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The Beginning of a Mathematical 
Simulation Theory 

HANS-DETLEF GERHARDT 

The paper contains the first step to a mathematical theory of simulation. The problem of the 
simulation of a first abstract mathematical system by a second with respect to the input-output 
behaviour as well as the input-output behaviour and the state is considered. A precise mathemati
cal definition is given. An example is provided which gives evidence for the applicability of the 
theoretical development. 

1. INTRODUCTION 

In this paper the term "simulation" means the realization of experiments with the 
aid of mathematical models whereby the simulator is a computer (digital, analogue 
or hybrid computer). The aim of simulation is the analysis/synthesis/development 
of a system/study of a system. 

An interaction between a man considering a simulation problem and a computer 
is advantageous. Today simulation methods solving different problems are used 
frequently. 

Reading some of the articles available [3], [4], [6], [8], [9], [10], we see that there 
are important differences by the use of such notions as original, object, simulation, 
simulation model etc., and furthermore there exist many unsettled theoretical prob
lems. Some theoretical problems of simulation have been presented in [5], [7], [11], 
[12], [14]. 

In this paper, we shall be concerned with the problem of the simulation of a first 
abstract mathematical system by a second. A precise mathematical definition will 
be given. 

An example is provided which gives evidence for the applicability of the theoretical 
development. 



2. GENERAL PROCEDURE OF THE SIMULATION 

Given an original, an important problem is the consideration of reactions of the 
original when we have actions in the environment of the original. Inversely, an 
important problem is to design an original with determined properties. An additional 
interesting question is the consideration of the possible effects on the original in order 
to obtain a determined reaction of the original. 

Solving these problems, we replace the original by a suitable model which is similar 
(from a certain point of view) to the original and more convenient for the study than 
the original. The model reproduces all the pertinent properties and important 
interactions with the environment possessing the original under consideration. If 
the model exists in reality and it is investigated by real experiments, we come to the 
well known form of simulation. The model is signified as a simulator. 

If the model is a mathematical one two possibilities exist to solve a given problem. 
First it is only a computation and experiments are not necessary, that means at least 
one practical mathematical algorithm exists for the computation of the solution of the 
given problem, e.g. 
— solution of a linear equation system 
— transport optimization 
— quadrature by Monte-Carlo-method. 

Second, if this is impossible or if the expense is very large for the application of 
such an algorithm, the simulation is a possible method to solve many problems given 
above. 

In the following we consider the procedure of the simulation as illustrated in Fig. 1, 
where 0 is Original, OS Original system, M Mathematical model, DM Derived 
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mathematical model, CM Computation model, CAS Computer as a simulator, OT 

Original test plan, MTP Mathematical model test plan, DMTP Derived mathematical 

model test plan, CMTP Computation model test plan, STP Simulation test plan, 

PRC Plan of result check, PEA Plan of experiments automation, OD Original 

domain, AD Abstract domain, SD Simulation domain. 

Original systems are real or hypothetical systems that are studied (or developed) — 

regarding given aims — with the aid of experiments to be conducted with models of 

the original systems. 

Simulation models are models of the original system with the following properties: 

1. The model describes all the properties which are considered to be important to the 

original system. 

2. The aim of simulation is described at the level of the model. 

3. In order to obtain the aim of simulation it is possible to carry out manipulations 

with the model. 

4. The results obtained for the model can be transferred to the original system. 

If the simulation model is a mathematical model it is called "mathematical model 

of the original system", which will be abbreviated "mathematical model". 

Sometimes it is impossible to map the mathematical model into a computation 

model at once. For example, the original system is described by means of partial 

differential equations and, the given resources (e.g. the available simulation language) 

do not allow to solve the partial differential equations. 

Then either we extend the real resources or we map the mathematical model into 

a derived mathematical one. If it is possible we construct a derived mathematical 

model as a system of ordinary differential equations instead of the partial differential 

equations of the mathematical model. It is clear that we obtain only an approximating 

solution. 

