q, Q) with 

q: = hz(d), i = 1,2, . . . , c a rd (C) ; 

q = [hz(C,)y1 lim - card {k : 1 ^ H «, (k,k + l)e C, x C,} . 
n-oo n 

Proof. The way of inducing the measure P ; by means of the finite partitions of the 
state space is given in Section 10. From Lemma 10.2 it follows that the induced 
measure is ergodic. Hence we have to prove only the markovian property of the 
induced measure. Using the relations established above together with the invariance 
property (5.11) we compute 
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qu = Prob (X. e C,-|X0 e C.) = P(X0 e C„ X, e C,-) [P(X0 e C,)]"1 = 

= [/licA]""1 lim - card {fc : 1 = A: g n, (k, k + l ) e C, x C;} . 
B-OD n 

Note that h,(C;) = 0 implies qu = 0 for all j . Thus, if there are some new states 
with hz-probability vanishing, we have to reduce the state space by excluding these 
states. Let us denote by ci} the limit on the right-hand side of the last relation. 

Since the induced measure Pc is ergodic, the matrix Q = (q;j) is such that the 
linear system 

q = qQ 

has the unique nontrivial solution. The proof will be complete when showed that 
the vector q of the conclusion is a solution. Substituting for q into the above linear 
system, we obtain the following system of equalities: 

hz(Cj) = qtJ + q2J + . . . + qkJ , j = 1,". . . , k 

with k = card (£). The latter relations are valid because of (C,- x C,) n (C,- x C,-,) = 
= 0 for any i,j +j', and because for any 1 e { l , . . . , /c} there is certainly je 
e { ] , . ,.,k} such that / + 1 e C}. 

The last statement of this section will concern with an ergodic property of the 
Markov chain {X"„}„^0 with P = P(/7Z, P). 

Proposition 5.4. For any A e if(z) and for all k e N, 

fonf- t PJXA)(k)^lu(A). 

Proof. Clearly 
/0 1/n 1/n . . . 1/n 0 0 . . .\ 

1 A p ; = [0 0 1/n . . . 1/n 1/n 0 . . . 1 
nh lOO 0 ... 

Consequently 

, . , . iyM)\ /i/«W2)+ ... +^(„ + i))\ 
- I * U-) = ; .S p ; yM) = I i/n 0u(3) + • • • + JU« + 2)) J. 

For n —> co, any component of the last column vector converges to hz(A) because 
of A e i£(z). Thus 

I ™ 1 ! P;Z.4(-) = ^ ) ^ ( - ) -
B-»OO n y = i 

The conclusion follows. 
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The above discussion motivates the following main problems: 
(i) The ergodic decomposition of a finitely additive invariant probability. 
(2) The concepts of the ergodicity in a finitely additive setting. 
(3) The characterization of the structure of the ergodic set functions within the family 

of all additive invariant probabilities. 

6. The Decomposition Problem 

Let (Q, Sf) be a measurable space, let 7": Q. -• Q be a measurable transformation, 
i.e. T~l Sf cr Sf. Assume we are given a T-invariant probability measure on Sf. 
The measure \i is said to be idecomposable if 

H = «nt + (1 - a)n2 

with Hi, n2 invariant implies Hi. = /t2 = \i. In the frequently occuring situations 
the concepts of indecomposability and of ergodicity coincide. The set of all T-in
variant probability measures is convex and the ergodic probabilities are indecom
posable. Because of these facts the problem of the ergodic decomposition can be 
viewed as a special case of the following problem: 

Let M denote an arbitrary convex set in a locally convex linear space. Let E denote 
the set of all extremal points in M. 

(1) Find the sufficient conditions for M to be nonvoid. 

(2) Find the conditions under which any element m e M can be represented by an 
integral with respect to a probability measure concentrated (in some certain 
sense) on the set E. 

The classical solution is due to Krylov and Bogoljubov [20]. Their main results 
are stated in Lemmas 4-2 - 4-4 with a compact metric space X and regular Borel 
probability measures. Let us note that Lemma 4.4 gives as a special case the relation 

(6.1) / < £ ) = f nJ(E)rfdz),Ee 
JRsi 

The proofs of these statements did not use convexity arguments (cf. e.g. [26]). For 
countably infinite alphabet the basic space N1 is no more a compact metric space. 
But any Borel probability measure defined in a complete separable metric space is 
regular. This in turn implies that the whole space can be approximated by a compact 
subspace, the probability of this subspace being as close to unity as wanted. The ideas 
of the extension of the theory to noncompact metric spaces are given in [26]. 

For the abstract measurable spaces the ergodic decomposition was obtained by 
Blum and Hanson [5]. Their proof did not use convexity arguments. However, the 
sufficient conditions assuring their proof is working involve convexity assumptions 
(cf. the condition (c) below). 
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Let Sf0 denote the subc-field of Sf consisting of all T-invariant sets; in symbols 

Sf0 = {E \EeSf, T~'E = E} . 

Let M(Sf) denote the set of all T-invariant probability measures on Sf. The usual 
Kolmogorov er-field in M(Sf) will be designated by the symbol Jf\M(Sf)\, thus 

(6.2) Jf\M(Sf)\ = a({{n : /i e M(Sf), \i(A) g t} : 0 £ t ^ 1, A e Sf}) . 

Let E(Sf) denote the set of all T-ergodic probabilities in M(Sf). The aim of the ergodic 
decomposition is given \.i e M(Sf) to find a probability measure \x on the <r-field 

XT[E(Sf)\ =-- E(Sf) n .)T\M(Sf)\ 

such that 

(6.3) / < £ ) = [ v(£)/i(dv). 
J E(5») 

The sufficient conditions for the performability of the Blum-Hanson proof are the 
following ones (cf. [9]): 

(a) let ft,/J26 M(Sf). The assumption that 

v E e y 0 M i ( £ ) = At2(£) 

implies the relations 

VE c Sf ^(E) = ,.,(£) ; 

(b) VA e Sf VO ^ t ^ 1 3Ar e ^ 0 such that 

{v : v e E(Sf), v(A) g f} = {v : v e E(Sf), v(A,) = 1} ; 

(c) if Vv 6 E(^), v(A) = 0 then //(A) = 0 for any fi, n e M(Sf). 

The conditions (a) and (b) are proved in [5] to be the immediate corollaries to the 
individual ergodic theorem. The condition (c) depends, in general, on the topological 
properties of the space Q. 

Remark 6.1. The decomposition theorem in [5] was actually stated in a form 
seemingly different from the required (6.3). Indeed, the decomposing probability 
measure fi was defined on the u-field 

M = {{v.ve E(Sf), v(E) = 1} : E e Sf0} . 

On the other hand, using the condition (b) it can be easily shown that 

sk = jr\E(sf)\. 
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7. Stone Spaces and the Ergodic Decomposition 

Let Q be a compact Hausdorff totally disconnected space. This means the field 
cfi of all clopen sets in Q constitutes the basis for its topology. The space Q is called 
the Stone space. Actually, it is the Stone space of its own basis cd and # is its own 
Stone field (cf. e.g. [31]). Let U denote an automorphism of the field <€. Then there is 
a homeomorphism h of the space Q inducing U: 

UC=lrlC, Cec£ 

[31]. As well-known, Sf = cnV) is the Baire tr-field in Q (cf. e.g. [13]). Since both h 
and / i _ 1 map Baire sets into Baire sets, the automorphism U can be extended to 
a cr-automorphism (denoted by the same symbol U) of the cr-field £f. Let M{Sf), 
Jf\M{Sf)\, E{Sf) have the same meaning as in the preceeding section. In the present 
context, the set E{Sf) of all ergodic measures coincides with the set of all indecompos
able ones (cf. [30]). 

Lemma 7.1. If 9 is the Baire cr-field of a Stone space Q, if U is an cr-automorphism 
of the cr-field Sf, then the condition (c) of Section 6 is satisfied. 

The assumptions of the lemma imply that any \i e M{£/') is a convex linear combina
tion of the ergodic measures. The lemma follows immediately. The proof of the state
ment follows the lines of the argument given by Chocquet as described e.g. in [30] 

Theorem 7.2. Let Q be a Stone space. For every continuous function f on Q the 
integral j'/dv is Jf [£(<$^)]-measurable function of the variable v on E{£f). For 
every measure n e M{S/?) there is a unique probability measure fl on the cr-field 
•f\E{S?)~\ such that 

(7.1) f / d M - f [ f /dv l 
Jf i JE(.V) LJl3 J 

ß{áv) . 

Proof . 1. Let Cec6 . C is a clopen set, thus its indicator function is continuous. 
Using the method of Blum and Hanson (which is working according to the Lemma 
7.1) there is a unique probability measure p. on the cr-field tf\E{Sf)\ such that 

(7.2) fi{C) = f Xc dM = f [ f Xc dv] £(dv) = f v(C) /tfdv) . 
J a J E(s») LJ n J E(if) 

2. The rest of the proof consists of the extension of (7.2) to the space of all conti
nuous functions on Q. The proof involves only the standard arguments including 
the Stone's general version of the Weierstrass theorem and the limit theorems of the 
Lebesgue integral. 

We shall use the theorem to find the ergodic decomposition of the finitely additive 
invariant probabilities. The result was obtained in [25]. Let Q denote an abstract 
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nonvoid set, let si designate a field of subsets of Q. The symbol T will be used to 
denote an automorphism of the space (Q, si), i.e. a one-to-one mapping of Q onto 
Q such that T~^si <= si and To/ a si, respectively. An additive T-invariant pro
bability n on the field si is said to be ergodic, if there is no sequence {An}n=1 cz si 
and no <5 positive such that the following three conditions are satisfied: 

(7.3) (1) lim n(An AA,„) = 0 , 

(2) lim/((/(„ AT" lA„) = 0 . 

(3) 5 < fi(A„) < 1 - S , neN . 

Theorem 7.3 [25]. The set M(si) of all T-invariant additive probabilities on si is 
nonvoid. To every /i e M(si) there corresponds a unique cr-additive probability 
measure fi on the Kolmogorov a-field JT[E(^/)] such that 

(7 A) ^ ( A ) = f v(A)fi(dv). 
JE(rf) 

The main idea of the proof consists in the investigation of a Stone space such that the 
cr-additive Baire probabilities correspond to the finitely additive probabilities on the 
field si. Olshen [25] used the Stone representation of a Boolean algebra. The proof 
contains an interesting equality E(c£) = E(£f), where <<? is the field of all clopen sets 
in the corresponding Stone space and Sf = o^S), respectively. We shall prove this 
statement in a more general form. 

Proposition 7.4. Let Q be an abstract nonvoid set, let si be a field of subsets of Q 
and let ¥ = a(si). Let Tbc a a-automorphism of the <r-field Sf. Then E(si) = E(^), 
i.e. for cr-additive measures, a measure is ergodic in the sense of (7.3) if and only if it 
is ergodic in the usual sense (cf. ( l . l l ) and (1.12)). 

P roof . 1. Let p.£E(£f). Then there is an invariant set E0 and a number ca, 0 < 
< c0 < 1 such that fi(E0) = c0. Given e > 0 there is a set A e si possessing the 
property that n(E0 AA) < s (cf. [23], § 13, Theorem D). Consequently, there is 
a sequence {A„}„°=1 c= .si with the property 

H(A„ AE0) < 1/n , 

i.e. 

c0 - 1/H < n(An) < c0 + 1/n. 

Assume n0 e N is large enough to satisfy the inequalities 

0 < c0 - \\n < c0 + \jn < 1 . 
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Let B„ - Ano+n^(n = 1 ,2 , . . . ) . Then 

(7.5) 0 < c0 - \\n < j.i(B,) < c0 + \\n < 1 , n - I, 2 

Since lim fi(Bn AE0) = 0, we have 

(7.6) lim fi(B„ AB,„) = 0 . 

Actually, if we define Q(A, B) = /i(A AB), then o is a pseudometric on Sf, hence 
a convergent sequence is a Cauchy sequence. Further 

H(TB„ AE0) = ,i(TBn A7E0) = ,i(T(B„ AE0)) = f,(B„ AE0), 

therefore the triangle inequality yields 

(7.7) lim n(TB„ AB„) = 0 . 

The relations (7.5), (7.6) and (7.7) imply that n $ E(sJ). Hence E($£) <= E(^). 

2. Conversely, if n $ E(sd), there are <5 > 0 and a sequence {A„}"=1 <= tc/ such that 

lim /<(A„ AA,„) = 0 , 

lim /.L(A„ ATA,) = 0 , 

<5 < n(A„) < \ - 5 (n = 1, 2, . . . ) . 

Let A = Jim sup T"A„. Then A e ^ and /((A ATA) = 0. On the other hand, 0 < 

< 5 < yi(A) < 1 - <5 < 1. Hence /i £ E(^). The proof is finished. 

8. On the Concept of Ergodicity 

Theorem 7.3 can be proved also by representing additive not necessarily <r-additive 
measures as the elements of the space L*m corresponding to some LM space.This idea 
is due to Hewitt and Yosida [14]. This alternative approach can be used to prove 
Theorem 7.3 by means of the general Chocquet's representation theorem. For 
ff-additive measures this was done by Feldman (cf. [30]). We shall not give the 
alternative proof of the decomposition theorem, but we shall use the general method 
to obtain some interesting results concerning the ergodic finitely additive probabilities. 

Let (Q, #•, m) be a <r-finite measure space. The symbol M(m) \M*(m)~\ will denote 
the set of all bounded signed [positive] additive set functions on the <r-field 3F vanish
ing on every set E e 3F for which m(E) = 0. Let us consider the linear space Lx(m) 
of all equivalence classes of the essentially bounded (with respect to the measure m) 
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immeasurable real functions. Let U denote the isometric isomorphism of the space 
M(m) into the normed conjugate L*x(m) of Lw(m) (cf. [14], Theorem 2.3). Let 

(8.1) B = {f* :f*eLt(m), \\f*\\ = l , j * ^ 0 , j * ( l ) = 1} . 

Then B is a convex w*-compact set. By Krein-Milman theorem (cf. e.g. [8]) B is the 
closed convex hull of the set dB of its extremal points, in symbols 

B = co (dB). 

The set dB is closed in B, hence a compact subset of B. We shall denote it by the 
symbol S. Thus S is a compact Hausdorff space. Let us recall the well-known cha
racterization of the space S: 

(8.2) j * e S iff V£ e #" f*xE e {0, 1} . 

The mapping V: Lx(m) -* C(S) defined by 

(8.3) ( F j ) ( j * ) = j * ( j ) , feLjm) 

is an order preserving isometric isomorphism (cf. [14], Theorems 4.2 and 4.3). 
Clearly, by (8.3) and (8.2), to every set E 6 3F there corresponds a clopen set E <= S 
such that 

VXE = XE' 
Let 

j / = { £ : I c S , XE = VXE for some E e #"} . 

The (7-field a(s3) is the Baire <r-field in S [14]. The adjoint mapping V* : C*(S) -» 
-» l^Jm) is an isometric isomorphism, too [15]. Consequently, the composition 
U o V*"1 is an isometric isomorphism of the space M(m) onto the set C*(S) of all 
Radon measures on S. 

Let T denote an automorphism of the measurable space (Q, #"). The correspond
ing linear operator T: Lx(m) -> Lm(m) is defined by the property 

(8.4) (Tf)(co)=f(Toj), fsLjm). 

Let Tc be induced from T by the isomorphism V: 

Tc(Vf)= V(Tf), feLx(m). 

Since VLjm) = C(S), Tc maps C(S) into C(S). By the symbol 7\ we shall denote 
the adjoint of Tc, i.e. 

(J\h*) (h) = h*(Tch), h* e C*(S). 
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A transformation of the space C*(S) corresponding to the automorphism T can be 
introduced also in another natural way. Let T* be the adjoint of T, i.e. 

(T*f*)(f)=f*(Tf), f*eLl(m). 

Let T2 be induced from T* by the isomorphism V*~l: 

U V* ~ 7'*) = V* - ' (T*/*), /* e Ll(m) . 

However, both constructions give the same result in the sense of the following 
lemma. Let 

(8.5) M+(m, T) = {n : \i e M+(m), n(Q) = 1, /t = fiT~1} . 

Lemma 8.1. The following three statements are equivalent: 

(1) fieMt(m,T), 

(2) V*-](U/{) = JiF*- J(J7 | i ) , 

(3) V*-1^)^ T.V*-1^). 

