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6- Admissible Simplifications of the Dependence 
Structure of a Set of Random Variables*) 

ALBERT PEREZ 

After introducing the concept of simplification of the dependence structure of a set of random 
variables, the paper is concerned with the so-called e-admissible simplifications and their in
formation-theoretic analysis. The concept of e-sufficiency, previously introduced by the author 
for characterizing reduced sample er-algebras (statistics) in a Bayes statistical decision problem, 
may be considered as a special case of ^-admissibility of dependence structure simplification. The 
role of Shannon's information and its loss caused by a data reduction is here replaced by the 
concept of dependence tightness and its loss caused by a simplification of the dependence struc
ture of a set of random variables. 

1. INTRODUCTION 

The handling of sets of mutually dependent random variables for theoretical or 

applied purposes may become so complicated that the need arises for simplifying 

their dependence structure. 

The most simple dependence structure is that of mutually independent random 

variables. Therefore it may serve as a reference point for measuring the dependence 

tightness of a set of random variables. A good measure of this kind is the relative 

entropy (divergence) of Shannon's type of the probability measure of the initial set 

of random variables with respect to the corresponding product probability measure 

of their marginals. 

Let, thus, 

(1.1) A = {XltX2,...,XN} 

*) This paper is an English version of the author's contribution at the Colloque International 
du C.N.R.S.: Les de'veloppements recents de la Theorie de ^information et leurs applications, 
E.N.S.E.T., Cachan (France), 4 - 8 July 1977. 



be a set of (abstract valued) random variables with a joint probability measure 
PI...JV and with marginals denoted by Pu P2, ..., PN, respectively. By their depen
dence tightness, denoted by I(XU ...,XN) resp. by I(Pi...N), we understand the 
quantity defined as the relative entropy, H(Pt N,Pt x ... x PN), of P L l V with 
respect to the product measure P . x . . . x PN, i.e. 

(2.1) 1 ( 1 , X ^ - i l P j = fl(P1..:W,P1 x . . . x PN) = 

= flog *-----* dP1- - - JV , 
J dP. x ... X dPN 

provided that PU,.N is absolutely continuous with respect to P x x . . . x PN. Other
wise, this entropy is defined to be equal to + oo. 

As a relative or generalized entropy (concept introduced and studied many years 
ago, for instance, in [l]) the dependence tightness is non-negative and equals zero 
iff the random variables in question are mutually independent. Further, as in the case 
of mutual information (which may be considered to be a dependence tightness of 
a pair of random variables), the dependence tightness of a set of random variables 
produced by reducing the cr-algebras corresponding to the initial random variables 
Xu ...,XN is smaller or equal than l(Xlt ...,XN) with equality obtained iff the 
resulting Cartesian-product reduced tr-algebra is sufficient with respect to the pair 
of measures (Pi...jv, Pi x ... x PN). In the same context, the dependence tightness 
may be approximated by that of a suitable set of random variables produced by taking 
finite measurable partitions of the spaces corresponding to the initial random vari
ables, i.e. may be approximated by similar quantities introduced by S. Watanabe [2] 
in 1960 for measuring the degree of the statistical interrelation (multivariate correla
tion) of a set of discrete random variables. 

Obviously, it would be possible in introducing the concept of dependence tightness 
to apply other measures of divergence (generalized/-entropies) of Pi---JV with respect 
to Pj x ... x PN, similarly as in studying Data reduction problems beginning 
from [3] we arrived at [5]. However, as we shall see below, the Shannon's generalized 
entropy (corresponding to the convex function f(u) = u log u) used in the definition 
(2.1) presents certain advantages due to its additivity properties. 

Let us, for instance, take an arbitrary subset E = {Xh, Xh,..., Xim} of the set A 
of random variables given in (1.1). Then 

(3.1) I(XU ...,XN) = I(Xtl,Xh, ...,XJ + I(Xim+l, ...,XiN) + 

+ I([Xil,...,XiJ,[Xim+l,...,XiN]), 

or, more compactly, 

(4.1) 1(A) = 1(E) + I(A - E) + I(E, A - E) . 