Now we have to map the derived mathematical model into a computation model 

suitable for running on a computer. As an example we consider the heat transmission 

in the insulating layer of an electric cable. If u0 is the constant temperature of the 

electrical conductor, us the constant temperature of the environment of the cable 

where us < u0 we have the equation of heat transmission 

\dr2 r dr] 

with the conditions 

« м = {"° 

u(r,0) = { M o 

for r й r0 

for r ^ R , 

for Г 5Í Г0 

for r > r0 , 



that means, at the beginning the insulating layer has the temperature of the en
vironment. See Fig. 2. 

If it is impossible to solve this problem in a direct way (e.g. if an analogue computer-
exists only), one tries to build a derived mathematical model. We replace the expres
sions dujdr, d2ujdr2 by difference quotients. 

Fig. 2. 

Therefore we obtain 

dut _ ^ / M ; + 1 — 2M; + M;_j 1 M ; + 1 — M;_ 

dt \ (Ar)2 r0 + i Ar 2Ar 

for i = 1(1) n with the initial values 

M;(Q) K for 1 - 0 
(MS for i = 1(1) n . 

The conditions yield M0 and w„+1 = us. In order to solve this problem on an analogue 
computer a qualitative and a quantitative programming are necessary. 

In order to solve this problem on a digital computer we formulate the computation 
model in a simulation language as CSMP/III. Thereby the scientist can select one 
of the given integration methods. 

It is often difficult to build a mathematical model. Some methods which can be 
used are considered in [2]. 

If we have a computation model derived from a mathematical model in most 
cases, it is necessary to test by experiments with the computer whether or not the 
computation model simulates the original system, i.e. roughly speaking the results 
which are obtained by experiments with the computer and transferred to the original 
system are similar (from a certain point of view) to the results obtained by experiments 
with the original system. 

If the computation model does not simulate the original system various reasons 
are possible. 

1. The quality of the mathematical model is unsatisfactory. 



2. The derived mathematical model does not simulate the mathematical model. 
3. The computation model does not simulate the derived mathematical model. 
4. The general principle that "similar models have similar properties" is not true 

for our example. 

Clearly, if reasons 1—4 are not fulfilled it need not follow that the computation 
model simulates the original system. 

In case 2 it may be either possible to build a derived mathematical model which 
is more convenient than the first or it is impossible to find a mathematical method 
convenient to solve the given problem. Then it is necessary either to construct another 
mathematical model or to extend the given resources. 

In case 3 it can be helpful either to choose a new step length or to use another 
integration method. 

These verbal views to be represented here are a first step. Thus it is necessary to 
define a number of terms exactly. The term "simulate" has central significance. 
Therefore in the next chapter a proposition for the mathematical definition of this 
term is given. Then if we could prove that the computation model simulates the 
mathematical one it is "only" necessary to show that the mathematical model 
simulates (from a certain point of view) the behaviour and/or the state of the original 
system with sufficient precision. 

3. SIMULATION OF AN ABSTRACT MATHEMATICAL SYSTEM S' 
BY AN ABSTRACT MATHEMATICAL SYSTEM S 

3.1. Definition of an abstract mathematical system S 

Let R be the set of real numbers and / the set of integers. If T is a set such that 
T E R or T E I, if = is an order relation between two arbitrary elements of the 
set T, and if t0 is the minimum element of (T = ) , then (T, <., t0) is called "time set", 
which will be abbreviated "time". 

Let time = (T, —, t0), and t0 = tx •— t2 for tx, t2e T. Consider the subsets 
T'\ Ttl and Ttlt2 of Tdefined as follows: 

Ttl = {V.teT At <tt) , 

Ttl = {t : t e T A t = tt} , 

Ttl>t2 = { ? : f e T A f, <1< h). 

A function/defined on the set Tis called time function (signal). Let M be the range 
of the time function/. The restriction o f / t o the subset TtuH of Tis denoted by/ t l> t2 . 

Let/ t '1+X|t2 + t be a time function such that 

/,'. + ..., + . : T , I + t > r , + t - M for r e To. 



( f Г ) _ f/...«.(0 
(//)íI" i /uo 

Let/ r i>r2 be a time function such that 

U,tl'Ttl,tl^M. 

