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Discrete Linear Model Following Systems 

VLADIMÍR KUČERA 

This paper investigates the problem of designing a dynamic compensation for a discrete linear 
plant so that the transfer matrix of the resulting feedback system coincides with a prespecified 
model transfer matrix. 

A new formulation of this problem is developed in which only output, not state, dynamic feed
back is used. A special attention is given to stable model following systems. A necessary and suf
ficient condition for a solution of the model following problem to exist is given. This condition 
is explicit and, when satisfied, leads to a simple procedure for constructing a solution. Also the 
class of admissible models for a given plant is completely and explicitly characterized. 

I. INTRODUCTION 

This paper investigates the problem of designing a dynamic compensation for a dis
crete linear plant so that the tansfer matrix of the resulting feedback system coincides 
with a prespecified model transfer matrix. 

A continuous version of this problem was considered by Erzberger [2], Wolovich 
[7], Wang and Desoer [6], Moore and Silverman [4], Morse [5], and others. In 
[4,'6, 7] it is called the exact model matching while in [2, 5] the model following 
problem. The common approach is to use either static or dynamic state feedback 
to achieve the specified model transfer matrix. Implicit in this approach is the assump
tion that the state of the plant is measurable. It is more realistic, however, to assume 
that only output of the plant is available for measurement. 

This idea motivated a conceptually new formulation of the model following 
problem in which only output, not state, dynamic feedback is used. The structure of 
such a model following system seems, however, as general as that using the state 
dynamic feedback. 

In applications, the model following system is often required to be stable. Stable 
model following systems have obtained relatively little attention so far, the best 
available result being due to Morse [5]. In our formulation both types of model fol
lowing problem can be directly solved in a unified way. 



II. PRELIMINARIES 

Let ~; be a field. Denote 5 { z _ 1 } the domain of causal rational functions over <$f, 
i.e., the set of rational functions a which admit the representation 

(1) a = a0 + a,z~x + a2z~~2 + ... , « t e ~ 

and denote ~r+{z_)} the domain of stable rational functions over J , i.e., the set of 
elements (l) for which the sequence {a0, au a2 , . . .} converges to zero with respect 
to a given valuation in ~f. 

The set of elements (l) with only a finite number of nonzero coefficients forms the 
domain ~f[z~x] of polynomials in z" 1 over ~f. A polynomial a e ~ f [ z _ 1 ] is said 
to be causal if \\a e «5{z-1} and it is said to be stable if \\a e ~ ; + {z - 1 } . For a, b e 
e 5 [ z _ 1 ] we write a ~ b to denote that a divides b and simultaneously b divides a. 

Let us write ~f/m, ~f.,m[~_1]> ~Stm{z_1} a~d ~f.,»i{~-1} f° r t n e s e t s of Z x m 
matrices over g, 5 [ z _ 1 ] , ~f+{z -1} and ~f{z-1} and speak respectively of matrices, 
polynomial matrices, stable and causal rational matrices. The m x m identity matrix 
will be denoted by Im. 

A discrete, linear, constant, n dimensional, m input, I output system defined over ~r 
is associated with a quadruple (A, B, C, D) of matrices A e ~;„„, B e ~*„,m, C e ~?j „, 
and D e ~f.im. For n = 0 matrices A, B, and C disappear; only the D remains. 

The polynomial det(I„ - z _ 1A) e 5 [ z - 1 ] for n > 0 or the polynomial 1 for 
n = 0 will be referred to as the pseudocharacteristic polynomial of (A, B, C, D). 
Note that a system is stable if and only if its pseudocharacteristic polynomial is 
stable. 

The transfer matrix s = D + Z_1C(I„ - z ^ A ) - 1 B of the system (A, B, C, D) 
is always a causal rational matrix; it is a stable rational matrix for a stable system. 
A pair of polynomial matrices P1 e ~f/,.[z_1], Q2 £ <5/>m[z_1] is said a left coprime 
factorization of sif S = P1

iQ2 and Pu Q2 are left coprime; similarly a pair of poly
nomial matrices Qi e 5 / i m[i?_ 1], T2

 e 5m ,m[ z _ 1] is a right coprime factorization 
of sif s = Qi-PJ1 and Qu P2 are right coprime. It is easy to see [3] that det Pt ~ 
~ det P2 is equal to the pseudocharacteristic polynomial of a minimal realization 
ofs. 