In words, the dependence tightness of the set A of random variables is equal to the 
sum of the dependence tightnesses of the set E and its complement A — E and of the 



information (dependence tigthness) of the pair of vector random variables with 
their components contained in E and A — E, respectively. 

The concept of simplification of the dependence structure of a set A of random 
variables will be defined in the next section. As a result of such simplification the joint 
probability measure Pi.„N is modified to some other joint probability measure Pi...N. 

In order to judge the admissibility of the simplification we apply again the relative 
entropy H{P1,„N, Pi...N). We shall see that this entropy is equal to the loss of depen
dence tightness on passing from the original set of random variables to the simplified 
one. If this loss is no greater than a given positive e we shall say that the simplification 
in question is ^-admissible. 

In the sequel we shall compare this notion of e-admissibility with the concept of 
s-sufficiency, previously introduced by the author (cf. [3], [4], [5]) for characterizing 
reduced sample ff-algebras (statistics) in a Bayes statistical decision problem. The 
latter means that the loss of Shannon's information on the parameter r.v. contained 
in the sample r.v. caused by reduction is equal or less than e, what implies that the 
loss of decision quality (risk increase) thus resulting is "small" the smaller is e. If, 
now, instead of reduction, we simplify the dependence structure of the sets of random 
variables corresponding to the different statistical hypotheses by taking e-admissible 
simplifications, the situation remains the same up to the fact that the loss of informa
tion is here replaced by the average loss of dependence tightness. 

The concept of e-sufficiency may be considered as a special case of e-admissibility 
of dependence structure simplification. 

For obtaining suitable simplifications of the dependence structure of a set of 
random variables a method is described which is based on forming "coalition struc
tures" of the random variables by using relation (4.1) in such a way that the random 
variables in a coalition have a relatively high dependence tightness whereas the 
dependence between coalitions may be considered as negligible (memoryless coalition 
structure simplification) or may be replaced by a suitable Markov chain (Markov 
coalition structure simplification) in order that the total loss of dependence tightness 
is as small as possible. 

2. DEPENDENCE STRUCTURE SIMPLIFICATION 

Let us first introduce the concept of elementary simplification of the dependence 
structure of a set of random variables A = {Xu X2, ..., XN} with joint probability 
measure P^..^ (cf. (1.1)). For this purpose take an arbitrary proper subset E = 
= {Xh,Xh, ..., Xim\ of the set A and, further, an arbitrary proper subset F = 
= {Xh, Xh,..., Xjk} of the set E. Let us denote by PA-E\E and by PA-E\F the con
ditional probabilities of the vector r.v. having its components in the set A — E, i.e. 
of \Xjm+1*.. .., Xlrr~], given the value of the vector r.v. [Xh,..., X im] or the value of 
the vector r.v. [XJk,..., Xjk~\, respectively. 



Obviously, the joint probability measure Ei...^, denoted more compactly by PA, 
is generated by PE and PA-E\E- Similarly, let us denote by PA the probability measure 
generated by PE and PA~F.\F- By elementary (E, F)simplification of the dependence 
structure of a set A of random variables, where E cz E c A, we understand that the 
original joint probability measure PA is replaced by PA. Let us remark that by ele
mentary simplifications the identity of the random variables as such remains un
changed in the sense that this is the case for the corresponding marginal probabilities. 
The dependence tightness loss connected with the elementary (E, E)-simplification 
above is given by (cf. (2.1)) 

(1.2) H(PA, PA) = I(PA) - I(PA). 

The sense of an elementary simplification consists in replacing an original con
ditional probability, PA-E\E, by one of its conditional expectations, PA-E\F, 

(2.2) PA-W = ^PJPA-EM , 

where by gf we denote the c-algebra corresponding to the set E of random variables, 
J c S , with respect to which the conditional expectation is taken, being, thus, 
g-measurable. 