The p roof is elementary and therefore it is omitted. 
Assume we are given an arbitrary Radon measure h* e C*(S) on S. Then there is 

a unique signed Baire measure Wh* on S such that 

.6) h*(h) = ì h(s) (Wh*) (ds), hєC(S) 

(cf. [8]-Riesz representation theorem). Let Z denote the composition of U, V* ' 
and Win this order, i.e. 

(8.7) Zfx = W[V*-'(Un)\ , n e M(m). 

In [14] it is proved that each bounded positive finitely additive set function on a ring 
of sets uniquely decomposes into the <x-additive part and a pure charge. Let us recall 
that a finitely additive set function is said to be a pure charge provided that any 
cr-additive positive measure majorized by it vanishes everywhere. The correspondence 
between the Hewitt-Yosida and the Lebesgue decompositions is established in the 
following theorem. 

Theorem 8.2. Let \i e M + (m). Let 

(8.8) Zfi = ^ + ii2 

be the Lebesgue decomposition of the measure Z/i into the Zm-absolutely con
tinuous part Hi and a Zm-singular part fi2, respectively. Then the formula 

(8.9) /i = Z~VL + Z~V2 
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establishes the Hewitt-Yosida decomposition of the set function ji. Z lnt is the 
cx-additive part and Z _ 1 ^ 2 is the pure charge, respectively. 

Proof. Let the formula (8.8) does not establish the Hewitt-Yosida decomposition. 
Then there are nontrivial Hewitt-Yosida decompositions 

(8.10) Z~Vi = M« + /4(' = 1,2), 

where if; is the tr-additive part and fi\ is the pure charge corresponding to Z~lnt 

(i = 1, 2). Now Z/4 is Zm-absolutely continuous and Zji\ is Zm-singular; in symbols 

(8.11) Z^^Zm, Zn\LZm 

(cf. [15]). Let us consider / = 1. By the assumption, /x1 <| Zm. On the other hand, 
Hi contains a Zm-singular part Zfx\, a contradiction. Hence jt, = Zj.i\, i.e. Z - 1 / ^ = 
= /(c,. This proves the c-additivity of Z~1[il. A similar argument for i = 2 shows 
that the set function Z - 1 / .2 is a pure charge. The theorem follows because of the 
uniqueness of the Lebesgue decomposition. 

The following lemma makes sense only for a-additive measures. Let (Q, J~) be 
a measurable space, let T be a measurable transformation of Q. Assume /.i and v 
are two T-invariant probability measures on S~. 

Lemma 8.3. Let v = v0 + vt be the Lebesgue decomposition of the measure v with 
respect to the measure ft. Then v0 = v0T - 1 and v = VjT~\ respectively. 

The p roof follows the lines of the usual proof of the Lebesgue decomposition 
theorem (cf. [13]). The only new fact is that the density/ of v with respect to // + v 
is now invariant, i .e . / = / o T[v] (cf. [30], the result is due to Feldman). 

Theorem 8.4. Let (Q, 3F, m) be a probability space with m = mT~\ where T 
is an automorphism of the measurable space (Q, 3F). Let (i e Mt(m, T) be indecom
posable (i.e. ergodic). Then fi is either c-additive or a pure charge. 

Remark 8.5. Given two invariant pure charges, their linear combination is again 
a pure charge [14]. Since a linear combination of invariant set functions is again 
invariant we have, by the theorem: 

dMf(m, T) = £(J~) u SP.Ch., 

where the symbol on the left-hand side designates the set of all indecomposable 
elements in Mt(m, T) and the symbol on the very right of the relation denotes the 
set of all indecomposable pure charges. 

Proof of the t h e o r e m . Let us define the mapping i : S -» S by the property 
that 

h*(hor) = (Th*)(h), h*eC*(S). 
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Here, T denotes one of the operators T and T2 introduced above. Clearly - is conti
nuous and Th* = h* if and only if (Wh*)T~l = Wh*. It can be easily shown that 
to the indecomposable elements of M*(m, T) there correspond the ergodic probabi
lity measures on (5, o(si')). Lemma 8.3 both with the definition of the ergodicity 
imply that the Lebesgue decomposition of the measure Z/i corresponding to an 
indecomposable fi must be trivial. Hence, by Theorem 8.2, the Hewitt-Yosida 
decomposition of /.i must be trivial. The theorem is proved. 

9. The Method of Maximal Compactification 

In the special case of Q = X1 with an at most countable set X we have still another 
possibility for the study of the properties of finitely additive probabilities by means of 
the corresponding a-additive ones. The main fact used here is that the space X1 is 
a complete separable metric space, which is totally disconnected in the distance 
function g (cf. (1.9)). 

Lemma 9.1. Each totally disconnected Trspace X possesses a Hausdorff compacti
fication. 

The only thing to prove is the complete regularity of the space X. Using the fact 
that the indicator functions of the sets belonging to the basis in X are continuous, 
one can easily check the complete regularity. 

The space X is actually homeomorphic with a dense subset of its maximal compacti
fication ([17], p. 226, [8], p. 300). 

Lemma 9.2. The maximal compactification of a totally disconnected space X is 
a totally disconnected space. 

Indeed, let <€ be the basis for X. The continuous extension of the continuous 
function Xc o n X ls the indicator function xc of the set C, which is the closure of C 
in the topology of the maximal compactification. To show that the family [C : C e (£] 
is the basis for the maximal compactification it suffices to prove that is a field. Since 
(j> — (j> e %> and ^ is closed with respect to the finite intersections, it suffices to prove 
the following 

Lemma 9.3. Let C e <€, let C = X - C. Then C n Cc = <f>. 

Proof. Let xeC n Cc. Since x e C, there is a net xa e C such that x„ converges 
to x in the topology of the maximal compactification. Similarly, since x e Cc, there is 
a net yp e Cc such that yp -» x. Let / denote the continuous extension of Xc- Since 
xa -> x, f(xx) ->/(x). But f(xx) = xc(xa) = 1, hence f(x) = 1. Similarly, f(yp) ~* 
-> f(x). But f(yp) = 0, hence f(x) = 0, a contradiction yielding the desired conclu
sion. 

Let us consider now the space (N1, si). Let fiN1 denote as usually its maximal 
compactification. Let .<</ be the corresponding field of subsets of pN1. For any Ae s4 
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let us define the c-additive probability measure fif by the property that 

Hp(A) = n(A), A e 3 . 

For any @ c a(3) let 

« ( * ) = {£ : £ e (j(^) , V/i 3E„ e .9 3G„ e ® , E„ /• £, G„ \ £} . 

For any ordinal number a less than the first uncountable ordinal Q we shall set 

£, = U ^ ( ^ ; . ) , ®o = 3 . 
A<* 

Then 

4*0 - u (u *(«,)). 
a < « A<a 

Let LIS note that the latter statement represents the well-known transfinite construc
tion of the (T-field generated by the field 3. This way of introducing the c-field 
o(stf) in fiN1 allows us to define a set-transformation of the space fiN1 induced by 
the shift Tin N1. Let 

T„A = T~lA, Aes/ . 

Let 

T(0) = Tp for ^ o = 3 . 

If a < Q is an ordinal, we shall set 

C TWE if £ e £x, ). < a ; 

TME= J « 
U T(a ~ X)E„ if there is no k < a with £ e ^ A ; 

t «=i 

with E„ e 88x-i, E„ / £• Finally, let us define 

f £ = T(a)£ , £ e St%, a< Q, Ee a(3). 

Hence, by the transfinite induction, it is possible to obtain a simultaneous extension 
of both the measure ftp and the transformation T/( to the (Baire) u-field a(3). 

10. Elementary Properties of Finite Partitions 

The finite partitions will be the main tool in the subsequent parts of the present 
paper. Therefore it is worthwile to mention some elementary facts concerning the 
finite partitions in advance. 

Let A denote an arbitrary nonvoid set. A finite collection {Cu ..., Ck} of nonvoid 
pairwise disjoint subsets of the set A whose union is the whole of A is said to be 
a finite partition of the set A. If ( and c, are finite partitions of the set A, the symbol 
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C v £ will be used to denote the finite partition of the same set A defined by 

(10.1) C v £ = {Cn D:CeC, De£} • 

Given two partitions £ and £ we shall write 

(10.2) £ >- £ iff £ v £ = £ . 

The relation >- partially orders the set of all finite partitions of the set A given. 
Let £ be a finite partition of the set Ak(k = 1,2, . . . ) . Then £" will denote its n-th 
Cartesian power, i.e. a finite partition of the set A"k consisting of all sets expres
sible in the form 

C1 x . . . x C" (C 'e£ , / = 1,2, ...,n). 

The simplest properties of the finite partitions used throughout the paper are summed 
up in the following 

Lemma 10.1. (l) Let £ <= six be a finite partition of the space X1. Then there are 
ia el,n0eN such that VC e £ 3E(C) e 3S(X"°) with the property that 

c = [£(C)],0,,0. 

(2) Let £ c 3S(Xn) be a finite partition of the space X". Let [£],-,„ = {[C];,„ : C e £}. 
The collection [£],-„ is a finite partition of the space X1 for all i e I. 

(3) Let £ <= g$(X") be a finite partition of X". Then there is a finite partition £, £ <= 
<= 0$(X) such that £" >- £. 

Let us recall that the symbol Zx was introduced to denote the set of all finite 
partitions of the alphabet X into the Borel sets. If £ <= $0X is a finite partition of the 
space X1, 

Txt = {TxC:Ce{}, iel. 

Clearly, for £ e Zx, 

(10-3) V V ' K k i =[C]o.n-
j' = o 

The following property of the partially ordered set (Zx, >•) will be frequently used. 
Let £, £ e Zx. Then £ v £ e Z x and £ v £ >- £, £ v £ >- £, respectively. Hence Zx is 
a directed set by means of the relation >-. 

Now we shall introduce a general schema of the induction of the finite alphabet 
sources using the finite partitions of the alphabet. This way will be fixed throughout 
the whole paper. 

Let £ e Zx. The notation £ = {Ci, . . -, Ck} will mean that 

(1) card (£) = k , 

(2) the elements of C are numbered in the following fixed one-to-one manner. 
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Let {xt, x2, ...} be a countable dense set in X. Let r e Z^ with card (£) = fe. Let 

C! be that C e f for which xye C , 

«! = min {k : xk e X — CJ , 

(10.4) C2 be that C e £ for which xai e C , 

a2 = min {k : xk e X - (Cj u C2), 

Q = Z - u { C , : ; = 1, ...,k- 1} . 

Given £ = {Ci, • • • , Q } e Z x we shall define the mapping T{ :N
J -» {1, . . . , fe}r 

by the property that 

(10.5) (T{Z), = j if z, £ Cj for z e X J , i e / . 

Since x^xs4k <= JJ/X> t n e mapping is measurable. Hence given a stationary source, 
i.e. a finitely additive shift-invariant probability /z on the field s/x the notation 
/ITC

-1 makes sense. Clearly 

/ iT-({l, . . . ,fe}0 = l . 

Thus for any £,eZx the induced measure ^T?~
 J is a cr-additive probability on s$k. 

We shall denote by pc its unique extension to the a-field J% = a{stfk). Clearly 
(/rrr1) Tk~* = /JT?

_1. The ergodicity properties are related in the following 

Lemma 10.2. The source \.i e M(ss?x) is indecomposable if and only if for every 
C e Zx the finite alphabet stationary source /I? is ergodic with respect to the trans
formation TcardK). 

In one direction the p roof is trivial because of the coincidence of the concepts 
of the indecomposability and of the ergodicity for cr-additive probabilities. The proof 
in the opposite direction follows using the method of the proof of Proposition 7.4. 

PART III: RATES ASSOCIATED WITH A SOURCE 

The coding theorem was established in [40] and [41] (cf. also Theorem 2.2' or 
Theorem 2.2 of the present paper). The aim of this part is to study the quantities 
called the entropy and the asymptotic rates, respectively, in a more general setup, 
i.e. for finitely additive sources with an abstract alphabet X. This means that the 
symbol X will denote an uncountable separable metric space. The basic notions are 
modified. For the special case X = N they will be shown to give the original quan-
tites. Hence our approach constitues an alternative point of view concerning the 
entropy and the asymptotic rates, respectively. 
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11. The Notion of the Entropy Rate 

Let X = N. Let \i denote a ff-additive T-invariant probability measure on the c-field 
& = o(s£). The relation (4.1) can be rewritten in the form 

(HA) H(fi)= - l i m i £ A<[x]log^x] 
n-»ooH xeN" 

(cf. (1.3) and (1.4)). Here the symbol log means log2 and we shall adopt the usual 
convention 0 . log 0 = 0. As mentioned earlier, the decisive role plays the family 

{[x]:xeN"} 

being the n-th Cartesian power of a generator. Since for an uncountable metric space 
this fact fails to hold, the relation (HA) cannot be used to define the entropy rate. 
Even for X = N it is impossible to use the relation (HA) for finitely additive pro
babilities on stf, because the above family is not finite. Hence we are forced to modify 
the concept of the entropy rate. 

Let CeZx (cf. Section 10). Then define 

(11.2) H(n,()= - l i m 1 E fi[E]Un log M[£] i > n 
n-»oo n Ee?" 

where \i is any T^-invariant finitely additive probability on the field stfx of all finite-
dimensional cylinders in X1'. Since n = ^Tx

r, we have n[E]in = fi[E] (cf. (1.3)), 
thus the right-hand side of (H.2) does not depend on j ' eTThe entropy rate H(fi) 
is then defined as the supremum 

(11.3) H(ix) = sup {H(n,Q:t;eZx}. 

Note that by (10.3) we have 

H(H, C) = - lim - £>(£) log KE) > 
n-»oo n 

where the summation is taken over all sets E belonging to 
n - l 

the finite family V TrJ[C]o i- This fact together with the elementary properties 
y = o 

of the finite partitions as stated in Lemma 10.1 show that H(fi) is nothing but Sinaj's 
modification of the concept of entropy of the automorphism Tx (cf. [35]). 

The entropy rate of a finitely additive source can assume any value from the interval 
[0, oo] (cf. also Remark 12.2 below). The following two examples illustrate the 
extremal cases. 

Example 11.1. Let 3F denote the ultrafilter in %(N) containing the filter of all 
complements of finite subsets of the set N. Let fi be the pure charge on Ŝ(JV) defined 
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by the properties that 

' [0 if £ j t f . 

Let fi denote the discrete memoryless source uniquely determined by the pure charge 
/i, i.e. 

fi = FI-"<; vi = t* f o r ie[• 
iel 

(The infinite-dimensional product of finitely additive probabilities exists and it is 
again a finitely additive probability [8].) Clearly, fi(E) e {0,1} for all E e A. Hence, 
for any £, C e Z, 

//(/Z, C) = H(C) = - S /i(E) log ,.(£) = 0 , 
Be? 

The left-hand side equality follows from the fact that fi is a memoryless source. 
Finally, 

H(fi) = sup H(fi, C) = 0 . 
?eZ 

Example 11.2. Let ^ = P(hz, P) be a stationary Markov source (cf. Section 5). 
We shall show that H(n) = oo by showing that for any given positive integer k there 
is a finite partition t,k of the set N such that 

H(fi, Q = log k . 

Let keN be given. Consider the first k2 positive integers and divide them into k 
disjoint classes constituted by the different rows of the following schema: 

1 2 4 6 ... 2k - 2 

3 2fc 2H12H3 . . . 

5 2k + 2 

7 2k + 4 ; ; 

; ; ... k2 ~3 k2 -2 

2k- I ... k2 - 1 k2 . 

Then continue in the same way with the subsequent k2 positive integers. The juxta
position of the (infinitely many) subsequent partitions yields an infinite schema 
with exactly k rows. The rows are identified with the new states,' say Slt S2, ..., Sk. 
Now 

card (m : 1 < m < n, m e S,} 
hm i = = 'f - 1 
«-><» card j m : l i m | ) i , f f l 6 Sj] 
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for all pairs (i, j), hence 

q. = q(St) = 1/fc; i = 1,2, ...,k 

(cf. also Proposition 5.3). From the construction of the partition it follows that the 
one-step transition probability matrix Q of the collapsed process is 

/1/fc 1/fc . . . 1/fc 

Q = : 
\i/fc i/fc . . . i/fc 

Therefore the collapsed process is an ergodic Markov chain (cf. Proposition 5.3 and 
Lemma 10.2). A well-known result concerning the entropy rate of the ergodic Markov 
chains gives 

H(^,Ck) = iqiH(qil,...,qik) = \ogk 
i= l 

(cf. [2]). Consequently, 

H(n) = sup H(n, C) ^ sup H(n, Q = co . 