I f / ; i + t , t 2 + t (0 - / , l A ( < - 0 for t e T0 and for all t e T,1 + I>,2 + r, then / t ' i+r,(2 + < i s 

called a translation ofj,l>(2 with respect to T 

Let be T = R. If /».,•..,/?,,,, are time functions, and if ?0 _ fj <g ;2 _ f3, then 
there exists (//'),,,,3. It is defined as follows: 

_ [/..AXO
 fora11 ' e T < . . < > 

| ) for all t e T,2>,3 - i2 

if /. _ f2 < /3, 

(//Or..b-/.„r.(0 fora11 ' e 7 ^ 3 
if <i < f2 = t3. 

We can define (ff')tl,ti for T = / in a similar way. 
Now it is possible to define an abstract mathematical system S. 

Definition 1. An abstract mathematical system S is a mathematical structure S = 
= (T, _ . to. *2. 6. H, <5, A), where: 

(T, _ , r0)is a time set; 
„ is a set of input signals; 
_ is a nonempty set of states; 
H is a set of output signals; 
and 
S : T x Qm x fim -> Qm, 
A : T x 2 " x f i " - > f l " 

are the state transition function and output function, respectively. 
m is the maximum value of j , n, k where: 
j is the number of inputs, 
n the number of states, and 
k the number of outputs. 
We use the following notation: 

to = (a>i,..., coj, 0, ..., 0) e Qm = Q x Q x ... x Q , 

where a>, e Q for all i = 1,...,}', 

ij = (nu...,nk, 0,...,0)eHm, 

where nt e H for all i = 1, . . . , k; 

q=(qL,...,qn, 0 , . . . , 0 ) e Q m , 

where g,-e Q for all i = 1,..., n. (See Fig. 3 for illustration.) 

The objects above must satisfy the following conditions: 



Condition 1. Given a nonempty set X of the input signal values, for example X = R, 
then 

Q £ {co : co : THiH -> X for all tu t2 e T A f0 £ ti g r2} . 

Given a nonempty set Y of the output signal values, then 

H s {f? : JJ : T(1>(2 -• Y for all r1; t2• e T A f0 ^ <«. g t2] . 

When no confusion is likely to arise, we use co, r\ instead of co(li(2 and tfti,t2, respec
tively. 
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Fig. 3. 

Condition 2. Q and H are closed under translation. Q and H are closed under 

concatenation. 

Condition 3. 5 has the following properties: 

(3.1) 5(t, q, co) (T) is defined for all T E Tt; 

(X2)5(t,q,co)(t) = q, 

8(tu q, cotu,2) will be defined by 

Kh, 4, cotut2) = S(tu q, cotut) (t2) for all t e T,2 ; 

(3.3) if co1, co2 e <2m, t t < t2, tu t2 e T, and if 

co)ut2 = co2 ,2, then 

8(tu q, co1) (T) = 5(tu q, co2) (T) for all § e g m and TeT,,, , . ; 

(3.4) for all co,1,,,,, co2

2,(3 e Qm, q e Qm 

5(tu q, (co'to2),^) = 8(t2, §(tu q, t S j . J , ffl2

2,(3) . 

Condition 4. A has the following properties: 

(4.1) X(t, q, co) (T) is defined for all T e Tt; 

(4.2) if co1, co2 e Qm, ty < t2, tu t2 e T and if S,1,,^ = co2

ut2, then 

A(f1; 5, co1) (T) = X(tu q, co2) (T) for all q e Qm and T e r,1>(J ; 

(4.3) for all co1,,^, co2

2,(3 e f l " , ^ gm, T e T..,,, 

% , §, (co 1 © 2 ) .^) (T) = % , 3(... ? , co1 , J , ffl2

2>(3) (T) . 



3.2. Simulation of the input-output behaviour of a system S' by a system S 

Definition 2. The input-output behaviour of a system S = (T, ^ , f0, Q, Q, H, 5, A) 
with respect to a set of input signals to e Qm is the set {j8,5 : q e Qm, t e T} where for 
qsQm 

Ptrq : Qm - Hm 

is given by fitted) = X(t, q, m), for all m e Qm, t e T 
Consider an abstract mathematical system S'. Let Rt be a relation between two 

elements of (H')m'. The subset (H1)2^"', of (H')2m' consists of the unique set of the 
elements of (H')m' for which the relation Ri is true. 