From this point of view, the concept of elementary simplification may be extended 
in order to concern the dependence structure of a general probability space (X, X, P). 
Let, thus, X' be a sub-«r-algebra of the a-algebra X, and X" a sub-or-algebra of X'. 
Let, further, P(;\X', x) be the conditional probability function corresponding to P 
and to X' (being, thus, .T-measurable) and P(-\X", x) that corresponding to P and 
to X". Obviously, the probability measure E is generated by its restriction P' on X' 
and the conditional probability function P(-\X', x). Similarly, let us denote by P 
the probability measure on X generated by P' and P(-\X", x). By elementary (X', X")-
simplification of the dependence structure of the probability space (X, X, P), where 
X" <= X' c: X, we understand that the original probability space (X, X, P) is replaced 
by (X, X, P). 

After this observation, let us introduce the concept of simplification of the depen
dence structure of a set A of random variables as a superposition of successive 
elementary simplifications. Essentially it consists of a cumulation of a certain number 
of compatible elementary simplifications in the following sense: After performing an 
elementary (E, E)-simplification of the set A, we perform a second elementary 
(Ei, E^-simplification of the set of random variables E which plays now the role of A 
while Ej plays the role of E and Ex the role of E, Fx c Ev <=. E. The joint probability 
measure of the set of random variables E, denoted as before by PE, will be replaced 
by PE, generated by PEl and PE-El\Ei, similarly as in the first step PA was replaced 
by PA, generated by PE and PA-E\F- AS to the probability measure of the original 
set A of random variables will be in this second step replaced by the joint probability 
measure PA, generated by PE and PA-E\F, i.e. P-A is generated by PEl,_PE-Ei\Ft and 
PA-E\F-



Continuing in this way, in the (n + l)-step, i.e. after performing the elementary 
(£„, E„)-simplification of the set E„_u where E„ c E„ cz E„_u the joint probability 
measure PA of the original set of random variables will be replaced by PA, generated 

by _>_„, P__.._£ll|-_, .-., P_-£,|F. a i l d FA-E\f 
Hence the definition: By (£, F; Eu F_; ...; £„, F ̂ -simplification of the depen

dence structure of the set A of random variables, where E„ c E„ c_ E„_ u ..., E, cz 
c _ , c £ , F c £ c i , w e understand that the original joint probability measure PA 

is replaced by P"A, resulting by application of the above sequence of compatible 
elementary simplifications. 

Obviously, (A — E, E - Eu E, - E2, ..., E„__ — £,„ E„) represents a partition 
of the set A of random variables. In terms of this partition, by consecutive application 
of the relation (4A) one obtains the following expression for the dependence tightness 
of this set with the original joint probability measure PA, 

(3.2) I(PA) = 7(A) = I(A -E)+ I(E - E_) + 1(E_ - E2) + ... 

... + / (£„_! - £„) + /(£„) + I(E, A- E)+ I(EU £ - E_) + 

+ I(E2, £, - £2) + ... + I(E„, £ . _ ! - £ _ ) , 

since 

1(A) = /(A - E) + 1(E) + I(E, A - E), 

1(E) = I(E - Et) + / (£ . ) + I(EU E - E_), ... 

. . . , / (£„_,) = - (£„-! - E„) + /(£„) + I(E„, £ ,_ . - E„). 

Theorem 1.2. The loss of dependence tightness caused by the simplification above 
of the dependence structure of the set A of random variables which changes the 
original joint probability measure PA to PA is given by (cf. (3.2)) 

(4.2) I(PA) - I(PA) = I(E, A - E) - /(£, A - E) + 

+ /(__., E- Ex)- I(FU £ - £ . ) + J(E2, E, - £2) - J(E2, E, - £ _ ) + .. . 

... + -(£„, E„_! - E„) - /(£„, £„_! - E„) 

and may be considered as the sum of dependence tightness losses produced by the 
corresponding sequence of elementary simplifications, i.e. 

(5.2) I(PA) - I(P"A) = H(PA, PA) = H(PA, PA) + H(PE, PE) + 

+ H(PEl,PEl) + ...+H(PEn_ , ,£_„.,) = 

= I(PA) - I(PA) + I(PE) - I(PE) + ... + .(£_„_,) - /(_>_._,). 