12. The Integral Representation of the Entropy Rate 

The results of this Section are contained in the author's paper [37]. Here we shall 
give only the formulation of the main result and several comments concerning its 
proof. Note that the result and the proof in [37] were given in the case X = N. 
However, they can be transmitted to the general case of a separable metric space X 
without any effort. 

Theorem 12.1. The entropy rate H(pi) of a finitely additive Tx-invariant probability 
ju defined on the field s#x can be represented by an integral in the form 

(12.1) # ( / * ) = [ H(v)p{dv). 
jE(^x) 

(cf. Theorem 7.3). 
In [37] it was proved the relation 

(12.2) H(fi,)= f H^)(L(dv), CeZ x 

JE(tfx) 

by means of Theorem 7.3. The remaining part of the proof was devoted to the 
justification of a general form of the limit theorem concerning with nets instead 
of the sequences. The direct method used in [37] can be replaced by the following 
considerations. 
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1. H(/x) = oo. Then the monotone net {H(fi-)}ieZx has no upper bound. By (12.2), 
the monotone net 

{ ľ II(vc) /ł(dv)l 
UE(JX) JCe2 

has no upper bound. Consequently, the monotone net {#(vc)}C e Z x, with /.-probability 
positive, has no upper bound. Let the symbol limZ x denote the limit of a net indexed 
by the elements of the directed set Zx. Then 

and 

H 0 ) = sup Hfa) = limZ x Hfa) 
&Zx 

limZ x Я(vc) = sup Я(v;) = Я(v) = x. 
ÇeZx 

with positive /.-probability. Hence 

limZx I if(vc)/.(dv) = x . 
JE(S/X) 

Consequently 

limZx H(j$ = limZx f H(v:J fi(dv) - f limZx tf (v{) /.(dv), 
JE(J.'X) JE(J/X) 

both sides being infinite. Thus the relation (12.1) follows in this case. 

2. Let H(n) = H < co. Then the monotone increasing net {H(fi;)}ieZx is bounded 
from above by the constant H. Let sf denote the field of subsets of Zx consisting 
of all initial segments with respect to the relation > and their complements. Let 

, . _ f 1 if B is the complement of an initial segment, 

(0 if B is an initial segment; Be si . 

Then 

[ xc p(dC) = lim2x xc 

Jzx 

for any convergent net {xc}{eZx or real numbers (cf. Proposition 3.3 and its proof). 
Hence, it suffices to prove the following Fubini theorem-like relation 

f r f H(V-C) /í(dv)i p(do = f r r //(vc) p(dc)i A(d 
JZXLJE(S*X) J JE(^X)LJZX J 

v). 

The last relation follows immediately from a general form of the Fubini theorem 
for finitely additive set functions [24]. 
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Remark 12.2. Let {af} be any sequence such that 

(a) «, = 0 , f a, = 1 , 
i = l 

(b) ff({ajr=i) = - S a,- log a, < oo . 
i = l 

Let {/<('>}r=i be any sequence of stationary a-additive sources, all with the same at 

most countable alphabet X. 

Let 

fi0'i(E) - n«>tE] , Ee®(X") 

(cf. (1.3)). Let ff(/,o,«) denote the entropy of the probability distribution ft0^„ on 
m(Xn) = <P(X"). Then we have 

ff(y>) = lim -ff(/io°n)-

The assumption (b) together with the latter relation and the inequalities 

| « , ff«>) £H(l «AV < i « , ff«>„) + -*({««}r- i) 
i = l i = l i = l 

yield the relation 

(i2.3) ff(w°) = i«.ff(y°). 
i = l i = l 

This fact is well-known. Now let {ju('>}r=i be any sequence of the finitely additive 
sources, all defined on the same field 4X . Let C e Zx . We shall set 

IU/+ 0 = - 2>(«) log /<*), £ e W [ C ] 0 , - . 
y=o 

Then we have the inequalities 

£ a,. ff,//'>, C) = ff„( f **«, C) <. J a, ff„(/'>, C) + ff({«,}r= i) • 
i = l i = l i = l 

Hence 

£ a, ff(//'->, C) = ff( f; a^'>, C) = £ «,• I!(^(0, C) • 
« = i i = i i = i 

Consequently, for any C e Zx , 

Z«,ff(Ac)-=H(£«^'>,c). 
i = l i = l 
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But this in turn implies that the relation (12.3) takes place even in this general setup. 
This fact can be used to obtain finitely additive sources with any nonnegative value 
of the entropy rate. Indeed, let us consider the pure charge of Example 11.1. Given 
any a e (0, 1) and given any h e [0, oo] let us take a discrete memoryless c-additive 
source ;ti(1) with H(fxil)) = hja. Denoting the pure charge by /i ( 2 ), we have 

H(a^
l) + (1 - a)^2)) = aH(/i ( 1 )) + (l - a) H ( / 2 ) ) = h . 

13. A Further Property of the Entropy 

The construction of the associated a-additive Baire probability measure to any 
given finitely additive probability, especially to any given finitely additive information 
source leads to the seemingly evident fact that there is no need to study finitely addi
tive probabilities. This opinion is supported also by the result of this section. 

We shall employ the notations used in Section 8. Let \i e M+(m, T). The entropy 
in the sense of Sinaj [35] is the supremum 

H(џ) = sup Г_ i i m - JГџ(E) log џ(E)]. 

B - 1 

Here, the sum is taken over the elements E of the finite partition V T~% C and the 
> = o 

supremum is taken over all finite partitions £ such that J c # . The corresponding 
Baire probability measure si denoted by Z[i and its entropy by H(Z/.i). 

Proposition 13.1. For any \i e M\(in, T) we have 

(13.1) H(v) = H(Zv). 

The c-field £f in the corresponding compact Hausdorff space S is generated by the 
field si of all clopen sets in 5. As well-known, 

sup H(Z[i, () = sup H(Z/x, £) . 

Using this equality and the construction of Z\i as given in Section 8 it is easy to 
obtain (13.1). 

Remark 13.2. The representation of the finitely additive probabilities by means 
of the space L%(m) has one very serious disadvantage. The space Lx(m) is not separ
able, hence the corresponding space C(S) is not separable. This means that the 
compact space 5 itself cannot be metrizable (cf. e.g. [8]). 
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Thus using the C*(S) representation of L*x(m) we obtain better properties of the set 
functions (namely the a-additivity), but, on the other hand, we loose the good 
properties of the basic space. Especially, when considering the metric space X1 

which is a Lebesgue space [32], the corresponding space S is not a Lebesgue space. 
Indeed, the c-field S? is not more countably generated, hence the approximation 
arguments (cf. Theorem 4.7) fail to hold. 

14. The Asymptotic Rate 

Let n e M(stfx), let £ e Zx. Then we shall set 

(14.1) (/.:)„(£) = /.;[£],.,„ for £ c { l , . . „ card (()}", n = 1, 2, . . . 

(cf. Section 10 for the symbol /<:). Since \i = fiT^1, the relation (14.l) holds indepen
dently of which iel was chosen. In accordance with (2.3) we shall define the n-di-
mensional e-length of the source /2C, in symbols L„(e, /Zc), by the relation 

(14.2) L„(e, /Zj) = min {card (E) : E c {l, . . . , card (£)}", 

(ZIC)„(E) > 1 - e} ; 0 < e < 1 . 

The coding Theorem 2.2 yields the quantity 

(14.3) V(/7C) = lim lim - log L„(e, j$ . 
£ - 0 n^oo n 

In accordance with the remark finishing Section 4 we shall study the properties 
of the quantity 

(14.4) V(n) = sup Vfo), 
?sZx 

which will be called the asymptotic rate of the source \i. Let us denote 

F(/*c) = lim lim sup - log L„(e, Z7;) , 
£ - 0 n n 

V(/Zc) = lim lim inf - log L„(s, /Ic). 
£^0 n n 

We shall make use of the following auxiliary quantities: 

(14.5) V(^) = sup(/Zc), V(/.{) = suPV(/Zc). 
SeZx CsZx 

Let us note that for invariant p we have V(/7C) = V(/J;) for all £ e Zx (cf. [40]), hence 

(14.6) V(n) = Y(» = F ( » , ii e M(s/X). 
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15. Basic Lemmas on the Asymptotic Rate 

We proceed to the main results on the asymptotic rate by proving first two basic 
lemmas, which are the counterparts of Lemmas I and II in [41]. 

Lemma 15.1. If /t e M(sJx), if c is a finite real number, then the assumption that 

(15.1) /2{v : v e E{J4X) , H(v) < c} = 1 

implies the inequality 

(15.2) V(n) < c . 

Proof. 1. First of all we have to show that the set in (15.1) is measurable with respect 
to the (T-field Jf"[E(jafA-)] (cf. (6.2)). It follows immediately from the definition 
of H(v, C) that it is a j T f E ^ ^ - m e a s u r a b l e function of the variable v on E(stfx). 
Now 

H(v) = supZx H(v, C) = limZx H(v, 0 . 

If H(v) = oo then given neN there is a partition C„ e Zx such that H(v, C„) ^ n-
Clearly, there are infinitely many such C„'s because of the inequality 

H(v, C) = log card (C) . 

Hence H(v) = lim H(v, Q. If H(v) < oo then the set {H(v, Q : C e Zx} is bounded 

from above by H(v); H(V) being exactly the least upper bound. Hence it is possible 
to find a sequence {/i„} c {H(v, C) : ^eZx} converging to H(v). Hence H(.) is a 
3f[EOs/^j-measurable function of the variable v on E(s/X). 

2. We shall show that for the set function satisfying the assumptions of the lemma 
the equalities 

(15.3) /ic{z : z e Rc, H(nz) % c) - 1 , ^Zx 

take place. For the sake of simplicity in notations we have used Rc as an abbreviation 
for Rcard(o. the set of all regular points in the space {1, . . . , card (C)}1 (cf. Section 1). 
Using Lemma 4.4 we have 

(15.4) pc{z :zeRr, H(^) £ c} = ! ^{z : H(n,) < c} f^dx) = 
JR( 

- [ r [ ZC.IHU.WOG') M ^ ) I Mdx) • 
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Using the idea developed in detail in [37] we conclude that the right-hand side 
of (15.4) equals the integral 

(15-5) j ^ [Jz{- !H(.. , ac,0 ')v t<dy)l/ .(dv). 

The assumption (15A) implies 

(15.6) fi{v : v e E(s/X), ff(v.) < c} = 1 , CeZx. 

Let A = {v : v e E(stfx), #(vc) < c}. The relation (15.6) implies that the integration 
domain in the outer integral in (15.5) can be replaced by the set A, thus the integral 
(15.5) equals the following one 

(15-7) £ [JX(-.HO..*«)G0 vc(dy)]/.(dv). 

But for each v e A, v{{z : H(^) <> c} = 1 (cf. [37]). Combining (15.4) —(15.7) 
together with the latter equality we obtain (15.3). Henceforth, for any C e Zx, Lemma I 
of [41] applies to the source /7?: 

lim sup - log L„(e, /Zc) < c for 0 < e < 1 , C 6 zx • 

Thus 

lim lim sup - log L„(e, v£) ž c for ţєZx, 

V(j$£c, CeZx. 

The theorem follows using these inequalities both with (14.5). 

Lemma 15.2. If /. € M(s?x) and if c is a finite real number, then the assumption 
that 

(15.8) fi{v : v e E(J*X), H(V) £ c} = 1 

implies the inequality 

(15.9) V(n) ^ c . 

Proof. First we shall use the fact that 

sup H(fi, C) - limZx H(n, C) (cf. [37]) . 
ieZx 
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Using the monotonicity of the net {H(n, C)}reZx
 w e obtain the following statement: 

V<5 > 0 3£0 e Zx V£ >- £0 , £ e Zx , 

c - 6 < H(vr) < H(v). 

It was proved in [37] that for all £ e Zx we have 

v;{z : r E Rr, Hfa) = //(v;)} = 1 . 

Therefore for £ >- £0 we have 

vc{z : z e R;, H(iiz) > c - <5} = 1 . 

Now 

fir{z : z e Rr, H(n:) > c - 3} = | v;{r : z G R;, H(^2) > c - 3} fi(dv) = 
JEts/x) 

= f v;{z : z e R-, i/(/ir) > c - <5} //(dv), 

where A = {v : v e E( J / X )> H(V) ^ c}. For each v e A we have W(v;) > c - <5 for 
any <5 > 0 and £ >- £0(<5), thus 

V<5 > 0 3£0 G Zx V£ >- Co, £ e Zx 

/7;{z : : e R , H(n:) > e - 6} = I . 

Applying Lemma II of [41] with /< = /7;, c = c — <5 we conclude that 

V(p;) > c - 3 for £ >- £0(<5). 

Let us assume, contrary to the conclusion of the lemma, that 

sup V(p[) < c . 
'cZx 

Then there is a finite real number K such that 

sup V(pr) < K < c . 

Take <5 = c - K < 0. Then there is £0(<5) G ZX such that for all £ e Zx, C> £0(<5)> 

V(/i;) > c - 3 = K. 

Hence we obtain 

K<V(Pr)< SUP V(Pr)<K, 
CEZX 

a contradiction. The proof of the lemma is complete. 
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The main theorem concerning the asymptotic rate deals with its connection with 
the entropy rates of the ergodic components of a stationary source given. For this 
purpose, let us recall the definition of the essential supremum. Let(f2, !F, \i) be a pro
bability space. Given any measurable function / on Q, we shall define its essential 
supremum as the number 

ess . sup/(to) = inf {t : fi{a> :J(co) ^ ( } = 1} . 
<oefl[,0 

Theorem 15.3. The asymptotic rate of a source \x e M(s/X) equals the essential 
supremum of the entropy rates of its ergodic components; in symbols 

V(fi) = ess sup H(v). 
veE(s/x)m 

16. The Proof: via Ergodic Theoy 

The following proof of the Theorem 15.3 will use exclusively the tools within the 
ergodic theory of invariant set functions, as described in Section 4 and Part II. In the 
Appendix another proof will be given, which will provide an intuitive meaning for 
the asymptotic rate. This proof will use the methods of the information transmis
sion theory. 

1. Let us set h = ess. sup H(v). Since H(v) is a measurable function of the variable 
v on E(s/X), the notion of the essential supremum makes sense. Let us assume 
V(fi) > h. Then there is a finite real number c such that V(p) > c > h. This means 
that 

(16.1) inf {t : fi{v : H(v) g ( } = l } < c . 

Indeed, if t S c then {v : H(v) ^ t} <= {v : H(v) g c}, therefore 

fl{v : H(v) ^ c} ^ fi{v : H(v) ^ t} . 

Taking t < c such that fi{v : H(v) 5£ t} = 1 we conclude that 

(16.2) fl{v : v 6 E(s/X), H(v) < c] = 1 . 

(Clearly, by (16.1), there is at least one ( with the required properties.) Now Lemma 
15.1 applies because of (16.2), consequently V(n) ^ c. Since V(p) = V(fi) = V(n), 
we have 

F(^) = V(^) S c < V(n) 

a contradiction. Hence the converse inequality V(p) <; h must always take place. 
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2. Let us assume that the strict inequality V(n) < h is valid. Then we can choose 
a finite real number c such that the inequalities V(//) < c < h are valid. This means 
that 

(16.3) inf {t : fl{v : H(v) < t} = 1} > c . 

Let us denote by E(c) the set 

{v : veE(s^x), H(v) ^ c} . 

If /i(E(c)) = 0 then fi{v : H(v) < c} = 1. But the latter fact contradicts (16.3), since 
every t satisfying the relation jl{v : H(v) <. t] = 1 has to satisfy the inequality t > c. 
Consequently, fi(E(c)) = a > 0. 

Let us consider the case a = 1. Then 

fi{v : H(v) > c} = 1 , 

hence by Lemma 15.2 we obtain the contradictory inequalities 

V(^) = V(^) ^ c > V(p) . 