III. FEEDBACK SYSTEM 

Prior to the formulation of the model following problem we shall study some 
properties of the feedback system characterized by the equations 

(2) j , = Te3, y2 = Re, , y3 = He2 

ei = »'i - _Vi , e2 = w2 + y2 , e3 = w3 + y3 . 



Here He g i > m{2_ 1} is the transfer matrix of a given plant 2tf and the R e g m i ? {z - 1 } 
and J e g g i { z - 1 } are transfer matrices of two compensators 0t and ST. Without 
any real loss of generality we assume that Jf, 01, and ST are minimal realizations of 
H,R, and T, respectively. The inputs to the system are wu w2, w3 and the outputs 
of the system are eu e2, e3. 

The transfer matrix of this feedback system has the form 

(Iq + THR)1 -TH(lm + RTH)1 -T(l, + HRT)1 

R(lq + THR)1 (Im + RTH)1 -RT(I, + HRT)1 

HR(lą + THR)1 H(lm + RTH)1 (It + HRT)1 

h 0 T 
R Im 0 
0 -#/, 

ғ = 

The identities 

r (J , + HRT)1 = (Iq + THR)1 T 

R(lq + THR)1 = (/„, + i ? J # ) - 1 R 

H(lm + RTH)1 = (/, + HRT)1 H 

can be directly verified. 

Let Au B2 and Bu A2 be left and right coprime factorizations of # , let Ru S2 and 
Sl5 R2 be left and right coprime factorizations of R, and let Tu U2 and Uu T2 be 
left and right coprime factorization of T. Then matrices 

ri = 

Tt 

-s2 

0 

0 u2' 
Ri 0 

в2 
Ax 

G7 = 
Tt 

0 0 " 
0 Ki 0 
0 0 At 

form a left coprime factorization of F while matrices 

" R 2 0 0 " 
Gt = 0 A7 0 , E7 = 

R2 0 0 " 
0 A2 

0 
0 0 T2 

R2 o uì 
- S i A2 0 

0 -вt T2 

form a right coprime factorization of F. Since J^, 01, and 9~ are minimal realizations 

of H,R, and T, the feedback system studied is a minimal realization of F, see [ l ] . 

As a result, the pseudocharacteristic polynomial c of the feedback system is 

(3) det Ft ~ det F2 

To obtain explicit expression for c we define polynomial matrices Sa e 5m,,[z x ] 

and T,, e g m , m [ z _ 1 ] such that 

(4) ЅгT ! - 1 = T"1^ , det Tt ~ det T,,. 



Lemma 1. Let 

(5) C = T0R1A2 + SaU2Bi . 

Then c ~ det C. 

Proof. Applying the determinant formula for block matrices to Fu we obtain 

det Ei = det T< detГ Ri SгTГ^UД 

l-B2 Ai J 

= det T! det At det (Ri + S^^U^A^B^ 

= det 1\ det Ai det (R t + T/^U^A^1) 

= det Ti det Ai det AJ1 det TJ1 det (T^RiA2 + SaU2Bt) 

~ det C • 

on using (4) and (5). Our claim follows from (3). 

There are five more expressions for the pseudocharacteristic polynomial c; however, 

they are superfluous for our purposes. They arise naturally in the stability theory 

of feedback system (2). 

IV. CAUSAL MODEL FOLLOWING PROBLEM 

Roughly speaking, the problem of interest is to design a dynamic compensation 

for a given discrete linear plant so that the transfer matrix of the resulting feedback 

system is the same as a prespecified model transfer matrix. 

Let the plant 2$ be characterized by the equation 

(6) y3 = He2 , 

where He ^i,m{z-1} is the transfer matrix of Jf. 