Proof. The relation (4.2) results from the fact that I(P"A) has an expression dif
fering from the expression (3.2) of l(PA) only as it concerns the informations (depen
dence tightnesses) of pairs of vector r.v. there figuring: instead of E we have E since 



444 the conditional probability PA.m is replaced by PA_E{F,..., instead of E„ we have F„ 
since the conditional probability PE„^-En/En is replaced in constructing P"A by 
PEn-i-En\Fn-

As to the first equality (5.2), it results similarly as (1.2) from (2.1) applied for PA 

and for PA, respectively, taking account of the fact that in both cases the product 
measure of the marginals is the same and that 

, , „ . . , dP^ , dP^ , dP"A 

(6.2) l o g - ^ = log 4 log dP^ dPx x ... x dP,v dP, x ... x dPjv 

while all the integrations are performed (due to the construction of PA) with respect 
to PA, The other two equalities are obtained in a similar manner. In particular, 

(7.2) H(PA, PA) = H(PA, PA) + H(PA, P\) + ...+ H(P"A\ F») 

and H(PA, PA) = H(PE, PE), ..., H(P"A\ P"A) = H(PEn_t, P,.„_)• Thus, the theorem 
is proved. 

In the case of a general probability space (X, X, P), the simplification of its depen
dence structure may also be conceived as resulting from a sequence of compatible 
elementary simplifications defined as above by the triplets of c-algebras (X'[ c 
c 3£j c 3E), (Xj <= 3£2 c X[),..., (3c^' <r Xf, c 3£^_t). We shall not insist in this 
paper on this question. 

3. ^ADMISSIBILITY AND e-SUFFICIENCY IN BAYES STATISTICAL 
DECISION PROBLEMS 

As said in the Introduction, a dependence structure simplification, changing the 
original probability measure P to P, is e-admissible if the relative entropy (diver
gence) H(P, P) of P with respect to P, resp. if the loss I(P) - l(P) of dependence 
tightness, is no greater than a given positive e. 

In order to understand the significance of this concept let us place, for instance, 
in the frame of a Bayes statistical decision problem. Let, thus, consider a system 
{P„, u e U} of statistical hypotheses-probability measures on a sample measurable 
space (X, X). Let (U, U) be the measurable parameter space. 

(1-3) PG(-) = £p„(-)dQ(«) 

is the marginal sample probability measure corresponding to the a priori probability 
measure Q on (U, U). Similarly, by QP we shall denote the probability measure 
on (U x X, U x X) generated by Q and {P„, ueU}. Note that, by hypothesis, for 
every set E e X the u-function PU(E) is U-measurable. 



Let us, now, for every ueU consider a dependence structure simplification of P„ 
to P„ and denote by QP the probability measure on (U x X, U x X) generated by Q 
and {Pu, u e U}. The question arises what is the risk increase if instead of applying 
an optimal (Bayes resp. epsilon-Bayes) decision function b0 for discerning the sta
tistical hypotheses Pu, u eU, one applies for the same purpose a decision function B0 

which is optimal for discerning the simplified statistical hypotheses Pu, ueU. 
In engineering or medical applications, for instance, there is very often the tendency 

to simplify at the extreme the dependence structure of the observed random vector 
by taking its components conditionally independent between them for every sta
tistical hypothesis. 

A similar question of risk increase was considered by the author in studying Data 
reduction problems in statistical decision, (see, for instance, references [3], [4], 
[5], [6]), and there were obtained some interesting estimates of this risk increase in 
terms of generalized j-entropies (j-divergences) of the probability measure QP 
before reduction with respect to the probability measure QP after reduction. All 
these estimates may be used directly in estimating the risk increase considered above 
which is due to the dependence structure simplification of the statistical hypotheses. 
It is sufficient to replace QP by QP. We shall not give here examples of such estimates 
but we shall concentrate our attention on the relative Shannon's entropy H(QP, QP) 
knowing that the smaller is this entropy the smaller is the risk increase above, ob
taining the value zero if H(QP, QP) = 0, i.e. iff QP = QP. 

Theorem 1.3. If the dependence structure simplifications of the different statistical 
hypotheses in the Bayes statistical decision problem considered above are e-admis-
sible[g], then 

(2.3) H(QP, QP)^e. 