The case 0 < a < 1 will be reduced to the former one. Let 0 < a < 1. Define the 
probability measures ft', fl" on E(s/X) by the properties that 

(l'(E) = - fl(E n E(c)), 
a 

d"(E) = — L - [£(£) - a/r(E)], Eejf[E(^xj] . 
1 — a 

Then 

fl = a/}' + (1 - a) /T . 

Now by Theorem 7.3 there are stationary sources /.', /»" such that fx = 
= a// + (1 - a) /i". Indeed, let 

li'(A)-( v(A)fl'(dv), Aeséx; 
JE(^X) 

the source p" being defined analogously by means of the measure jl". Using twice 
the Extension Theorem for measures we conclude that 

/Zc = a/tj + (1 - a) jl'l, £e Zx 

Now p!{v : H(v) > c} = a - 1 £(£(c)) = 1. Hence V(n') >= c by Lemma 15.2. Now 

50 



for every £ e Zx we have the inequality 

lim inf - log L„(e, ft) > lim inf - log L„(eja, ft) 
n n n n 

valid for all 0 < £ < a (cf. [41], p. 144). Hence 

Y_(fid^Y(fi[), leZx. 

This finally gives the desired contradiction: 

V(fi) = V(fi) ^ c > V(n) . 

The theorem is proved. 

17. The Basic Relations between the Rates 

In order not to confuse the notations, we shall use the symbols Jf (p.) and V(ii) 
for the entropy rate and the asymptotic rate, respectively, as they were defined 
in [41]. 

Theorem 17.1. Let fj. e M(srfx). Then V(ft) >, H(/.t.). If, moreover, p. is an ergodic 
source, then V(/i) = H(/<). 

Proof. Let fie M(s/X). Then the inequality stated in the theorem is a corollary 
both to Theorems 12.1 and 15.3. Indeed, 

H(ji) = I H(v) ft(dv) < ess. sup H(v) = V(n). 
]E(^X) veE(sfx)m 

Let C e Zx. Then V(ft) = "T(ft), by the very definition of V(ft). If // e E(s4x), then 
fit is an ergodic finite-alphabet source (cf. Lemma 10.2). Consequently, î ~(ft) = 
J^(ft) (cf. [40], Theorem 9.1). But for finite alphabet sources the concepts of the 
entropy rate coincide, hence .?f(ft) = tf(ft). The theorem is proved. 

Remark 17.2. Theorem 9.1 used in the proof of the preceeding theorem actually 
states more than was really used: 

lim - log Ln(s, ft) = r(fi() = (jf / . . ) , C e Zx . 

Hence we have 

(17.1) sup lim - log L„(s, fi,) = V(n) = H(n) , 
CeZx n n 

51 



the relation being valid for any ergodic source \i. The relation (17.1) motivates the 

notion of the strong stability, introduced and examined in the next section. 

Example 17.3. Let us consider the decomposable stochastic matrix 

/1/2 1/2 0 0 

A = 1/2 1/2 0 0 

0 0 1/100 99/100 

\0 0 1/100 99/100/ 

Denote by {Y„} the corresponding Markov chain. The indecomposable submatrices 

of the matrix A are denoted by the symbols A ( 1 ) and A ( 2 ), respectively, i.e. 

A(1) = (/]/2 ^ A(2) - Nm 9 9 / l ° ^ ]/2 Щ A(2) = f1/100 " І Ш ] 
1/2 1/2/' V 1 / 1 0 0 99/100/ 

The Markov chains {X^} and {X(2)} determined by the matrices A ( 1 ) and A ( 2 ) 

are ergodic. Denote the absolute stationary distribution by p ( 1 ) and p ( 2 ) , respectively. 

Then (cf. [2]) 

H({X(r}) = p ( l ) #(1/2, 1/2) + p ( 1 ) tf(l/2, 1/2) = 1, 

H({X(2)}) = p(2) H(l/100, 99/100) + p(

2

2) H(l/100, 99/100) = 

= #(1/100, 99/100) ~ 0-06 . 

Since p ( 1 ) and p ( 2 ) are the absolute stationary distributions, any probability 4-vector 

p = («p ( 1 ), ap ( 1 ) , (V-a)p(2), (i - a)p(2)) 

with 0 < a < 1 is the absolute stationary distribution of the Markov chain {Y„} 

corresponding to the original transition probability matrix A. Now 

H({Yn}) = aH({X(

n"}) + (l-a)H({X(2)}). 

Hence, for 0 < a < 1, H({Y„}) ranges within the interval 

0-06 < H({Yn}) < 1 

(cf. (12.3)). On the other hand (cf. Theorem 15.3), we have 

V({Y„}) = max[H({X ( 1 ) }), H({X(

n

2)})] = 1 

regardless of what value of a was chosen. 
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18. Strongly Stable Sources 

The proof of the simplest form of the coding theorem (cf. Theorem 2.1) is based 
on the following statement: 

Lemma 18.1. Let n„ be the (apriori) probability of the observed sequence x ( 1 ) , . . . 
. . . , xM of independent trials. Then 

Vi; > 0 V<5 > 0 3n0 Vn > n0 

(18.1) P 11 - - log TT„ - H\ < rX > 1 - <5. 

A generalization of this theorem for ergodic sources is just the well-known McMillan's 
theorem [23]. These statements show that in a sequence of independent symbols (or 
in an ergodic sequence) the quantity of information per symbol is asymptotically 
stable. This means that the average quantity of information is, with probability as 
close to unity as wanted, nearly a constant, if n is large enough. 

The -following concept of stability makes sense for arbitrary, even nonstationary 
sources. Let fi be any finitely additive probability on the field s/x. For £ e Zx, we 
shall set 

(18.2) Lit„(e, n, 0 = min {card (£) : tj c £», £ /i[Z)],.,„ > 1 - e} 

for iel, neN, 0 < e < 1, respectively. The source fi is said to be strongly stable 
provided there is a nonnegative (possibly infinite) real number H such that for all 
iel.O < s < 1, 

(18.3) sup lim - log !,-,„(£, fi, £) = H . 
?eZx n-oo 11 

The relation (17.1) together with Theorem 17.1 imply that an ergodic source is 
strongly stable and the corresponding number H equals its entropy rate. For statio
nary sources, the following statement is valid: 

Theorem 18.2. Let n e M(stfx). Then the source fi is strongly stable if and only 
if H(n) = V(fi). 

Proof. 1. Let /i be a strongly stable source. By Theorem 17.1, V(fi) ^ H(n) for 
any stationary source fi. Let the strict inequality V(/i) > H(fi) takes place with 
positive probability, i.e. let 

fi{v : v e E(s/X) , H(v) < V(v)} > 0 . 
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Then there is a finite real number c such that c < V(p) and 

fi{v :ve E(s/X), H(v) < c} = I - a > 0 . 

Moreover, a > 0. Indeed, if a = 0, then 

fl{v:veE(sfx), H(v) < c} = 1. 

Hence we should have the contradictory inequality V(p) < c by Lemma 15.1. 
Repeating for 0 < a < 1 the argument used in the proof of Theorem 15.3 we find 
a source p, e M(stfx) such that 

Urn - log L„(£, JX, C) _ V(ni) S c < V(p), (eZx. 
n n 

The latter inequalities are valid independently of what e was chosen, hence V(p) <. 
= ^(Mi) = c < V(p), a contradiction. Thus we have obtained the relation 

(18.4) fi{v : v e E(sSx), H(v) = V(M)} = 1 . 

On the other hand, 

(18.5) H(n) = f H(v) fi(dv). 
J E(tfx) 

From (18.4) and (18.5) we conclude that 

H(») = f H(v) fi(dv) = f V(M) Al(dv) = VO.) / i ( E M ) = V0<) • 

2. Conversely, let V(^) = H(p). Since V(v) = H(v) for all ergodic sources v, 
we obtain the following equality: 

ess. sup V(v) = I V(v) fi(dv). 
ve£(„x)[£] JE^X) 

This in turn implies 

(18.6) p{v:veE(sJx), V(v) = V(p)} = 1. 

Actually, if there was an 0 < a < 1 with the property fi{v : v e E(stfx), V(v) = 
= V(^)} = a, then we should have 

H(p) = (1 - a) H(n') + a H(p") < V(fi) 

(for the symbols p! and p" cf. the proof of Theorem 15.3). Using Lemma 15.2 and 
(18.6) we obtain 

lim inf - log Ln(s, p, £) ^ V(p), £eZx. 
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On the other hand 

V(џ) ï: lim sup - log L„(є, џ, f) 

for all C E Zx and 0 < e < 1, respectively. Hence the strong stability of the source ji 
follows with H = H(n) = V(fi). 

There arises a natural question whether there are nontrivial stationary nonergodic 
sources possessing the property of strong stability. The affirmative answer is given 
by the following example: 

Example 18.3. Let us consider the stochastic matrix 

/2/3 1/3 0 0 
A = 1/4 3/4 0 0 

0 0 3/4 1/4 
\ 0 0 1/3 2/3/ . 

The indecomposable submatrices 

Ac) = p/3 1/3] A u , H/4 1/4 
L1/4 3/4J' Ll/3 2/3j 

determine the ergodic Markov chains. The absolute stationary distribution p ( l )(i = 
= 1,2) of the ergodic matrices A ( 1 ) and A ( 2 ) are given by 

p(1) = (3/7,4/7), p<2) = (4/7,3/7). 

Note that for any a, 0 <. a <. 1, the probability 4-vector 

p = (3a/7, 4a/7, 4(1 - a)/7, 3(1 - a)/7) 

is the absolute stationary distribution corresponding to the matrix A. The entropy 
rates of the ergodic subchains are 

H(t) = 3/7 . H(2/3, 1/3) + 4/7 . H(lj4, 3/4), 

H(2) = 4/7 . #(1/4, 3/4) + 3/7 . tf(2/3, 1/3) = H(>} = H . 

Hence the entropy rate of the Markov source corresponding to the original matrix A, 
is given by the relation 

H(A) = atf ( 1 ) + (1 - a) tf(2) = H . 

On the other hand 

V(A) = max (H«\ Hi2>) = H . 
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Consequently, H(A) = V(A) = H, i.e. the Markov source determined by the matrix 
A is strongly stable. On the other hand, the matrix A is decomposable, i.e. the state 
space consists of two essential sets of states. Thus the Markov chain cannot be ergodic. 

19. On a-Additive Sources with a Countable Alphabet. 

In this section we shall return to the original setting of [40] and [41]. Thus we are 
given the alphabet X = N. The original method of obtaining the examined quantities 
was performed in two steps: 

Step 1: The proof of a general form of McMillan's theorem for countably infinite 
alphabets (cf. Theorem 4.6) 

Step 2: Using this form of McMillan's theorem the basic lemmas are proved 
yielding the necessary tools for the proof of the coding theorem. 

Our method differs from the original one. It can be described also in two steps: 

Step 1: Using finite partitions the problem of the convenient form of McMillan's 
theorem is reduced to the finite alphabet sources. 

Step 2: Consists merely of the single definition by means of a supremalization 
process. 

The second method seems to be far simpler. However, the proof of the statement 
that both methods provide the same quantities, needs a nontrivial statement we 
shall start with. 

Let us consider the entropy rate 3V(fi) as was defined by (4.1). A necessary and 
sufficient condition for the fmiteness of ^(p) is the finiteness of the alphabet en
tropy, i.e. the condition 

(19.1) - Z H A k i l o g ^ M o , ! < oo. 
k=l 

As well-known, in this case Jt?(n) = H(p) (cf. [32]). However, three are also well-
known examples in which ^(n) = co and H(p) is finite [32]. The sources satisfying 
the condition H(p) = ffl(\i) possess the following extended approximation property: 

Theorem 19.1. Let / i b e a a-additive source satisfying the condition 3% (fi) = H(p) 
Let the sequence {Tk}k=1 of mappings be defined by the relation (4.10). Then the 
sequence ^(HT^ ^monotonically increases to the asymptotic rate^(/j) of the source p.. 

Proof. The monotonicity property of the sequence f (/rrr/1) can be easily verified. 
Hence, it suffices to prove that 

(19.2) ^(/i) = s u p ^ K - 1 ) . 
k 
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Since (i is a-additive, we have 

fi =- \tiz n(6z) 

(cf. Lemma 4.4). Hence ([41], Theorem II) 

•f(n) = ess . sup 3>e(\it). 
zeRlrf 

Now 

j f (X) = iim^f(/izTr;1) 

(cf. Theorem 4.7). From the ergodic decomposition of the source n we obtain espe
cially 

thus 

Consequently 

џтl1 = í џfťф), fc-1,2, 

^ ( A Í ^ 1 ) = ess . sup Jť^Tť1) . 
zeRM 

f^(fi) = ess. sup Jf(^ z) = ess. sup [sup Jf(nzTk
 1 )] S: ess . sup 3ť(nzťk

 l) , 
zsKDO zeRCíO * ZÉR[, I ] 

•f(fi) = sup [ess . sup jr^T^1)] = sup f(jtTt
 ! ) . 

* zsR[^] ft 

Let us assume contrary to (19.2) that the inequality 

r(n)>supr(fiTk-
1) = v 

k 

takes place. From the definition of the essential supremum we conclude the existence 
of a positive 8 such that 

n{z : 5¥(\LZ) = V + 6} < 1 , 

i.e. 

/i(n{z : tffa;1) = K + « 5 } ) < 1 . 

Hence there is at least one k0 such that 

(19.3) n{z:3e(nzT-k
1) = V+d}<i. 
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On the other hand, 

ess. sup 3V(\iz%ll) = inf {tk : fi{z : Jfffi^1) <, tk} = 1} . 

This in turn implies that 

r(iix-k
l) ^ sup r(^xk

l) = V< V+ 3(k = 1, 2, . . . ) . 
k 

Hence given k there is tk (with tk < V + 8) such that 

4z:^(nzr;1)<tk} = l. 

Especially, for k = k0, there is tko < V + d such that 

(19-4) ii{z : X(p,x£) < tk0} = 1 . 

But the inequality tko < V + 5 yields a contradiction, by (19.3) and (19.4). The 
theorem is proved. 

As an immediate corollary we obtain an affirmative answer to the question posed 
at the beginning of this section: 

Theorem 19.2. Let fi be a stationary a-additive source with at most countable 
alphabet. If either 

(l) there is a natural number k such that 

»({l,...,k}')=l, 

or, (2) there is no such k, but the source satisfies the condition H(/j) = J^(n) (espe
cially the condition (19.1)), 
then F(X) = *r(n). 

Remark 19.3. The absence of the pointwise partitions of the alphabet, which can 
serve as a generator causes that for the general alphabet X the approximation theo
rems 4.7 and 19.1 fail to hold. It would be interesting to find some simple partitions 
generating the cr-field Fx, if there are any. 

PART IV. RATES ASSOCIATED WITH PAIRS OF SOURCES 

20. Statement of the Coding Problems 

Let us start with the general coding problem as introduced in Section 3. We shall 
consider the following special case. Let X = Ybe a given finite set. Let \x be a station
ary source with the alphabet X. Then define 

Kn
x\E„) = «[£„] , En <= X" 
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(cf. (1.3)). The parameters e will be independent on n, and e e (0, l). f f ) will be the 
identity mappings on X" onto itself for any e, n = 1,2, Finally, (Kn

X)(E„), e) e q> 
if and only if Kn

X)(En) > 1 - e. This means that we shall deal with the n-dimensional 
e-codes for fixed e, e e (0, 1). The criterion K„r)(E„) will be derived from another 
stationary source v with the same alphabet X (the properties of the source v will be 
specified later): 

Kir\E„) = X 4 ^ ' £" c *"( = Y") • 
xeE„ V[xj 

Our aim will be to derive the coding theorem for the quantity 

(20.1) Si = min [ £ ^ 1 : E„ <= X", /.[£„] > 1 - e 1 . 
[seE„ V[x] J 

A coding theorem together with its weak converse will be proved, i.e. the limit 

lim - log Sn 
n n 

will depend, in general, on e. Under the additional constraint that (x is ergodic, 
we shall obtain also a strong converse, i.e. the above limit will not depend on e. 