Definition 3. Let S, S' be two abstract mathematical systems. We say S simulates 

the input-output behaviour of S' with respect to 

- the set Q' 
— the relation Ri 

if there exists (hu h2, h3), where 

ht:(Q')m'->(Q)m, 

h2:T' x (Q'f -> T x (Q)m , 

h3 : (H)m -* (H'f , 
are such that 

(P't,rq.(bo'), h3 o ft2(t,r) c hi(oo')) e (H')2m; 

for all q" e (Q')m', t' e T', m e (Q')m'. 

The definition is illustrated in Fig. 4. 
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Fig. 4. 

The 3-tuple (t', q , m') of the system S' is mapped in a 3-tuple (t, q, a) of the 
system S. Then if the output fj is computed, we have a map h3 relating the output fj 
of the system S to the output fj' of the system S'. fj' is compared with the element fj' 
with respect to the relation Ri where fj' is computed in the system S'. 

Definition 4. P' is a mapping such that P'(t', q') = q' for all t' e T, q' e Q'. 



3.3. Simulation of the input-output behaviour a nd of the state of a system S' 
by a system S 

Consider an abstract mathematical system S'. Let R'2 be a relation between two 
elements of (H')m'. The subset (H')^'. of (H')2m' consists of the unique set of the 
elements of (H')m' for which the relation R'2 is true. Let R'3 be a relation between two 
elements of (Q')m'. The subset (Q%m' of (Q')2m' consists of the unique set of the 
elements of (Q')m' for which the relation R'3 is true. 

Definition 5. Let S, S' be two abstract mathematical systems. We say, S simulates 
the input-output behaviour and the state of S' with respect to 

— the set Q' 
— the relation R'2 

— the relation R'3 

if there exists (h1? E2, h3), where 

h1:(Q')m'^(Q)m, 

h2:Tx (Q,)m -> T x (e')m' (onto), 

h3:(H)m-*(H')m', 

are such that 

1. (Qi)m <= (Q)m is closed under h1((£2')m'), if w'e(Q')m', t e T, qe(Q1)
m then 

d(t,q,h1(m'))s(Q1)
m; 

2. for all (t', q") e T x (Q'f exists at least a tuple (t, q) e T x (Q^ with h2(t, q) = 

3. if h2(tu qt) = (t\, q[), h2(t2, q2) = (t'2, q'2) and if ft # r2 then r't + t'2, where fj, 
f2 e T fi, f2 6 T', qu q2 e (Qt)

m, q[, q'2 g (Q')m'; 

4. for all q e (Qi)m, teT,m'e (Q'Y 

(P'(h2(t, 8(t, q, h^')))) , S'(h2(t, q), o>')) e (Q')2m ' 

and 

(P'utjai'), K.p^.h^'^e^')2^:. 

The definition is illustrated in Fig. 5. 
By assumption, there exists a tuple (t, q)eT x (Q)m such that h2(f, q) = (f, q"). 

3.4. Example 

Given the linear differential equation 

A — + x(t) = l(t) , A > 0-5 , 
dt W W 



with the initial condition x(0) = 0. We wish to examine the possibility of finding 329 

a system 5'. Setting 

r = R, t'0 = o, 
Q' = {m : a)' : T,'i>(2 -» 1 for all tut2e T0, 0 g ( , < . , } , 

Q' =R, 

H' = {n' : if : T/1>t2 ->• Y' for all *., f2 e T0', f. < t2, Y' = R , 

>l'tl,t2(t) is continuous for all f e T/1>t2} , 

<5'(0, 0, co0,,,) = 1 - e"'^- 4, 

l'(0, 0, co0>(2) (t) = 1 - e " ' " for all t e T0'(,2, 

we can readily see that conditions 1-4 hold. Hence S' is an abstract mathematical 

system. 

Let us consider the difference equation 

(2A + 1) x(n + 1) - (2A - 1) x(n) = 2 . l(rc) , A = 0-5 , 

with the initial condition x(0) = 0. 
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Fig. 5. 