If the sample random variable is a vector one and if the simplifications above 
concern the dependence structure of the set of its components, then 

(3.3) H(QP, QP) = J [/(P„) - /(P„)] dQ(u), 

i.e. it is equal to the average dependence tightness loss. 

Proof. Inequality (2.3) results from the relation 

(4-3) H(QP, QP) = f H(PU, P„) dQ(u) 

since the e-admissibility assumption implies H(PU, Pu) ^ e, u e U, [Q]. 
The equality (3.3) is a consequence of (4.3) and of the assumption concerning 

the character of the simplifications which implies that (cf. (5.2) of Theorem 1.2) 
H(PU, Fu) = I(I"U) - I(-Pu). Thus, the theorem is proved. 



Let us, now, recall the concept of e-sufficiency introduced in [3]. We say that the 
reduced <r-algebra X' - X is s-sufficient with respect to Q and the system {P„, ueU} 
of statistical hypotheses if the loss of Shannon's information on passing from X to X' 
is equal or smaller than e > 0, i.e. if (denoting by n the parameter r.v. and by £ 
resp. £,' the sample r.v. before resp. after reduction, and by P'u and P'Q the restrictions 
of Pu and PQ on X') 

(5.3) I(n, $) - I(r,, £') = flog - ^ - dP„ d«2(M) - flog ^ dP„ dg(M) £ e . 
J dPQ J d P e 

More generally, if P„ is any extension of Pu from X' to I , « e U, and if QP is gen
erated by Q and {Pu, u e U}, we say that X' is s-sufficient if H(QP, QP) g e. One 
finds (see [3]) that for a given 2 the best extension of P„ to Pu in the sense of mini
mizing the above entropy is obtained by taking 

(6.3) dPu(x) = dP'u(x) dPQ(xjX', x) 

where PQ('1%', X) is the conditional probability function corresponding to PQ and 
to X', i.e. for which it holds 

(7.3) dPe(x) = dPQ(x) dPQ(x\X', x) . 

In this case one easily obtains 

(8.3) H(QP, QP) = I(n, <;) - % ?) = 

= loss of Shannon's information on passing from X to X' . 

It is instructive to compare (3.3) of Theorem 1.3 with (8.3). 

4. e-SUFFICIENCY AS SOME KIND OF e-ADMISSIBILITY 
OF DEPENDENCE STRUCTURE SIMPLIFICATION 

Placing us in the same frame as in Section 3 we remark that P„ as defined by (6.3) 
cannot be in general considered as resulting from some dependence structure 
simplification of Pu since, by definition, one should find a sub-u-algebra X'u of X' 
such that Pu(-jX'u, x) = PQ('I%', X), ueU, [ g ] . Thus, in general, this "individualis
tic" (with respect to each statistical hypothesis) approach does not permit to conceive 
data reduction as some kind of dependence structure simplification. 

However, the latter is acheived if we consider dependence structure simplifications 
of QP rather than of the inidivudal P„'s. Indeed, it holds 

Theorem 1.4. The probability measure g P on (U x X, II x X), generated by Q 
and {Pu, u e U} as defined by (6.3), may be obtained by dependence structure simpli
fication of QP. 



Proof. For QP it holds 

(1.4) dQP(u, x) = __>_"(«> *) dQP(x/U x X', u, x), 

where QP' denotes the restriction of QP on U x X' and is generated by Q and 
{Pu, u e U}, i.e. dfiP'(", ») = de(«) dP'(x). As to e i"(-/U x * ' > M> x ) i s t h e condi
tional probability function of QP which is U x X'-measurable. 

Let us, now, take as sub-a-algebra of U x X' the cr-algebra {0, U} x X' and con
sider the following dependence structure simplification of QP defined by 

(2.4) dQP(u, x) = dQP'(u, *) dQP(xj{$, U} x X', u, x ) . 

Obviously, gP(-/{0, U} x X', u, x) = PQ(-\X', x) so that QP = QP. The theorem 
is, thus, proved. 