In general, the criterion Kn is not necessarily arising from a stochastic process. 
This means that instead of a consistent family {v„;neN} of finite-dimensional 
distribution of a process we can consider a family a = (a„)neN of finite measures 
(each a„ defined on the cr-field yS(X"), n = 1,2, . . . ) . We shall consider the following 
special family a = (an) with 

.„{*-} = m -xeX». 
v[x] 

The resulting quantity will be 

(20.2) S'n = min (v„(E„) : E„ c X", n„(E„) > 1 - e} . 

It is intuitively clear that the quantity just obtained can serve as a measure of discri
mination between the processes fi and v, respectively. The problem will be studied 
more in detail in the last part of the present paper. 

To motivate the choice of the two above given coding problems, let us recall some 
facts from [18]. Let X be a finite set, let p, q be two probability vectors on X (to 
avoid complications it is assumed that q is strictly positive on X). In [18] there was 
introduced the notion of inaccuracy following the formula 

(20.3) II(p,q)= -X>(*) log<Kx) . 
xeX 

Note that 

(20.4) H(p, q) = tf(p) + I(p, q) 
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where H(p) denotes the usual entropy of the probability vector p and l(p, q) is the 
well-known /-divergence [21]: 

(20.5) 7(p,q) = y > ( x ) l o g ^ . 
XEX q[x) 

These facts remain valid without changes for the discrete memoryless sources. The 
coding theorems for the quantities (20.1) and (20.2) will provide a generalization 
of the notions of inaccuracy and /-divergence to stochastic processes. 

21. The Z-Entropy and the tf-Rate 

We shall impose the following conditions upon the possible pairs (^i, v) of sources: 

(I) /x is a stationary source, i.e. /x e M((FX)\ 

(II) v is a stationary k-Markov source, positive on all elementary cylinders in the 
space X1, in symbols v e M(3FX; k); 

X being a common finite alphabet. The quantities S*„ defined by (20.1) and (20.2) 
were studied by Potschke [29] in case [i is ergodic. Note that the positivity of v can be 
replaced by the condition that fi„'s are absolutely continuous with respect to the 
corresponding v„'s. However, it is only an unessential difference. Therefore we shall 
prefer the presented form of the condition to avoid more complicated a.e. con
siderations. 

The markovian property is fairly more stringent. It is imposed due to the fact 
that a corresponding form of McMillan's theorem is needed for the proof of the 
coding theorems. A general form of McMillan's theorem under the markovian 
assumption was obtained by Shu-Teh C. Moy (Generalizations of Shannon - McMil
lan Theorem. Pacific J. Math. / / (1961), 705-714). Theorem 21.2 below is a special 
case of this general result. Recently Perez introduced a condition (actually a very 
strong condition) assuring the validity of McMillan's theorem for the generalized 
entropy without the markovian assumption (cf. e.g. Generalization of Chernoff's 
result on the asymptotic discernibility of two random processes. In: Progress in Sta
tistics (J. Gani, K. Sarkadi, and I. Vincze, Eds.) Vol. II., North-Holland, Amsterdam 
— London 1972, 619 — 632, and Asymptotic Discernability of Random Processes. 
In: Proceedings of the Prague Symposium on Asymptotic Statistics (J. Hajek, ed.), 
Prague 1973, Vol. II, 311 — 322). The related problems will be studied by the author 
in a separate paper. 

We define the K-entropy (called the B-entropy in [29] and [38]) of the pair (u, v) 
by the formula 

(21.1) K(fi, v) = - lim - flog v[Z l , . . . , z j ^(dz) 
" n j 
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(cf. (1.5) and (1-6)). Because of the invariance of the measures [i and v the limit 
in (21.1) always exists and condition (II) implies it is always finite. If we had used 
the formulation of (II) by means of the absolute continuity, the finiteness of the 
limit in (21.1) could be assured by means of some regularity conditions similar to 
that given by Bahadur (cf. [3] and the papers cited therein). The main properties 
of the K-entropy were studied in the author's paper [38]. Here we shall describe 
only the main ideas, in many aspects similar to that of [27] and [41]. 

Theorem 21.1. [29]. If the pair (ju, v) of sources satisfies the conditions (I) and (II) 
and if, moreover, [i is an ergodic source, then 

(21.2) Az-.zeX1, - l im - log v[z., . . . , - J - K(n, v ) | = 1 . 

Theorem 211 is nothing but a version of McMillan's theorem. The next limit 
theorem concerns with the I-entropy d(n, v) defined by the relation 

(21.3) d(n, v) = K(n, v) - H{fi). 

(cf. (4.1)). 

Theorem 21.2. [29], If the conditions of Theorem 21.1 are satisfied then the se
quence 

n v[zu . . . , z „ ] 

converges in probability (with respect to p) to the I-entropy d(u, v). 

Theorem 21.2 is weaker that Theorem 21.1, because it states only stochastic con
vergence. However, only this type of convergence is needed for the proof of the 
coding theorems (cf. e.g. the proofs of lemmas I and II in [41]). 

Since v is a fc-Markov source, we can define an #"x-measurable function g on X1 

by the relation 

g(z) = - log v([zft+1] | [z1; . . . , zkJ). 

The condition (II) implies that the function g is bouded, hence ^-integrable. Conse
quently, the individual ergodic theorem of Birkhoff applies for n and g. Accordingly, 
there is a /i-integrable Tx-invariant function cjv such that 

(21.4) lim-"J: g(n z) = gv(z) a.e. t\ji\, 
n n j = 0 

K(p,v)= ígdp= íí,díi 
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The first equality in (21.4) follows from the definitions of K(fi, v) and g making use 
of the markovian property of v (cf. [29]). Actually a stronger result was obtained 
in [29]: 

(21.5) - l im - log v[zu . . . , z„] = gv(z) a.e. z[fi] . 
n n 

In [38] it was proved the following important lemma: 

Lemma 21.3. The function gv(z) equals a.e. [/J.] the JC-entropy K(nz, v), where /xz 

is the ergodic component of any stationary source n; in symbols 

H{z : z e Rx, K(/xz, v) = gv(z)} - 1 ; p e M(*x). 

The first immediate corollary to the lemma is the theorem on the integral represen
tation of the K-entropy. 

Theorem 21.4 [38]. Let (n, v) be a pair of sources satisfying the conditions (I) 
and (II). Then 

(21.6) K(fi,v)= f K(nz,v)n(dz). 
J Rx 

Lemma 21.3 was the key step in deriving the desired generalizations of Theorem 
21.1 for stationary non-ergodic sources. 

Theorem 21.5 [38]. Let (ft, v) be a pair of sources satisfying the conditions (I) 
and (II). Then the sequence ( —l/«)log v[z1; . . . , z„] converges a.e. fi to the K-en-
tropy K(fiz, v); fiz being the ergodic component of the stationary source ft; in symbols 

fi ) z : z e Rx , — lim - log v[zx, . . . , z„] = K(fiz, v) I = 1 . 
{ » n J 

In accordance with (14.2) we shall denote the quantity S* defined in (201) by the 
symbol L„(e, ji, v). Note that if \x = v then 

L„(s, n, v) = min {card (E„) : En c X", p.[En] > 1 - e} = Ln(e, fi). 

The coding theorem together with its strong converse was obtained in [29] under 
the additional constraint that fi be ergodic: 

Theorem 21.6 [29]. Let(/J, v) be a pair of sources satisfying the conditions (I) and 
(II). Let fi be an ergodic source. Then 

(21.7) lim - log L„(e, (i, v) = K(n, v); 0 < e < l . 
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Now we shall prove a version of the coding theorem without the ergodicity assump
tion. The method will be similar to that given in [41] (cf. also [38] and the third 
part of the present paper). 

Lemma 21.7 [38]. Let (/i, v) be a pair of sources satisfying the conditions (I) and 
(II). If c is a finite real number, then the assumption that 

H{z:ze Rx, K(nz, v) < c} = 1 

implies the inequality 

lim sup - log L„(e, \i, v) — c for 0 < e < 1 . 
K n 

The dual version of Lemma 21.7 is the following 

Lemma 21.8 [38]. Under the assumptions of the preceeding lemma, the relation 

ix{z : z e Rx, K(nz, v) = c} = 1 

implies the inequality 

lim inf- log L„(e, \x, v) ^ c for 0 < e < 1 . 
n n 

Using these two lemmas together with some elementary properties of Ln(e, \x, v) 
derived in [38], the following theorem was proved: 

Theorem 21.9 [38]. Let the pair (\x, v) of sources satisfy the conditions (I) and (II). 
Then the inequality 

lim sup - log L„(ex, \i, v) < lim inf - log L„(e2, \i, v) 
n n n n 

holds for 0 < e2 < e1 < 1; consequently, the limit 

lim - log L„(e, fi, v) = Ve(^, v) 
« n 

exists except at most a countable set of numbers s. The function Vj^jx, v) monotoni-
cally increases for e -> 0 to a limit, which will be denoted by the symbol V(n, v) and 
called the asymptotic K-rate of the pair (n, v) of sources. 

The equivalent form of Theorem 21.9 is the following: 

Theorem 21.10. There exists one and only one nonnegative real-valued function 
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V on the set M(&x) x M(3FX; k) such that 

(1) VA > 0 VO < e < 1 3n0 Vn § n0 3E„ c X" 

[>„(£„) > 1 - e] et T £ ^ M < 2 " ^ > + ̂  
\_xeE„ V„{x} 

(2) VA > 0 30 < n < 1 VO < e g n 3n0 Vn ^ n0 V£„ <= X" 

/*„(£„) > 1 - e implies 

y A'nl*} > 2"£f(/'.v)-A] 
xєE„ V, •-{*} 

This means that given any /I there is an arbitrarily good n-dimensional code (i.e. 
a code with the probability of the erroneous decoding less than any e) with the pro
perty 

"log Z ^-<V(n,v) + X 
n xeE„ V„{X) 

provided n is sufficiently large, but on the other hand, there are no good n-dimensional 
codes for which 

ilogX ?M<V(n,v) 
n xeE„ V„{X\ 

provided n is sufficiently large. Thus Theorem 21.10 is a coding theorem (statement 
(1)) together with its weak converse (statement (2)). If /x is ergodic, we obtain also the 
strong converse. This theorem states actually a little bit more than the original 
theorem (cf. (21.7)): 

Corollary 21.11. If the conditions of Theorem 21.9 are satisfied and if, moreover, 
H is an ergodic source, then 

lim - log L„(e, /u, v) = V(jU, v) = K(fi, v) ; 0 < e < 1 . 
n n 

Using Lemmas 21.7 and 21.8 we can obtain similarly as in [41] the following 
theorem, connecting the quantities V(fi, v) and K(n, v) in the stationary non-ergodic 
case: 

Theorem 21.12. The asymptotic K-raXe V(fi, v) equals the essential supremum 

of the K-entropies K(fiz, v); nz being the ergodic component of the stationary source 

n; in symbols 

V(n, v) = ess sup K(fjz, v). 
zefixM 

64 



22. The Asymptotic /-Rate 

Throughout this section we shall assume that the pairs (ji, v) of sources satisfy 
the conditions (I) and (II) of Section 21. The aim is to prove a coding theorem 
for the quantity Sn defined by (20.2). Hence the family a = (a„)„eN will be defined 
by the properties 

a„{x} = fin{x}jv„{x} ; xeX" ; 

a„(E) = X < T „ { * } ; Ee^(X»). 
xeE 

Let En _ X" be an n-dimensional e-code. If for some x e En we would have n„{x} = 0, 
the corresponding term 0/0 in the sum 

xeE„ 

could be interpreted as 1, because we are interested only in the minimum of such 
sums. Moreover, if En is an e-code and x e E„ with n„{x} = 0, then E„ — {x} will 
remain an e-code. The quantity Sn will be denoted by the symbol I„(E, n, v), i.e. 

(22.1) In(є, џ, v) = min {v„(_„) : E„ c X", џn(En) > 1 - є} 

and called the n-dimensional I-divergence (at level e) for the pair (fi, v) of sources. 
The coding theorem and its strong converse were proved in [29] for fj. ergodic 

Theorem 22.1 [29]. Let the pair (pi, v) of sources satisfy the conditions (I) and (II). 
Let ji( be an ergodic source. Then 

(22.2) - l im - log I„(є, џ, v) = ă(џ, v) , 0 < є < 1 . 

(cf. 21.3)). 

First of all we shall generalize Theorem 21.2 and then we shall proceed to the proof 
of the coding theorem along the lines of the preceding section. 

Theorem 22.2. Let the pair (ji, v) of sources satisfy the conditions (I) and (II). 
Then 

(22.3) n[z:zeRx, lim - log ^ _ _ _ _ _ _ J = _(>., v)l = 1 . 
I » n v[z l 5 . . . , z „ ] J 

Indeed 

i i 0 g ^ z " - - - ' z ' j - d(„,, v) = - l o g ^ l ^ n l À _ K^ V) + HOi.) 
n v[z., . . . , z „ ] У[ZU . . . , z j 

1 
/£[»!. . . . , z J + H(/i.) - l o g v [ z 1 ; . . . , z „ ] ~iC(/la,v) 
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Theorem 4.6 applies to the first term on the right-hand side of the latter inequality. 
Hence, this term can be made arbitrarily small with probability 1 when choosing n 
large enough. Similarly, theorem 21.5 applies to the remaining term and this proves 
the theorem. 

Note that if \i is ergodic then the above theorem yields an improvement of Theo
rem 21.2. Namely, the stochastic convergence is replaced by the a.e. convergence. 

We can repeat word by word the proof of Theorem 22.1 as given in [29] just using 
now Theorem 22.2 instead of Theorem 21.2 and obtain 

Theorem 22.3. Let the pair (\i, v) of sources satisfy the conditions (I) and (II). Then 

(22.4) fi\z :z e Rx, - l i m - log/„(e, /i, v) = d(nz, v)i = 1 . 
[ n n j 

Now we shall prove the basic lemmas needed for the coding theorem. 

Lemma 22.4. Let the pair (/J, V) of sources satisfy the conditions (I) and (II). Let c 
be a finite real number. The assumption that 

H{z : z e Rx, d(n2, v) < c} = 1 

implies the inequality 

lim sup log In(e, fj.,v)\ — c, 0 

" L « J 
< є < 1. 

Proof. From the definition of In(s, n, v) we conclude there is a set Fn c X" such 
that 

H„(F„) > 1 - e, v„(F„) = J„(e, (i, v) 

(because there are only finitely many subsets of X" at all). Theorem 22.2 gives 

VO < e < 1 V<5 > 0 3n0 V„ >-_ n0 

n\z:zeRx,~ l o g ^ f r " " ^ j < d(u2, v) + 4 > 1 - e . â(џz, v) + <5І 
**......-J 

Let 

£(1) = { x : x e E r , ^ l <2" ( C +4. 
I vn{A j 

By the assumption we have 

^„(£(1)) > 1 - e . 

Now 

v„(E„) = v„(F„ n £ (1 )) = X v„{x} > 2~n(c+a> £ „̂{3c} > 2"" (c+a)(l - 2e). 
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When choosing n0 sufficiently large, we obtain the following statement: 

V<5 > 0 3n0 Vn >= n0 - - log/„(e, /i, v) < c + S . 
n 

But this implies the desired inequality because of the arbitrariness of <5. 

Lemma 22.5. Let the pair (/x, v) of sources satisfy the assumptions of the preceeding 
lemma. Let c be a finite real number. Then the relation 

li{z:ze Rx, A(nz, v) ^ c) = 1 

implies the inequality 

lim inf log In(e, fi, v) >. c , 0 < e < 1 . 

,, I n J 
Proof. By Theorem 22.2, 

VO < e < 1 V<5 > 0 3n0 Vn ^ n0 

H \z : z e Rx, - log fe ' ' " Z"j > d(>,, v) - s] > 1 - 6 . 

Let us set 

£<2) = \x : x e X", ^ > 2"(c 

I V *W 
The assumption of the lemma yields again the inequality 

H„(En
2)) > 1 - e . 

Consequently, 

In(e, ii, v) g v„(E<2>) = £ v„{x] < 2-"(c-S)fin(En
2)) < 2~"(c~d), 

xeE„(2) 

i.e. 

log I„(B, H,V)>C — S. 

n 

Since <5 was chosen arbitrarily, the desired inequality follows. 

Now let us state some elementary properties of the quantities /„ similar to the 
properties of the quantities V„ established in [38]. The proofs are simple and there
fore omitted. 

