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On the Acceleration of Adaptation Processes 
by Two-Step Principles 

KLAUS FRITZSCH 

The convergence behaviour of two-step adaptation algorithms is discussed and it is shown that 
there are cases where this class of algorithms is superior to the classic one-step algorithms. The 
convergence speeds of both classes of algorithms are compared by the criterion of mean square 
deviation from the optimum point. 

1. INTRODUCTION 

In this paper, an adaptation algorithm is a procedure which finds the minimum w* 
of a performance functional 

(1.1) J(w) = Ex{Q(x, w)} , 

using only information about the random variables Q(x, w), xeX and/or their 
derivatives with respect to w. A precise formulation of the problem will be given 
below. As known from the work of Tsypkin [1], Sacrison [2], and others the method 
of stochastic approximation (SA) has basic relevance for a large class of adapta
tion algorithms. In general, they take the form 

(1.2) w\n\ = w\n - 1] - y\n\ . s(x\n\ , w\n - 1]) . 

*(*[«], w\n - 1]) = s\n\ is the so-called quasigradient which satisfies 

(i.3) vj(win - or-^ixi} = ° • 
In the framework of SA the constraints for the sequence of the step widths y\n\ are 
rather weak. Therefore, it is difficult to construct rapidly converging adaptation 
algorithms using only the apparatus of SA. 

Albert and Gardner [3] were the first to give performance criteria for acceler
ated adaptation. The principle of optimality takes the following form: The step 



width has to be chosen in such a manner that 

(1.4) J2 = E(w\n\ - w*)2 

is minimum at each step. This leads to a local minimization giving suboptimal results. 
In most cases a global optimization of the sequence y\n\ is unrealistic (see Laski 
and Bzowy [4]). An algorithm optimized in the described manner remains to be 
of the one-step type, having two levels. The first level is given by eq. (1.2), the second 
one by the adjusting rule for y\n\. In general, y\n\ is a matrix. 

The authors experience indicates that the acceleration obtained by applying 
two-level one-step algorithms of this kind is significant especially at the beginning 
of the adaptation. The main drawback is due to the fact that the computational 
expense is increasing rapidly when the dimensionality of the problem is becoming 
large. Therefore the question arises whether there are other principles which allow 
to accelerate convergence at a lower expense. Such a possibility is suggested by 
numerical analysis where multi-step algorithms are broadly used. To the authors 
knowledge Maty as [5] was the first to use multi-step principles in adaptation. 
Some results obtained by the author in using two-level two-step algorithms for solving 
adaptation problems which are reported elsewhere [6] indicate that this approach 
may be useful. The aim of the present paper consists in decribing a two-level two-step 
algorithm and deriving some theorems relating to its convergence behaviour. 

2. AN ADAPTIVE TWO-LEVEL TWO-STEP ALGORITHM 

To be precise, in a two-step algorithm for w\n\ the right-hand side besides of 
w\n — 1] contains also w\n — 2] explicitely. In a two-level algorithm some para
meters of the basic adjusting rule may be controlled by secondary rules. 

In many practical cases where adaptation algorithms are employed one is con
fronted with the fact that the adaptation proceeds very slowly, keeping its direction 
in the mean. The vector differences w\n\ — w\n — 1] and w\n — l ] — w\n — 2] 
are strongly correlated. A straightforward generalization of the one-step algorithm 
of eq. (1.2) leads to 

(2.1) w\n\ = w\n - 1] + ri\n\ (w\n - 1] - w\n - 2]) - y\n\ s\n\ . 

The two-step term w\n - 1] — w\n — 2] is multiplied by a factor rj[«] which is 
adjusted by a second-level rule 

(2.2) r , [n] = (l - a.) *•.[» - l ] + a2 sign (AQ\n\) + a3 

with 

(2.3) aj > a2 + a3 ; al, a2 , a3 > 0 ; a t < 1 



276 and 

(2.4) A Q[n] = Q(x[n - 1] , w[n - 2]) - Q(x[n] , w[n - 1]) . 

If the adaptation is proceeding toward better performance (A Q[n] > 0), r .fn] is 
approximating (a2 + a^ja^. If performance is becoming worse, rt[n] is decreasing, 
possibly taking negative values and stopping the undesired direction of adaptation. 

The problem to be solved is whether two-level two-step algorithms offer a real 
advantage over the one-step algorithms. The comparison of the performance is 
made by means of eq. (1.4) and includes the following statements: 

1) The two-level two-step algorithm according to eq. (2.1) and eq. (2.2) is stable; 

2) it has the quasigradient property according to eq. (1.3); 

3) its optimum convergence behaviour as estimated by eq. (1.4) is superior to that 
of the optimum one-step algorithm. 

3. STABILITY AND QUASIGRADIENT PROPERTY 

For adaptation algorithms with quasigradient property the following theorem 
holds. 