5. A COALITION METHOD FOR OBTAINING SUITABLE 
SIMPLIFICATIONS OF THE DEPENDENCE STRUCTURE 
OF A SET OF RANDOM VARIABLES 

Placing us in the frame of Section 2, we may see that any dependence structure 
simplification, conceived as a sequence of elementary simplifications applied one 
after another on the result obtained by the preceding ones, may be viewed as some 
(E, E; Eu E,; ...; E„, E„)-simplification. Whatever be the case, the final result of 
a simplification concerning the dependence structure of a set A of random variables 
may be described by a partition (coalition structure) of the set A in some n disjoint 
sets G], G2, ..., G„, and by a sequence of n - 1 subsets Fu E2, ..., E„_j of the set A 
such that, for some permutation Git, ..., Gin of the sequence Gu ..., G„, it holds 

(1.5) E! <= Gh, F2 c_ Gfl u Gh, ..., E„_! c Gh u Gh u ... u G,.., . 

The probability measure PA of the simplified dependence structure is then that 
generated by PGn, PG{2[Fl, PG,3\F2, •••, IJoi„iF„-1-

Note that PA is correspondingly generated by: 

PG,I, PG,2\Gn, PG,3\G,IUG,2, •••' I>G,„|GauGj2w...uG1„-i • 

The dependence tightness I(PA) is given by 

(2.5) I(PA) = I(Gh) + ...+ I(GJ + I(FU Gh) + ...+ /(E-_1 ; C J . 

A memoryless coalition structure simplification is obtained if 

(3.5) E! = 0 , . . . ,E„_1 = 0 



and, thus, 

(4-5) l(PA)=l(Gl) + ...+l(G„). 

A Markov (first order) coalition structure simplification is obtained if 

(5-5) Fl = Gil,...,Fn_1 = Gin_1 

and, thus, 

(6.5) I(PA) = /(GO + ... + I(Gn) + l(Gh, Gh) + ... + I(Gin_L, Gin). 

For obtaining e-admissible simplifications suitable from the point of view of 
handling with them one may try to find memoryless ones with the maximal n com
patible with the given 8. If this maximal n = 1, for instance, and, thus, non in
teresting, one may try to construct Markov coalition structure simplifications. For 
a given coalition structure (G_, ..., G„) it is then desirable to take such a permutation 
Gh, ..., Gin that the corresponding dependence tightness, given by (6.5), be maximal 
in order that the dependence tightness loss H(PA, PA) = l(PA) — l(PA) be minimal. 
For doing this it is possible to proceed as follows. 

For every i_ = 1, 2, ..., n, take i2 + ij such that l(Gtl, Gh) = maxI(Git, Gj); 
j*h 

further take i3 such that l(Gh, Gh) = max/(G i2, Gj), and so on. Let 
j*h,h 

(7-5) S(i1)=l(Gh,Gh)+...+I(Gin_l,Gin) 

and take It such that 

(8.5) S(I_) = max S(i_) . 
ii = l n 

The loss minimizing permutation is then given by GIi,...,GIn constructed as 
above. 

However, the main question: how to choose the coalition structure G_, ..., G„, 
remains open. In the sequel we shall indicate a method which may be useful in 
searching for coalition structures maximizing l(Gt) + ... + l(Gn) for different n's 
(cf. (4.5) and (6.5)). This method, inspired by coalition game theory, proceeds as 
follows: G) is taken such that, for a given positive parameter c which in the general 
case may depend on | o i | (= number of random variables contained in the set Gt), 
the quantity 

(9.5) KGi) = l(Gl)-cl(G A-G_) 

lGi | 

is maximal. Remark that by taking G_ in a memoryless coalition structure simplifica
tion, there is a gain of dependence tightness /(GO but, at the same time, a definite 
loss of dependence tightness l(Gu A - GO which in the Markov case (cf. (6.5)) 



may be partially recuperated. The parameter c is weigting the compromise we make 

between this gain and this loss per random variable. 

Similarly, G2 is taken as a subset of A — Gi which maximizes 

(9.10) KG2)J{G2)-cl{GrA-Gx-G2) 
\G2\ 

and so on. Thus, the number n of coalitions also results and depends on the para

meter c. A relative program was constructed [7]. 

(Received July 28, 1977.) 
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