Lemma 22.6. 0 < e2 < et < 1 and for any neN we have the inequalities 

log I„(su fi, v) >: log In(e2, (i, v) . 
n n 
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Lemma 22.7. Let 0 < £ < 1, let Hu /"i> V- be stationary sources such that 

n -, ( l - c) % + CÂ2 • 

Then for all e, C < £ < 1, we have the inequality 

lim sup log I„(s, fiu v) < lim sup log /„(a — £, H, v) • 

- L « J " L " J 

Lemma 22.8. Let 0 < (' <j 1, let ft, nu \i2 be stationary sources such that 

M - O i + ( 1 - C ' ) M 2 . 

Then for all e, 0 < e < C, we have the inequality 

lim inf log J„(e, nv v) ^ lim inf log I„UIC, H,v)\. 

» L « J - L « J 
Repeating the proof of theorem I in [41] (cf. also the proof of Theorem 15.3 and [38] 

for analogous idea) we obtain the main theorem. 

Theorem 22.9. Let pair (n, v) of sources satisfy the conditions (I) and (II). Then the 
inequality 

lim sup log Ijfii, n,v)\< lim inf log I„(e2, P-, v) 

n In J n L » J 
holds for 0 < e2 < EJL < 1; consequently, the limit 

— lim - log I„(s, [i, v) = It(fi, v) 
n n 

exists for all except at most a countable set of numbers e. The function It(n, v) monoto-
nically increases for e -> 0 to a limit, which will be denoted by I(n, v) and called the 
asymptotic I-rate of the pair (/z, v) of sources. 

Let us give again an equivalent statement. 

Theorem 22.10. There exists one and only one nonnegative real-valued function J 
on the set M(^x) x M(!FX\ k) such that 

(1) VA > 0 V0 < £ < 1 3n0 Vn ^ n0 3E„ cz X", 

[H„(E„) > 1 - B] et [v„(£„) < 2-"[ /("-v)-A]] ; 

(2) VA > 0 30 < tj < 1 V0 < e < n 3n0 V« % n0 V£„ c X". 

. ln„(E„) > 1 - e] implies [v„(£„) > 2-" [ / (" 'v ) + A]] . 
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This means that the quantity I(p., v) determines the rate of the exponential con
vergence of I„(e, ft, v) to 0. This fact will be used in the last part of the present paper 
in connection with the problems of the asymptotic optimality. 

Corollary 22.11. If n is an ergodic source, then 

- l im - log /„(£, n, v) = /(//, v) = d(n, v) ; 0 < £ < 1 . 
n n 

It is again an improvement of the coding theorem given in [29] because it states 
also the equality 

I(n, v) = d(n, v) . 

Finally, we have the following analogue of Theorem 21.12. 

Theorem 22.12. The asymptotic /-rate of any pair (n, v) of sources satisfying the 
conditions (I) and (II) equals the essential supremum of the /-entropies d(nz, v); 
Hz being the ergodic component of the stationary source ft; in symbols 

(22.5) I(n, v) = ess sup d(fiz, v) . 
zeRxM 

At glance, it would seem to be possible to define the /-rate in the stationary non-
ergodic case by means of the formula 

(22.6) I*(ft, v) = V(ix, v) - V(n) . 

The necessary and sufficient conditions for the equalities V(n, v) = K(p, v) and 
I(fi, v) = d(n, v) will not be studied in detail. We shall confine ourselves to the 
following statement. 

Proposition 22.13. Let /i be a strongly stable source (cf. (18.3)). Then 

I{ft, v) = /*(>, v) . 

Proof. Since fi is strongly stable, we have 

V(n) = H(n) 
(cf. Theorem 18.2), i.e. 

ess sup H(nz) = H(nz) n(dz). 
*6KXL>] J Rx 

Consequently, 

Я(p.z)= f H(џz)џ(dz) a.e. zЭД, 
J Rx 
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i.e. H(/j.z) is almost everywhere a constant, namely V(fi). This in turn implies 

I*(n, v) = ess sup K(n„ v) - H(p) = ess sup [K(fx2,v) - H(neJ] = 

= ess sup d(nz, v) = l(fi, v) . 
zeRxlrt 

The proposition is proved. 

Other statements of a similar character can be proved following the same manner 
(cf. also Section 18 for a detailed discussion in the special case p, = v). 

23. The General Case 

Here we shall turn back to the notations used in the third part of the present 
paper. The necessary notations concerning finite partitions are to be found in Section 
10. The symbol X will denote a separable metric space. The conditions (I) and (II) 
are to be replaced by the following ones: 

(I') peM(^x); 

(IV) the source v e M(&?x) is such that for any £ e Zx, vc satisfies the condition (II) 
of Section 21. 

The condition (II') is clearly satisfied if v arises from a sequence of independent 
identically distributed random variables, the common distribution being possibly 
only finitely additive. As the Markov source examined in Section 5 shows, it is 
expected that the Markov sources satisfying the condition (II') will be of a very special 
type. 

Nevertheless, the ideas developed in the third part of the paper are working when 
confined to the pairs (pi, v) satisfying the above conditions. Here we shall only sum
marize the results omitting their proofs. Only the important differences will be stated 
explicitely. Otherwise, the proofs may be obtained simply using the ideas developed 
in [37] and the present paper. Let 

(23.1) R^fi, v) = sup Kfa, v{) = K(ix, v) ; 
{eZx 

R2(H, v) = sup dfa, vc) = d(p, v); 
CEZX 

S\n, v) = sup Vfa, vc) = V(fi, v); 
CeZx 

S2(n, v) = sup J(/Zc, vc) = l(n, v). 
CeZx 

Let S,J = L„, S2 — I„. We shall make use of the quantities 

S\n, v) = sup S'fa, vc), 
CeZx 
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where 

S'(fi;, v.) = lim lim sup - log S'„(e, fi;, v?); i = 1, 2 ; 
c-»0 

and of the quantities S'(fx, v) defined similarly by means of lim inf. 

Theorem 23.1. Let (/», v) be a pair of sources satisfying the conditions (I') and 
(IF). Then 

R'(fit v) = I R'(x, v) fi(dx) ; i = 1, 2 . 
J £(^x) 

The relations 

R'-fo, v.) = f R'fo, v.) /J(dx) , £eZx; i = 1, 2 ; 
j£(A) 

follow as in the proof of the main theorem in [37]. However, the fundamental 
lemma of Feinstein ([8], Lemma 1.3) has to be replaced. For i = 1, we shall use 

Lemma 23.2. Let £ = {Cu ...,Ct] c <M(X). Let 

^{DuD2,C2,...,Ck} 

with Dx n D2 = 0, D, u D2 = C t . Then 

X A..(D) log v,(D) < X ^ ( C ) log Vl(C) . 
J>e« Ce? 

For i = 2, we shall use 

Lemma 23.3. Let £, £ be as in Lemma 23.2. Then 

log Ix(e, p., vc) = log Ji(e, £., v.) . 

Lemma 23.4. Let the pair (^, v) of sources satisfy the conditions (I') and (II'). If c 
is a finite real number then the assumption that 

fi{x : x e E(s/X), R\*, v) = c} = 1 

implies the inequality 
S'(ju, v) = c ; i = 1, 2 . 

Lemma 23.5. Under the assumptions of the preceeding lemma, the assumption that 

fi{x : x e E(rfx), R\x, v) = c} = 1 

implies the inequality 

S'(fi, v) = c ; i = 1, 2 . 
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Finally, we have again the formula 

(23.2) S\n, v) = ess sup Rl(v., V) . 
xsE(^x)in 

24. The Interpretation of the Coding Theorems 

Let n be a stationary (possibly finitely additive) source on the space (X1, s/x), X 
being a separable metric space. The sequence of the coordinate variables defined by 
the property that Xn{z) = z„, n e I, is the stationary process with the state space X 
and the distribution \x. Let £ e Zx. Any finite partition £ of X can be interpreted as 

n - l 

a measurement performed on the process {X„}. The partition V T~% corresponds 
t=0 

to the subsequent repetitions of the measurement £ in times 0 ,1 , . . . , n — 1. Hence 
H(n, () can be interpreted as the uncertainty of the process {X„} discovered when 
performing the given measurement £. To compute the actual uncertainty of the 
process {Xn} it is natural to consider the quantity 

(24.1) s u p H ^ C ) . 
HeZx 

But this is exactly the entropy rate of the process {Xn}. A similar natural interpreta
tion can be given also to any of the quantities (23.1). 

PART V: A STATISTICAL INTERPRETATION 

25. The Notion of the Asymptotic Optimality 

The methods proposed for the investigation of the asymptotic optimality of the 
sequences of tests fall into two categories. 

There are "local" methods dealing with the asymptotic efficiency mainly. A se
quence of alternatives is chosen in such a way that the probability of type II error is 
bounded away from 0 and 1, and the speed of convergence of this sequence of alter
natives to the null-set is measured somehow. The speed is taken as the optimality 
criterion. 

On the other hand, there are "nonlocal" methods. A fixed alternative is chosen. 
The rate of exponential convergence of the probability of type II error is considered. 
The size is either held fixed and bounded away from 1 or it is allowed to approach 0 
exponentially with a prescribed rate. 

The choice of the exponential convergence is justified both by the reasons of in
ference [6] and by its computational simplicity. 

In this part we shall make use of the natural logarithms. Note that there are no 
problems when reformulating the results of the preceding part in this fashion. 

Throughout this section we are given the finite set {1,2, ..., fc} of all possible 
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experimental outcomes and the family & of all stationary Markov sources with the 
alphabet {1, ...,k} and with entry wise positive transition probability matrices, 
respectively. The set of all such matrices will be denoted by 0, hence 

9 = {Pe:9e0} . 

Note that the assumptions imply that for any 01, 02 e 0 the finite-dimensional distri
butions Pe, „ and Pg2 „ of Pe , and Pg2 are mutually absolutely continuous even the 
same fails to hold for P„, and Pg2 themselves. This in turn implies that the quanti
ties In(e, Pgl, Pg2) as well as the quantities d(PgU Pg2) (cf. Theorem 21.2 and (22.1)) 
are always finite. The unique stationary distribution of the matrix 9 will be denoted 
by pe (if 9 = 9l, we shall write p = p{i); for the existence and uniqueness cf. [2], 
Theorems 6.3.1 and 6.3.2). Moreover, any Markov source determined by a matrix 
9 e 0 is regular ([2], p. 185), hence ergodic ([2], Theorem 6.6.2). As already men
tioned in Section 5, 

(25.1) H(Pg) = l p\ H(6) = - £ p » £ 0,j log eu. 
i = l i = l j' = l 

Let 01, 92 e 0, 61 * 92. Then Pgl and Pg2 satisfy the assumptions (I) and (II) 
of Section 21. Hence we can make use of the asymptotic properties of the quantity 

I„(e, Pgl, Pg2) = min {Pg2,n(En) : E„ c {1, 2 , . . . , k}", P„,,„(E„) > 1 - e} . 

To simplify the notations we shall write Pe for Pg „ if there is no danger of confusion. 
Let us interpret the set En as the critical region of a test q>„ for testing the problem 
Pei,„ : Po*,n- Then /„(e, P8,, Pg2) represents the minimum probability of type II error 
subject to the constraint that the level does not exceed the value E. Consequently, 
Corollary 22.11 represents a generalization of Stein's lemma (cf. [3], Section 6, 
and [29]). 

Let 0O + 0, 0O cz 0. Let cpn be a sequence of tests for the problem 0O : 01 with 
91 e ©! = 0 - 0O. More exactly, given any neN, the test <p„ is proposed for the 
77-dimensional problem 

®<? = {Pe°,n--e°e0o}<.P9ltn 

for 9l e 0V The probability of type I error will be denoted by aj(0), i.e. 

(25.2) <(0) = Pg{cpn rejects 8} = 

= Pe.n{(zi> •••> zn) • <Pn(zu •••, z„) rejects Pe,„) . 

For any 9e 0, 

(25.3) Pt(8) = 1 - al(9) . 

The function function /?£(•) defined on 0O is called the power function of the test <p„. 
For any 01 e 0t, fiffl1) is the probability of type II error when testing the problem 
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0O : 01. The size of the test <p„ will be denoted by a£, i.e. 

(25.4) < = sup « ( 0 ° ) : 0° e 0O} • 

The following notions were introduced in [39] for the independent identically 

distributed case (i.e. for probability measures of the product type). 

A sequence <p„ of tests is said to be of rate A, 0 S A = °°> provided 

(25.5) lim sup otj < 1 in case A = 0 , 

(25.6) lim sup - log a* = - A in case A > 0 . 
n n 

According to this definition, a sequence <p„ is of rate 0 provided that the size is 
bounded away from 1. Otherwise A is the rate of the exponential convergence 
a.% -» 0. The second situation is typical in the problems of nonlocal asymptotic 
optimality (cf. [3], [4], [6] and [39]). Let <PA denote the set of all sequences q>„ of 
rate A. A sequence (p„ e <I>A is said to be exponential rate optimal (ERO) at an alter
native 01 if 

(25.7) l i m - logjSftfl1) = -B 
n n 

holds with the best possible constant B, i.e. with B such that for any sequence 

^n e $A, 

(25.8) lim inf- log p%91) = -B. 
n n 

Hence 

(25.9) B = Bjd1, &0) = inf I - l im inf - log ffffl1)} . 

Corollary 22.11 deals with the simplest testing problem 9° : 0l, i.e. 0O = {9°}, and 
<p„e<P0: 

l i m - l o g ^ ( ( 9 1 ) = -d(Pe0,Pei). 
n n 

Using a well-known explicit representation of d(Peo, Pei) (similar to (25A)) we obtain 
also an explicit expression for the JC-entropy K(Pg0, Pei). Let /(00, 0j) denote the 
/-divergence of the probability vectors 0°, 9\; i = 1, 2, ..., k, i.e. 

m,9\) = i9% iog(0?x). 
.7 = 1 

Then 

(25.10) d(Pe0, Pel) = £ p<°> 1(91 01) = I Pf' E el log (0°X-). 
i = i i = i j = i 
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Now since Peo is ergodic, we have the equality 

(25.11) K(Pe0, Pei) = d(Peo, Pgl) + H(Peo). 

From (25.11), (25.1) and (25.10) it follows that 

(25A2) K(peo, pti) = i P<°> H(e°, e\) = - i Pr I el log 01,. 
; = i ; = i j '= i 

For any 0 ' c 0 let us set 
d(6>',0) = i n f d ( P r ) P 9 ) i 

e'eS' 

d(d, 0') = M d(Pe, Pg.). • 
9'e<5>' 

We shall say that an alternative 01 cannot be discriminated from the set 0O if for 
any sequence cp„, 

<(Ql) S < • 

Let 0O be the set of all such 01's. Clearly 0O => 0O, and if 0O = {0°} then 0O = 
= {0°}. For any A, 0 ^ A ^ oo, let 

(24.13) ©^ = { 0 : 0 6 0 , d(9, 0O) < A} , 

0A = {0 : 0 e 0, d(9, 0O) < A} . 

Note that any sequence q>„ of rate A for 0O is of the same rate A also for the extended 
hypothesis 0O. A more general result for A > 0 is established in the following 

Lemma 25.1. Let cp„ be a sequence of rate A, 0 ^ A <; oo. Then for every 01 e 0A 

we have 
lim sup a ^ 1 ) < 1 in case A = 0 ; 

(25.14) lim <(0X) = 0 in case A > 0 . 

For every 01 e 0 

(25.15) lim inf - log j8J(t9*) ^ ~d(0A, 01) . 
n n 

Proof. (25.14) for A = 0 is trivial by the very definition of 0O. Let A > 0. Assume 
we are given 01 E 0A and a subsequence {nk} <= {n} such that 

l i m s u p ^ 1 ) < l -
k 

Consider the problem 01 : 0° for 0° € 0O. Then 

lim i n f - log < ( 0 ° ) ^ -d(Pei, Pe0). 
k nk 
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Since 61 e &A, we have d(9\ 0O) < A. Hence there is 6° e 60 such that d(Pgl, Peo) < 
< A, i.e. 

lim inf — log o*(0°) > - A 
* nk 

contradictory to the assumption that cpne<I>A. Hence 

l i m s u p j 8 * ( 0 » ) ~ l , 
k 

i.e. 

lim sup (1 - a^e 1 ) ) = 1 . 

k 

Since a^(0]) > 0, it follows that 

lim a^e1) = 0 . 