Consider the feedback law 

(7) R1e2 =Pv- Ty3 , 

where P E ^ J Z " 1 } , R e gm,,„{z~1}, and I E ^ Z " 1 } are transfer matrices of 

three compensators 3P, 3k, and 3~, respectively, and the v is a new (command) input. 

Application of this law to the given plant results in a system Ji described by (2) 

with input wt = Pv and output e3, the remaining inputs w2 and w3 being zero. 

Note that the tranfer matrix of this system J4 given in (6) and (7) is 

M = HR(Jm + THR)1 P. 

The precise formulation of our problem is as follows. 

Causal Model Following Problem (CMFP). Given a plant Jf, which is a minimal 

realization of He g(,m{z - 1}, a n d a model transfer matrix Me g, i f,{z_ 1}. 



Find compensators 3P, 0t, and 9~ which are minimal realizations of P e 8fm,p{z 1 } , 337 
R e ^ ^ { z ' 1 } , and Te 5m,i{z~1}, respectively, such that M = HR(lm + THR)1 P. 

• 
Note that the formulation is completely general and avoids any restrictive assump

tions on both plant and model. 
In the following we state a necessary and sufficient condition for the existence of 

a solution (i.e., a triple P, R, T) to CMFP. This condition is explicit, extremely simple 
and, when satisfied, leads to a procedure for constructing a solution. 

Write, as before, Au B2 and Bu A2 for left and right coprime factorizations 
of H, Ru S2 and Su R2 for left and right coprime factorizations of R, and Tu V2 

and Vu T2 for left and right coprime factorizations of T. 

Theorem 1. There exists a solution to CMFP if and only if 

(8) M = BXL 

for some L e 5m,i,{z_1}-

Proof. If P,R, and J is a solution to CMFP, then 

M=HR(lm + THR)'1 P 

= H(lm + RTH)1 RP 

= H(im + Rr1S2T1"
1U2B1A2"

1)-1i?p 

= H(lm + R^T^SJJiB^1)-1 RP 

= BXA2
X A2(T^RtA2 + S . U ^ ) - 1 T^R^S^ 

= B.C'TpP. 

Hence (8) is true for L = C_1T^P. Now det C, being a pseudocharacteristic poly
nomial, is causal and, therefore, L is causal rational matrix. 

Now suppose that (8) holds and we shall construct a solution. Solve the equation 

(9) XA2 + YBX = Im 

for polynomial matrices X, Ysuch that det X is causal. Then 

(10) P = L, R=XX , T=Y 

is a solution to CMFP. Indeed, 

M = BXL 

= Bl(XA2 + YB^Y1 L 

= B1A2
1(lm + X-'-YB^1)-1 X~'L 

= H(Im +RTH)XRP 

= HR(lm + THR)1 P. • 



The sufficiency part of the above proof suggests a simple procedure for constructing 
a solution in the form (10). There is another even simpler solution to CMFP, namely 
P = A2L, R = Im, T = 0. Otherwise speaking, whenever CMFP is solvable, the 
desired Mean be achieved by a feedforward compensation only. 

V. STABLE MODEL FOLLOWING PROBLEM 

In applications we often require model following systems which are stable. A theory 
of such systems is developed here; it parallels the theory of (possibly unstable but 
causal) model following systems and also leads to a simple direct procedure for 
obtaining a solution. 

Stable Model Following Problem (SMFP). Given a plant Jf, which is a minimal 
realization of He ^^Ji'"1}, and a model transfer matrix M e ~lUp{z~1}. 

Find compensators SP, 3k, and !F which are minimal realizations of Pe 5m,p{z_1}> 
R~ 3m,m{z_1}> and re5m,;{z_1}> respectively, such that the resulting system Ji 
is stable and M = HR(lm + THR)1 P. D 

We can now state and prove a solvability condition. 