330 To obtain an abstract mathematical system S, let us set 

T - / , to = 0 , 

Q = {co : 03 : Tii+] -> 2 for all i,j e T0} , 

Q = R, 

H = {t]:n: Tiii+j -» Y for all i , ; e T0, Y - R} , 

%o.».-,) = i - ( ^ ) " ' . 

A(0, 0, OJ0 „,) = 1 - f— ~ -V for all n = 0, 1, ..., n, . 

Conditions 1 -4 are satisfied. Therefore, we have defined an abstract mathematical 
system S. 

Now let us discuss the computation of magnitudes of A, for which the system S 
simulates the input-output behaviour of the system S' with respect to the relation R[. 
It is defined: (n[, n'2) e (# ' )„ , ' if and only if 

** ~ i I (("'1)0,2 (0-4 . /) - (»2)0,2 (0-4 . /)) S 0-025 ; 
; = i 

fti(C0t,,t2) = fflm,™2> where n t is the least integer with nx ̂  f1; n2 the largest integer 
with n2 g t2, and ©-^^(n! + /) = 2 . ©.,,(,(«! + i) for all / = 0(l)n2 - n1; 
h2(t', q') = (n, i7„), where n = n and n' is the largest integer with n' = t' and 
q„ = q'„. (q„ is the state for t = n.) 

There are many ways to define the mapping h3. The answer of the question whether 
the system S simulates the input-output behaviour of the system S' depends on the 
definition of h3, too. 

Setting 

«.+i = "ni,«2("i + / + 1) - nni,„2(«i + / ) , 

bi+1 = (n. + / + 1) «„,,„2(ni + i) - (nj + i)/?ni,B2(n, + / + 1) 

for all / = 0(l)n2 - nt — 1, we can define 

{ a^t + bt for teTtu„1+t, 

ai+1t + bi+1 for l e T l l + , . , + ( + i , 

a„2_nif + b„2_ni for ieT„ 2 _ ) > f 2 . 

Now it is possible to determine the quantities of A for which the system S simulates 
the input-output behaviour of the system S'. 



We have 

# ' , « ' K , 2 ) = i?o,o(l(0o,2) and 

f i (0 = /3o,o(l(0o,2)(t) = A'(0,0, l(t)o,2)(t) = 1 - e-"<* 

for r e To,2, furthermore, if a>0,2(t) = l(t)o,2
 w e obtain 

lii(l(0o,2) = 2 . l(n)o,2 , and 

*l'2(t) = JS0,0(2 . (l(n)0i2) (0 = 1(0, 0, 2 . l(n)0,2) (t) = 

^2A - IV 

Here 

and 

= 1 
2A + 1 

for í = 0, 1, 2 . 

ax = r\2{\) - 172(0) = 

h = Ч2(0) = 0 , 

a2 = Ч2(2) -ri 2{l) = 

b2 = 2. ц2(\) - ц2(2) = 

2A + 1 

4A - 2 

(2A + l ) 2 ' 

4 

(2A + l ) 2 

(t?2)o,i(t) = l>3((^2)o,i)(t)= — — - t for Í6TÓ ;1 
2A + 1 

(42)1.2(0 = ^3(^2)1,2) (0 = ^ t + 
(2A + l )2 (2A + l)2 

ҐOГ t Є Tj',2 . 

A 5(0-4) 5(0-8) 5(1-2) 5(1-6) 5(2-0) % ! 

0-6 0-12294 0-00913 0 06095 0-02814 0-02739 0-04921 1 

10 006301 0-01734 0-01229 000190 0-02422 0-02375 

2-0 0-02127 0-00968 0-00319 000667 0-00788 0-00974 1 
5-0 000415 000240 0-00180 0-00277 000090 000240 

10-0 000111 000069 0-00061 0-00092 000014 000069 

<0 = K(0 - ч.(OІ 

5Л = ł І 5 ( 0 - 4 . i ) 



It is possible to reexamine whether Rt is true for certain (t]'i(t), rj'2(t)). Table 1 

shows the results for various magnitudes of A. For example, the relation is true for 

A = 1-0, 2-0, and 10-0. 

(Received September 28, 1976.) 
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