Now let B > d(0A, 6l) be arbitrary. Then there is 0 e 0A such that d(Pg, Pgi) < B. 
For Be0A there is 6° e B0 such that d(Pg, Pg0) < A. The corollary 22.11 for the 
problem 0 : 0 ' gives 

lim inf- log Pt(Ol) > -d(Pg, Pgl) > -B. 
n n 

The lemma is proved. 

26. The Generalized Likelihood Ratio Test 

Let Z j , . . . , z„ be a finite strip of a sample path of the length n. The trasition count 
matrix Ai-")(z) is defined entry wise as follows: 

a$(z) = card {/: 1 ^ / £ n - 1, z, «= i, zi + 1 = j} , 

i,j = 1, ..., k. Let 

J = I 
k 

Then £ b("}(z) = n and we shall denote by c(n)(z) the probability fc-vector 

(b^(z)ln,...,b^(z)jn). 
Let 

a^(z)lbr(z), if b\-\z)>0, 
otherwise . 

Then the matrix CM(z) is a maximum likelihood estimate (MLE) of the true transi
tion probability matrix 0 and the vector c(,,)(z) is a MLE of its stationary distribu-
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tion pe, respectively. Especially, 

lim C"\z) = 0 a.e. z[Pe] ; 

lim c<">(z) = / a.e. z[Pe] . 

Let 

(26.1) U„(z,0) = icnZ)/(C<
i"

)(z),0 i) = 
i = l 

= i^)icW(Z)log(c«(z)/0y). 
( = 1 J = l 

If g{6) is a function of the parameter 9, if 0 is a MLE of 0, then g{0) is a MLE of 
g{9). From this well-known property of MLE it follows that U„(z, 0) has the following 
properties: 

(26.2) lim U„(z, 0O) = 0 a.e. z[T>] , 

lim U„(z, 0°) = d{Pe„ Peo) a.e. z[Pgl] . 

The generalized likelihood ratio statistics is the function T„(z) defined by the formula 

(26.3) T„(z) = inf {U„(z, 0°) : 0° e <90} . 

The sequence T„ is asymptotically optimal in the sense of the exact slope [4]. Hence 

(26.4) lim T„(z) = inf d(Peh T>) = d{9\ 0O) [Pei] . 
n e°e0o 

Theorem 26.1. Let 0O be a convex subset of 0. For any 0 < A < oo the se
quence cp„ of LRT's defined by the property that 

(p„{z) = 1 iff T„{z) > A 

is of rate A. Moreover, it is ERO at any alternative 01, i.e. 

l i m i l o g ^ ( 0 1 ) = -BA{B\0o). 
n n 

To obtain a reasonable statistical inference, it is necessary to have BA{91, 0O) > 
> 0. The sufficient condition is given by the following (cf. (26.5)) 

Lemma 26.2. If 0 < A < d{6\ 90) then d{0A, 91) > 0. 

The lemma is obvious, so the proof is omitted. Concerning the exact slope of the 
sequence T„ the lemma shows that the exact slope gives the upper bound for the rate 
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of a sequence of tests such that the rate of the exponential convergence P^(0l) -* 0 
is still positive, for an arbitrary but fixed alternative 01. 

Remark 26.3. Since 

Pe{cpn rejects 0O} = <(0) = Pg{z : Tn(z) > A} 

the set {z : T„(z) > A} is the critical region of the test q>„. The case A = 0 is excluded. 
In this case the size would approach 1, thus the sequence <pn would become asympto
tically useless for testing. 

Remark 26.4. The first part of the theorem remains valid also without the as
sumption on the convexity of ©0. 

Proof of the theorem. Let 0° e 0O. Then 

Pfl0{z : U„(z, 0°) ^ A} < nk\-"A 

(cf. [4]). Now 

Peo{z : T„(z) > A} < Pe0{z : U„(z, 0°) ^ A} 

for any 0° e 0O and any A > 0. Using the definitions of q>„ and a^ one obtains 

immediately the inequality (25.6), thus proving the first part of the theorem. 

To prove the second part of the theorem, let us note that 

(26.5) BA(9\ 0O) = d(0A, 01) . 

Actually, for any sequence cpn of rate A and for any 01 € 0 we have 

lim inf- log RftP) ^ -d(0A, 01), 

inf j - l i m inf - log ßt( l)l < d(0A, Ø1) . 

This means that 
BA(e\ 0O) < d(0A, 01). 

If the inequality BA(d\ 0O) < d(0A, 01) would take place then there would be 
a number, say C, such that 

BA(e\ 0o)<c< d(BA, 01). 

Then for any <p„ e <PA 

lim in f - log ^(fl1) ^ - C 
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and, consequently, it would be impossible for Bj^d1, 0O) to satisfy the relation (25.9). 
The relation (26.5) yields a definite geometrical meaning to Lemma 26.2. Because of 
Lemma 25.1 to prove the second part of the theorem it suffices to establish the 
inequality 

(26.6) lim sup - log ^(O1) ^ - d(0A, 0 1 ) . 
n n 

Let 0° e 0O , let 01 6 0X be arbitrary. Consider the testing problem 0° : 01. For any 
sequence \j/n of rate 0 we have 

lim sup - log ßt( x) й -d(Pв0, Pвl). 

Consequently, for any sequence \J/„ of rate 0 for the problem 0 O : 01 we obtain the 
inequality 

lim sup - log PRO1) S -d(0o, 61) = -B0(9\ 0O). 
n n 

The value B0(d1, 0O) is optimal for A = 0. Hence, when increasing the rate to some 
A > 0, the relation 

lim sup - log PÍ(6X) = -B0(6\ 0O) 

takes place for any sequence ij/n e <PA. Especially 

(26.7) lim sup - log ^(O1) = lim sup - log Pgl{p.z : T„(z) ^ A} ^ -B0(6\ 0O). 

n n n n 

Let 0° e oo be such that 

d(Pe0, Ptl) = B0(9\ 0O) - d(0o, 01) . 

Because of Corollary 22.11 there is at least one such point 0° (otherwise the optimum 
rate would not be attainable) and due to the convexity of 0O, the point 0° is unique. 

Since 0O is a convex set, the set 0A is convex as well. Therefore the point 0* e 0A 

minimizing the "distance" d(Pg, Pgi) on 0A lies on the "segment" connecting the 
points 0° and 01. Hence 

d(Pg0, Pel) = d(Pg„ Pg) + A 

i.e. 

(26.8) B0(6\ 0O) = A + BA(9\ 0O). 

Using the evident inequality 

-B o (0 1 , 0O) ^ -B0(6\ 0O) + A 
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together with (26.7) and (26.8) one obtains the desired inequality 

lim sup - log fiftO1) = -BA(B\ 0O) = -d(0A, d1) . 
n n 

The theorem is proved. 

To finish this section we shall derive a simple formula for the optimum rate pro
vided 0O is simple, i.e. 0O = {0°}. 

Proposition 26.5. Let 0°, 01 e 0; 01 4= 0°. Then for any A, 0 <J A = oo, we have 

(26.9) BA+e(0\ {0°}) = BA(9\ {0°}) - a 

provided 0 ^ e ^ BA(6\ {0°}). 

The p roof follows from the fact that for any 0° e 0, the set 0A is convex. Using 
(26.9) we obtain the following formula 

(26Ao) BA(O\ {0°}) = i p<p i 0°, log (eyeij) - A. 
i = i 7=1 

The formula avoids a cumbersome computation of the optimum rate using the 
methods of the convex minimization. 

27. Uncertainty of the Null Set and the Optimality 

Let us start with the relation (25.11): 

K(Pe0, Pel) = d(Peo, P$1) + H(Pe0). 

Given the sample path zx, ..., zn, we can define 

(27.1) Un(z, 0°) = i c<»\z) i c<ff(z) log (1/0°.) , 
i = l J ' = l 

where 

-icy(z)iogel = H(c<?)(z),6<!) 

J = l 

is the inaccuracy as introduced by Kerridge [18]. Then 

(27.2) U„(z, 0°) = i cf(z) i c<f)(z) log (C</j>(z)/0°,) -
i = i j = i 

- i ct\z) i c<ff(z) log c«(-) = Un(z, 0°) + H(C"\z)) . 
i = i j - i 

Here, H(C<n)(z)) is a MLE of H(Pe) provided 0 is the true parameter. Hence the 
function U„(z, 0°) consists of the term U„(z, 0°) appropriate for the discrimination 
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(or testing) and of a MLE of the entropy of the true parameter, respectively. Espe
cially, 

lim U„(z, 0°) = H(Peo) [P f l 0] ; 

lim U„{z, 0°) = d(Ptl, P0o) + H{Pel) [P 9 1 ] ; 

lim U„(z, 0°) = K{Peh Pfl„) [P f l I] . 

From the latter relations it is clear that if 

sup {H{Pg0) : 0° e 0O} 

is small enough (i.e. the null-hypothesis consists of almost deterministic sources) 
the asymptotic behaviour of the statistics 

T,,(z) = inf{U„(z,0°) :0°e0 o } 

is nearly the same as the asymptotic behaviour of the optimal statistics T„(z). Other
wise, the sequence T„(z) may be far from being ERO at many alternatives 01. Hence, 
the uncertainty of the null set can be considered as a nuissance parameter. It is an 
open problem, whether this reasoning, in general, remains true. More precisely, 
there is the following problem: 

Suppose (p„ e <PA is not an ERO sequence. Does the corresponding sequence T„ 
of statistics necessarily involve an estimate (or a function of it) of the uncertainty of 
the null set? 

28. Concerning the Stationary Non-Ergodic Case 

Let 0* be the set of all stationary probability measures on the measurable space 
({1,..., k}N, J ^ ) , where &k is the u-field generated by the family of all finite-dimen
sional cylinder sets. Let 0>o consists of all mixtures of the ergodic sources Pfl : 0 e 0, 
i.e. P 0 s3P0 provided there is a probability measure I; on the space (0, &{&)) such 
that 

- 0 = ľ Pв ţ{d ) ; 

\ being the Borel c-field in &• The alternatives will be chosen from the set 2?t = 
= { P e : 0 e o } . 

Let us consider the testing problem P 0 : Pt with Pt e ^ (i = 0, l). To dicuss the 
matter it is worthwile to reformulate the coding theorem 22.10 in statistical terms 
within the framework adopted in this part. 
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Let q>„ be a sequence of tests for the problem P 0 : Pt with the probability of type I 
error bounded from above by e, e e (0,1). Let Ec„ <= {l, ..., fe}" be the critical region 
of the test cptt, n = 1,2,. . . 

(1) Given any A > 0 there is a test >̂„ such that 

< (P 0 ) = P0(E„C) < £ 
and 

K(Pi) = - P i « ) < e-" [«p° 'p '>-« , 

provided w is sufficiently large. 
This means that 

lim sup < (P 0 ) < 1 

and 

lim sup ~ log K(Pi) = -h(P0, Pi) • 
n n 

(2) Given any X > 0, there is n, 0 < >7 < 1 such that for all e, 0 < £ ^ n the proba
bility of type II error for any sequence <pn of tests with the size bounded above 
by £ is 

^ ( P i ) > e -" c 7 < ( P o ' P l ) + A ] , 

provided n is sufficiently large. 

This means that 

lim inf- log jBftP.) > -7£(P0 , P t ) 
« n 

(cf. Theorem 22.9). Hence in the stationary non-ergodic case the optimum rate B 
depends on s for A = 0. According to the Theorem 22.9 

l i m / £ ( P 0 , P 1 ) = i ( P 0 , P 1 ) 
E-»0 

and 

7(P0, Px) = Ie(P0, Pj) for any £ > 0 . 

Therefore it is impossible to use the reasoning of the preceding sections to solve the 
problems of the asymptotic optimality. In what follows we shall reduce the problem 
P 0 : P1 to the problem P 0 : Pt with P 0 ergodic in such a way that the two problems 
become asymptotically equivalent. The main idea is due to Gray and Davisson [11], 
[12]. According to the ergodic decomposition theorem (cf. Section 6) 

(28.1) P0(E)= f ^ 2 (£)P 0 (dz) . 
J Rk 
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Given any z e Rk, let 

Qz = {y.ye Rk, \iy = fiz} . 

Then the family {Qz} constitutes (a possibly uncountable) partition of the set Rk 

of all regular points. Let us choose a representative sequence z from each Qz. The 
set of all chosen representative sequences will be denoted by 3 ; it is the new para
meter set. Let 

Z(a>) = z if co E Qz. 

Then Z : Rk -> 3 . If 

. T 3 = {A : A <= 3, Z~XA e&kn Rk} 

then Z is a random variable. Let W(A) = P 0 ( Z _ 1 A ) . Then 

P0(E n Z ^ A ) = Г P2(£) JҒ(dz), 

where P 2 is the ergodic measure uniquely determined by the sequence z. Now Pze0> 

(cf. [16] for the ergodic decomposition of Markov sources). Note that 

P2(£) = P0(E \coeQz) \W~\, 

PZim)(E) = P0(£ I co e QHa)) [P0] . 

The detailed construction of the conditional probability within our setting was given 
by Rochlin [32]. The latter relations are the precise formulation of a well-known 
fact that stationarity can be replaced by ergodicity simply using the conditional 
probabilities. Since the ergodic sets Qz are disjoint, it is natural to think of a stationary 
source as of the result of nature randomly chosing a particular ergodic source at time 
minus infinity, and then sending it forever [ i f ] . This in turn implies that it is natural 
to search for an estimate of the "true" ergodic source. 

Let P2, Py be two different ergodic sources. Let 

tJL*~*,)-i±i I \rJfl-rJL*l\-
i = l 2l xefl k)< 

Let RFa„ denote the empirical probability obtained by means of a sample coL, co2,. • • 
. . . , co„. The estimate Pz(a>,«) of the true ergodic source will be defined in terms of 
the metric Q„: 

IV,) - P, 
for which 

Q«(RFa,«, Pz) g Q«(RFa<„, P,) + B„, y + z. 
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Let 

Q(PZ, Py) = lim Q„(PZ, Py) = sup Q„(PZ, Py). 

If e„ —> 0 and if co e Qz, i.e. if Pz is the true ergodic source, we have 

(28.2) \imQ(PZ(m,n),Pz) = 0 

(cf. [11]). This means that we can replace asymptotically the original testing problem 
P 0 : Pi by the problem P2 : Pu where Pz is the "true" ergodic source. Since PZ&SPX = 
= {Pe : 0 e 0), there is a matrix _(_) such that Pz = PB(z). Clearly P . = P9i for some 
matrix 01 e &• Hence the new problem Pg(z) : Pgi is of the type solved in the preceding 
sections. 

An alternative approach is given by Bahadur and Raghavachari [4]. The main 
idea is to consider the conditional tests. This means that instead of the original se
quence T„ of statistics we shall use the sequence T„(- j a> e Qz). Some regularity con
ditions are necessary to obtain some reasonable results. But we shall not go into 
details in this paper. 

The replacement of the original problem P 0 : Px by the problem P0(z) : Pgl avoids 
one serious gap. We have actually replaced the testing problem P 0 : P t in the 
preceding sections by the sequence P 0 „ : P l n of finite-dimensional testing problems. 
It is not clear whether a sequence cp„ of tests for the problems P 0 „ : Pln converges 
(in some sense) to a test cp for the original problem P 0 : Pt. Moreover, we do not 
know whether certain optimality properties of every (p„ imply the same optimality 
property for the test cp provided <p exists. Of course, this problem does not arise when 
the probabilities P0 and Px correspond to sequences of independent identically 
distributed random variables. If Pg(z) and Pgi are obtained as above (and, con
sequently, they are ergodic) then the replacement of the testing problem by the se
quence of the finite-dimensional problems is correct, too. Actually, let I„(z„; Z\zu ... 
..., z„_i) denote the amount of information contained in _„ about the unknown 
parameter Z given the first n — 1 observations. Then 

(28.3) \imI„(z„;Z\z1,...,z„_1\=0 

(cf. [11], Theorem 5.1). So, if n is large enough, the supplementary information 
provided by the subsequent observations becomes negligible. Thus a correct decision 
in the problem P0 „: Px „ can be considered as a correct decision in the problem 
P 0 : P i . 
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APPENDIX A: THE METHOD OF THE INFORMATION TRANSMISSION 

Throughout this part we are given a countably infinite alphabet, represented by the 
set N of all positive integers. A sligthly more general result will be proved than 
that given in Remark 12.2 (cf. (12.3)). 