Theorem 2. There exists a solution to SMFP if and only if 

(11) M=BXL 

Proof. YLP,R and J is a solution to SMFP, then, as in the proof of Theorem 1, 
(11) holds for L = C_1T/!/

>. Now Ji stable implies that P is a stable rational matrix 
and that det C is a stable polynomial. Therefore, £ is a stable rational matrix. 

Now suppose that (11) holds. Then (10) is a solution to SMFP. Indeed, P is now 
a stable rational matrix. Moreover, matrices X, Im form a left coprime factoriza
tion of R and matrices Im, Y form a left coprime factorization of T. Hence 
det( /mXA2 + ImYB^) = 1 is a pseudocharacteristic polynomial of the feedback part 
of Ji. As a result, the model following system is stable and M = HR(lm + THR)~L P 
as shown in the proof of Theorem 1. D 

Theorem 2 leads to a direct constructive procedure for obtaining a solution to 
SMFP, if one exists. What is particularly interesting is the complete similarity of the 
synthesis procedures for CMFP and SMFP. The only difference is in the matrix L 
implied by the solvability condition. 

Note that the pseudocharacteristic polynomial cM of the model following system Ji 
is the product of the pseudocharacteristic polynomials of 0> and of the remaining 
feedback part of Ji. The above described procedure makes the latter polynomial 
equal to 1 and, hence, we have 

cM ~ det Lt ~ det L2 , 



where Lt and L2 are denominator matrices from left and right coprime factorizations 
o f£ . 

It is to be noted that for a stable plant Jf we have also the immediate feedforward 
solution P = A2L, R = Im, T = 0 for SMFP, like for a causal plant and CMFP. 

VI. COMPUTATIONAL ALGORITHMS 

The synthesis procedure described in this paper consists of three steps, namely 
computing a right coprime factorization Bu A2 of H, then extracting Bx from M, 
and solving a matrix equation XA2 + YB1 = Im for X, Y with det X causal. These 
steps can be efficiently algorithmized as shown below. 

Computing a right coprime factorization Bu A2 of H. 

Let H=BJa, where o e g f z " 1 ] , Be g . J V 1 ] . Then H = 5 A " 1 = A,_1B, 
where A, = a/, and Am = alm. The matrices B, Am already form a right factorization 
of H; however, this factorization is not always right coprime. To ensure right 
coprimeness, we have to extract the greatest right divisor common to B and Am. 

This is most efficiently done by applying elementary column transformations Q 
to transform the matrix 

K = [A , B] 

to a lower triangular form, 

where Dt 6 5 , , , [ z - 1 ] . Write 

KQ = [Z>. 0 ] , 

Ö = Гôn ÔiЛ 
Lß21 Ö22J 

for g 1 2 e *5,,m[z-1] and g 2 2 e t5m ,m[z - 1]. Then Ag12 + Bo 2 2 = o, i.e., A"1!* = 
= —Q12Q22 and matrices ot2, o22 are right coprime since Q is a unimodular 
matrix. Hence the pair o12, - Q22 is a right coprime factorization of H. 

It is convenient to obtain the factorization in which Bi is a (generalized) lower 
triangular matrix. Therefore, we again apply elementary column transformations E 
on g 1 2 to get Q12E = \B11 o], where the matrix Blt is formed by the nonzero 
columns of Q12E. Then 

Bi = [ B n 0 ] , A2 = - e 2 2 E . 

Extracting 1^ from M. 

Let 5X = [Bu 0], where 5 t l e g , , r [z _ 1 ] is a (generalized) lower triangular 
matrix and r = rank Bt. Then equation 

(12) M = BtL = \Bn 0-]]^ = BaLi 



340 for Lt can be written as follows 

~Ь_x 0 .. .0 " 

mu . •ЩP ь21 
Ьгг- .0 X_l • ..xip 

«21 • •• m2p = 
Ъrl Kг •• •brr 

* 2 1 • ••x2p 

mn . .. mlp_ 

Љ bl2 •• • ъlr_ 

xri • • x r p _ 

Due to the form of Bit, the elements xiS of L« can be computed successively starting 

with the first row. After computing the last row of L_, the remaining equations, 

if r < I, must hold identically. Otherwise there is no L to satisfy equation (12). 