Let us start with some basic notions. A one-parameter family v = {v(- | y) : 
: y e N1} of er-additive probability measures on the u-field & is called a channel 
provided the following measurability condition is fullfilled: VE e SF v(E\ •) is 
immeasurable function on N1. A channel v is called stationary if 

(AT) v(TA | Ty) = v(A \y), A e 9 , y e N1. 

A stationary channel v is called historyless if 

VA,B <= JV" Vy, y' e [J3]0>„ . 

(A.2) v ( [A ] |y ) = v ( [ A ] | / ) . 

If the parameter space Y as well as the set X on which the probability measures 
v(- | y) are defined are countable, we call v a (Y Z)-channel. The condition (A.2) 
implies that the relation 

(A.3) vn(E\(y0,...,yn^)) = v([E]\y) 

determines a (JV", JV")-channel v„. For every n e N the channel v can be characterized 
be the »-dimensional £-size — the maximum number of the input signals (of the given 
length n) which are distinguishable by means of the output signals with the proba
bility larger than 1 — s. In symbols, 

(A.4) S„(£, v) = sup S„(i/>, e, v). 

Here the supremum is taken over the family of all mappings ip : N" ->• JV", and 

S,,^, e, v) = card {y : y e JV", v„(</>~ 1{y} | y) > 1 — e} . 

Remark A.L Let us recall that for a given \\i : N" -> JV" the family 

{(y, ^ " ' { y } ) : yeN", v„(<p->{y} | y) > 1 - a} 

is nothing but the n-dimensional £-code of length S„(i//, e, v) in the sense of Wolfowitz 
[42]. The coding theorem deals with the asymptotic behaviour of the sequence 

- log S„(e, v) . 
n 

In the special case of the historyless channels the coding theorem can be formulated 
as follows (cf. [40], Lemma 6.1): 
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Theorem A.2. Let v be a historyless channel. Then there is a real number C(v) 
such that 

(a) VO < £ < 1 C(v) ^ lim inf- log S„(£, v) ; 
11 n 

(b) W > C(v) 30 < 2 < 1 VO < £ ^ ;. lim sup - log S„(£, v) < t. 
n n 

As a consequence 

C(v) = lim lim sup - log S„(£, v) = lim lim inf - log S„(e, v). 
6-o II n E^O n n 

The number C(v) is said to be the capacity of the historyless channel v. 

Now let neN, let £ e ZN. The mappings x : £" -> N" and 5 : N" -» £" are called 
the coding and the decoding transformations, respectively. Note that these notions 
have nothing common with the notion of the E-code defined above. The n-dimensional 
error probability (given f) is the number 

en(p, v, K S, 0 = 1 - E Vn^'D | xD) /.[/)] . 
Des"> 

The minimal ^-dimensional error probability is the number 

e„(p, v, 0 = inf en(n, v, x, 5, £). 

Let p. e M(s/). The source p is said to be representable if there is a probability space 
(S, y, X) and an ^-measurable family 

{/js: s e S} c M(sf) 

such that 

(A.5) n(A) = f iiJA) A(ds). 

Let (S, Sf) = (E(st), J f [ E « ) ] ) , let {ps} = E(s4). Then clearly each p. e M(jaf) is 
representable (cf. Theorem 7.3). 

Lemma A.3. Let /( be representable. Let 

V(ps) < c < co , s e S . 

Then 

V(p) S c . 

Proof. Let V(ps) ^ c < co, s 6 S. This implies 

Vs e S VC e Z v V(/zs, C ) | c . 



Since V(ji, t) = V(/tic
 l), we obtain 

V(p.xfl)£c; seS, CeZN. 

Using Lemma 7.3 [40] we obtain 

V(nx^)<c, CeZN, 
i.e. 

V(n) = suPV(fir-l)<c. 

The lemma is proved. 

The generalization of the Theorem 16.3 is given in 

Theorem A.4. Let /( be a representable source with a countable alphabet (i.e. (A.5) 
takes place). Then 

(A.6) V(/t) = ess. sup V(/<s). 
S S S[A] 

Proof. We have 
{n : L„(e, /l,) < k} = 

= [n : min {card ({) : { c £», £ /.[/>] > 1 - e} = fe} = 

= U{{A< : I 4 . 0 ] > 1 - e} : <̂  _ C", card (<?) = fc} . 
Be? 

Consequently, L„(e,/(ST?~
 x) is an ^-measurable function, hence V(/.s) is an y -

measurable function on S. Therefore the number h is well-defined by the relation 

h = ess. sup V(ns). 
seS[A] 

1. Let V(/t) > ft. Let c be a finite real number such that V(/i) > c > h. Let us 
denote 

A(c) = {s:seS, V(/*s) < c} , 

then i (c) e y and A(A(c)) = 1. Indeed, let for all ce(h, V(/i)) we would have 
X(A(c)) < 1. Then the definition of the essential supremum would give the contra
dictory inequality 

ess . sup V(fis) = h _ V(n). 
S eS[A] 

Since A(A(c)) = 1, it suffices to apply Lemma A.3 to the measurable space (A(c), 
y n A(c)). Then the contradictory inequalities 

V(/x) ^ c < V{ji) 

follow. Hence we have V(fi) _ h. 
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2. The proof will be finished by showing that the strict inequality V(/i) < h yields 
a contradiction. Let us assume its validity. Then there is a finite real number c such 
that V(/.i) < c < h. Let us denote 

P = {P-P = {p.}?-» P,, H. 0, f>„ = 1, 3«0 = n0(p) Vn ^ n0, p0 = 0} . 
i 

Let 
t 

fc[p] = min {fc : | > i = 1}, f e P . 
i = i 

Let peP and fc eiV, fc > fc[p]. We shall define a stationary memoryless channel v 
by setting 

Vi(m \s) = pk+m-s+u m < s ; 

vx(m [ s) = pm-S41, m >. s (tn = 1, 2, ..., fc) ; 

v.(m | fcf + s) = V)(m | s), s = 1, 2, ..., fc; r e i V . 

Since a memoryless channel v possesses the property 

v«(x I y) = n vi.(*i I yd 
i = l 

for x = (x1, ..., xB) and y = (y^, ..., yn), the knowledge of vt uniquely determines 
the channel v (cf. also [40], p. 795). 

The channels of this type will be denoted by the symbol v[p, fc] (p e P, ke N, 
k > fc[p]) and called the circulant channels. Following Lemma 6.3 [40] for any c, 
0 < c :g co, there is a circulant channel v such that C(v) = c. Let us note that the 
circulant channels form a subfamily of the family of all stationary historyless channels, 
hence the capacity C(v) can be defined by means of Theorem A.2. Therefore we have 

(A.7) V(ii) < C(v) < h , 

i.e. 

V(fir) < C(v) <h, £eZN. 

A glance at the definitions of F(/7c) and C(v), respectively, gives 

(A.8) Ve > 0 3n0 e N Vn ^ n0 Ln(e, /Zc) < S„(e, v) . 

Consequently, there is a mapping \jj :Nn -» N" such that 

(A.9) L = L„(e, ft) ^ Sn(i{/, s,v) = S. 

This means that there are the points y1, ..., ys e N" such that 

(A.10) vn(^~1{y
i}\Yi)> l - s , i = l , 2 , . . . , S . 



Let us denote by C1, ..., CL, CL + 1, ..., Ck the elements of the finite partition f". 
Since L < S, we can define 

xC = y ' , i = 1,2, . . . , L ; 

xC = ys for C${C\...,CL} 

(if L = S, we can use only the set {C1, ..., CL_1}). Further we shall put 

(A.n) d-'a = ^r1(xci); i = 1,2, . . . ,L , 

<5-1C = 0 otherwise. 

Then 

1 - en(fi, v, x, 5, C) = £ v ^ C I xC) /i[Ci]0„ + £ vJiS-'C | xC) ^[C]0„. 
i = l C * C 

(A.H) implies that the right-most term vanishes. Using this fact and (A. 10), the 
inequality 

1 - e„{fi, v, x, 5, 0 > (1 - c) X 4 C ] 0 „ > 1 - 2e 
1=1 

can be derived. This means that 

(A.12) Ve > 0 3n0 Vn > n0 eB(jt, v, C) < 2e . 

Let us choose 

e = A{s : s e S, V(/J,S) > c} 

The inequality c < h implies e > 0 and (A.12) shows that there is increasing sequence 
{n(k)}k=l of positive integers such that 

(A.13) enik)(n, v, xk, 5k, f) < (e/2*)2 

for a convenient pair xk, §k. Now clearly 

en(k)(fi, v, xk, 5k, C) = en(k)(fis, v, xk, Sk, Q A(ds). 

Let 

S„(k) = {s : 5 e S, en(klus, v, xk, Sk, f) < e/2*} . 

By the definition of e and of Sn(k), respectively, there is an element s e S possessing 
the following two properties 

(a) V(»s,{)>C(v); 

(b) em)(ns,v,xk,5k,Q<l\2k, keN. 



Now it is intuitively clear that the properties (a) and (b) will give the desired contra
diction. Indeed, if the amount of information on the input of a channel exceeds the 
capacity of the channel (cf. (a)), it is impossible to transmit the information with the 
error probability as close to zero as wanted (cf. (b)). Now we shall give a formal 
deduction of this contradiction. 

Let us assume that (a) holds. Since /.. = /i sT
_1 , 7(ns, f) = V(i-is,C) > C(v). 

Choose t such that 

V(fis, ()>t> C(v). 

This means that 

(A. 14) Vw e (0, 1) 3 n0(») Vn £; n0(») S„(n, v) < L„(/.s, n, f) 

Let %„ : C" ->• N" and (5„ : JV" -* C" be arbitrary. Then define the mapping cp : N" -» W" 
satisfying the relations 

/js([^y]) = max {^[E] : xnE = y] , ye *„(£"). 

If fe = card (() then card (£") = fc". From the definition of the mapping (p it follows 
that 

<P"'{y} = U{KlE:xnE = y], yeN". 

The inequality (A. 14) gives 

L„(n, ns> C) > Sn(cp, n, v) = Sn. 

Now there are the points y 1 , . . . , ys" e N" such that 

v„(9--{r} | y') > I - ? / , i = 1,2 s , . 

Let us denote further 
s„ 

<l = I /^[py"] • 

Then cj ^ I — e, Now let us compute 

i - e„o,s, v, *„, 5„, c) = i S i v^;*£ | x„E) «JX| =g 

^ I v^"1!/ ' ) I y;) l^Kl = « + (i - 1 ) (- - « ) = - - >?2. 

a contradiction. The theorem is proved. 

Intuitively speaking, a numerical characteristic of the amount of information 
produced by an information source has to fullfill the following two conditions in 
order to be an effective expression of the information quantity: 
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(1) If the rate of the source does not exceed the capacity of the channel, the in-
formatfon given by the source can be transmitted by the channel with the error 
probability as small as wanted. 

(2) If the rate exceeds the capacity, the error probability when transmitting the in
formation is necessarily strictly positive. 

These statements are implicity contained in the proof of the preceding theorem. 
Let us formulate them exactly: 

Theorem A.5. Let \i e M(sJ), let v be a historyless channel. Then the assumption 
that 

V(n) < C(v) 

implies the relation 

sup lim sup en(n, v, £) = 0 . 
ieZN 

Proof. The assumption gives 

V(fi,)<C(v), CeZN, 

hence lim sup en(j2^, v) = 0 (cf. [40], Theorem 6.1). But, by the definition of the 

mapping Tj, ejji^, v) = en(n, v, £). This means that 

lim sup en(p., v, £) = 0 , £ 6 ZN , 

hence the theorem follows. 

Theorem A.6. Let fi e M(s4), let v be a historyless channel. If 

V(n) > C(v) 

then there is Co e %N a n d there is a number c0 > 0, respectively, such that 

lim sup en(ix, v, Q ^ c0 . 
n 

The proof is similar to the proof of the preceding theorem. The analogous state
ments can be proved also for lim inf e„(ju, v, f). 

APPENDIX B: PURE CHARGES ARE ENTROPY DENSE 

As we have shown on examples there are pure charges (i.e. purely finitely additive 
stationary sources) with the entropy rate zero as well as plus infinity (cf. Examples 
11.1 and 11.2) The Hewitt-Yosida decomposition tells us that every finitely additive 
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stationary source fx uniquely decomposes into its c-additive part fxc and a pure 
charge fx' according to the formula 

H = ap.c + (1 - a) /.' (0 g a <, 1) 

(cf. Section 8). By Remark 12.2, the entropy rate H(JX) can be then expressed in the 
form 

H(lx) = aH(lx
c) + (\ ~a)H(S). 

There arises a natural problem whether there are pure charges fi satisfying the relation 
H([i) = h for any in advance given real number h, 0 < h < oo. Otherwise, the whole 
theory should reduce to rather trivial cases: the a-additive case (if h = 0), and the 
case of infinite entropy. It is clear that we can confine ourselves to product pure 
charges. In this case the problem reduces to a much simpler one. Before stating the 
corresponding proposition let us introduce some necessary notions. A nonnegative 
set function n on (N, ty(N)) is called a normalized pure charge if fi is finitely additive, 
ix assigns unit mass to N, and n assigns zero mass to each one-point set {n}, n eN. 
Let C e Z. Then define 

h(fi, c ) = - y > ( C ) i o g H c ) . 

The entropy h(/x) is defined as the supremum 

h(» = sup { % , £ ) : £ e Z } . 

Recall that if p. is the product pure charge on (N1, s/') determined by [x then 
H(p) = h(ix). 

Proposition B.l. To every finite positive real number h there exists a normalized 
pure charge LI on (At, ^(N)) satisfying the relation h(fx) = h. 

Proof. First let us consider the case 0 < h <. log2 = 1. Let Ay = {in : neN}; 
A2 = {in — 1 : n eN}. Since At n A2 — 0, the images under canonical injections 
Ai —> N, A2 -» N of the Frechet filter yield two different, so called elementary filters 
(cf. N. Bourbaki: Elements de Mathematique, Livre III, Topologie generale. 
Hermann, Paris 1961). Let aUi (i = 1, 2) be the corresponding ultrafilters. The 
symbol v,- will denote the normalized pure charge defined by 

fl if Ee%; 
v {0 otherwise (E cz JV; i = 1, 2) . 

Given h, 0 < h <. 1, we can dioose a, 0 < a < 1, such that 

— a log a - (1 - a) log (1 — a) = h . 
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Now put ji = avj + (1 — a) v2. Then /t is again a normalized pure charge. If £ e Z, 
there are a unique set C e £ with C e f , and a unique set D e £ with D e °U2-

(i) Let C = D. Then /((C) = /i(D) = 1 and /((E) = 0 for all E e £, E * C. Hence 

% 0 = o. 
(ii) Let C * D. Then' C n D = P and /((C) = a, /*(£>) = 1 - a, /((E) = 0 for all 

other E e £. Thus h(fi, £) = h. 

The family of partitions fitting (ii) is nonvoid, because e.g. the partition {A1; A2} is 
such one. Consequently, h(n) = h. If h > 1 then we can repeat the above reasoning 
by making use of an appropriate finite number of different elementary filters. 

CONCLUSION 

Our aim was to show the possible applications of the ergodic theory when solving 
some problems connected with the source coding. The choice of the problems was 
strongly affected by the choice of the methods. Therefore we propose to consider 
related problems the solutions of which do not fall within the frame of the present 
paper in separate papers. 

The third part of the paper represents the main results of the author's dissertation 
made under the guidance of K. Winkelbauer. The author is gratefully indebted to 
him for a current support and many invaluable discussions. Other results of the paper 
were partly obtained during the research done in the period 1971 — 1975 at the 
Institute for Measurement and Measuring Technic of the Slovak Akademy of Scienc
es. The author wishes to express sincere thanks to L. Kubacek for his systematic en
couragement. At last but not at least thanks are due to I. Csiszar and to his collabo
rators from the Mathematical Institute of the Hungarian Academy of Sciences in Bu
dapest for many helpful conversations concerning the subject of the present paper. 
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