It remains to check if all elements xfj- of Lt are causal rational functions for CMFP 

or stable rational functions for SMFP. If not, the respective problem has no solution. 

The matrix L2 can be chosen arbitrarily within causal or stable rational matrices. 

Solving the equation XA2 + YB^ = Im. 

This matrix polynomial equation can easily be solved by applying elementary 

row transformations P to transform the matrix 

to an upper triangular form, 

where D2 e g m ; M [ z - 1 ] . Write 

PJ = -m 
p=p»ч 

LI-21 Pгг\ 
for P u e &»,*[- _ 1 ], P « e S U V - 1 ] , P j ^ g j z " " 1 ] , and P 2 2 6 gf, , ,^" 1 ] . Then 

PnA2 + P12B_ = D2 

P2iA2 + P22Bt = O 

with D2 being an upper triangular unimodular matrix (due to right coprimeness 

of B1 and A2). Thus, for an arbitrary matrix T_ _^m,^_z~l_> 

(13) X = D2

1Pil+TP2l 

Y = D~ xPi2 + TP22 

is the general solution of equation (9). 



The only problem remaining is to choose a particular solution X, Ysuch that det X 341 
is a causal polynomial; this is effected by an appropriate choice of Tin (13). Let 

X = X0 +Xxz-X + ... 

D^Pu = M 0 + M1z'1 + ... 

P21 =N0 +NlZ~
l + . . . 

Then T = T0, a constant matrix such that X0 = M0 + T0N0 is nonsingular, yields 
the desired particular solution. 

Note that when 2?. is divisible by z _ 1 (the plant exhibits a delay), we can always 
set T = 0 since M 0 is already nonsingular. 

VII. EXAMPLE 

To illustrate the synthesis procedure, consider SMFP for 

Я = 

1 1 

1 

1 - z" 

1 

M = 2 - z" 

2 + z 

over the field of reals. 
We simply compute a right coprime factorization of H, say 

«*=C-^4 <-C-.--.!£] 
and check for (11). We obtain 

L ш 
2 - z 

3 

L 2-z-'J 
and, therefore, a solution exists. Since equation (9) is satisfied e.g. by 

- i + z~l r 
- l - z " 1 oj' 

a solution to SMFP is obtained using (10) 

X = Y = 
_ l - z - - l j ' 

P = 
2 - z" 

3 

2 -

R = 
0 -

т = 
z-2 0-

1 - z " 2 - 1 

The pseudocharacteristic polynomial of the resulting mode] following system is 
c M = 2 - z~\ 



VIII. CONCLUDING REMARKS 

A new approach to the design of model following systems with dynamic output 
feedback has been presented. A necessary and sufficient condition for the existence 
of a solution has been given in the form 

(14) M= BtL, 

where L is to be causal rational matrix for CMFP or a stable rational matrix for 
SMFP. This condition not only leads to a simple and direct procedure for con
structing a solution but also completely and explicitly characterizes the class of 
achievable model transfer matrices for a given plant. 

Even though only a dynamic output feedback is used, it seems that the presented 
approach is as powerful as when a dynamic state feedback is allowed. To illustrate 
this point, consider a single-input single-output plant and model. Then it was shown 
in [4] that CMFP is solvable by dynamic state feedback if and only if H~XM does 
not have more zeros than poles, which is equivalent to L being causal in (14). As to 
SMFP, certain subset of zeros of H is in addition required to be stable [5]. It is 
plausible that it is the subset of those zeros of H which are not zeros of M, this being 
equivalent to L stable in (14). 

The synthesis procedure described in this paper is also computationally attractive. 
It consists of three steps, namely computing a right coprime factorization Bu A2 

of//, then extracting Bx from M, and solving the matrix polynomial equation XA2 + 
+ YBl = Im, all of which can be efficiently algorithmized. 

(Received September 22, 1976.) 
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