Theorem 1 (Polyak and Tsypkin [7]). Let H be a bounded region of a finite dimen
sional space and let there be for v, weH 

(3.1) J(w) ^ J* > - oo ; 

(3.2) \j(w) - J(v)\ S L\w - v\ ; 

(3.3) E{s[n]2} S A[n] + K, J(w[n - 1]) + K2 VJ(w[n - 1])T E{s[n]} ; 

(3.4) VJ(w[n - 1])T E{s[n]} ^ d(e) > 0 for J(w[n - 1]) > J* + e, e > 0 ; 

(3.5) 7 [ n ] - > 0 , f > [ n ] = oo . £ y2[n] X[n] < oo , £ 7
2 [ n ] < oo . 

n=0 « = 0 « = 0 

Then with probability 1 

(3.6) lim inf VJ(w[n - 1])T E{s[n]} = 0 ; 

(3.7) lim w[n] = w* ; 

(3.8) lim J(w[n]) = J(w*) = J* : 

(3.9) VJ(w*) = 0 . 



In order to extent Theorem 1 to the two-step case it is sufficient to show, that the 277 
assumptions (3.3) and (3.4) can be satisfied, using 

(3.10) s'[n] - - - d S (w[n - 1] - w[n - 2]) + , [„ ] 
y[n] 

instead of *[»]. In this way, the two-step algorithm is formally taken as a one-step 
algorithm, and (3.3) and (3.4) are discussed for s'[n\, assuming that they are satis
fied for s[nj. 

Firstly, we note the following 

Lemma. From the constraints of (2.3) it follows that 

(3.11) |r.[fc]| _ ^ _ ± _ _ = Q0 < 1 for any k . 

Using this and eq. (2A), assuming 

(3.12) - i - E Co r[ l - fc - 1] - *o < °° for / > 0 
yUJ * = ° 

and employing the time shifting operator q, defined by 

(3.13) qv[k] = v[k - 1] for any k , 

one obtains 

(3.14) H>--]-H>--]| g 1 (1 _ ri[n _ t ] , ) - * 7[n -!],[„-!]< 
y[n] y[n] 

<, R0 | max s[fc]| = Ri[n - 1] . 
k = 0,...,n-l 

This lemma states boundedness of the left-hand side of (3.14). The quasigradient 
property is stated in the following theorem. 

Theorem 2. There exist constants au a2, a3 which satisfy (2.3) so that if (3.4) 
holds for s[n] it does also for s'[n] with rt[n\ according to eq. (2.2). 

Proof. It is sufficient to show that 

(3.15) A! = V J(w[n - 1])T E{ri[n] (w[n - 1] - w[n - 2])}/y[n] _ 0 . 

According to the lemma this is equivalent to 

(3.15a) A! = Rx[n - 1] V J(w[n - 1])T - K f n ] } dir (w[n - 1] - H>[n - 2]) < 0 . 



278 Employing eq. (2.2) and using R2[n - 1] = Kx[n - l ] . |V J(w[n - 1])| one 
obtains 

(3.16) A, < (1 - a.) St + a3<53 R2[n - 1] + a2S2 R2[n - l ] , 

where Sx and <52 are constants and S2 is the term 

(3.17) S2 = {dir V J(w[n - 1)]}T £{sign A Q[n\} dir (w[n - 1] - w[n - 2]) . 

Using the following relations and abbreviations 

(3.18a) A Q,[n\ = Q(x[n - 1] , w[n - 2]) - Q(x[n\ , w[n - 2] ) , 

(3.18b) d[n - 1] = J(w[n - 1])T dir (w[n - 1] - M>[n - 2 ] ) , 

(3.18c) VK Q(x[n - 1] , w[n - 2\) = V J(M>[n - 2]) + z[n\ , 

(3.18d) 2j[n] = z[n]T dir (»>[n - 1] - w»[n - 2]) 

and disregarding a term of second order, S2 satisfies 

(3.19) S2|V J(w[n - 1])| = £{<i[n - 1] sign (A Qt[n\ + z,[n\ - d[n - l])} . 

It is easy to see that in assuming 

(3.20) P(A Q,[n\ + Z l [n ] > 0) = P(A Qt[n\ + z,[n\ < 0) 

and 

R(0 < A Q,[n\ + Z l [n ] < d[n - 1]) > 0 

(which is reasonable in most cases), one can always ensure 

(3.21) S2 < - 52 < 0 . 

Employing the above relations in (3.16) one obtains 

(3.22) A, < [(1 - a,) a. + a353 - a2<52] R2[n - 1] . 

This means that At < 0 is always obtainable by a proper choice of the a's, q.e.d. 

Under the assumptions of Theorem 1 we have the following theorem, relating 
to the boundedness of s'[n\. 

Theorem 3. At the same time as (3.3) is satisfied for s[n\ it is also for s'[n\. 

Proof. We have 

(3.23) E{s'[nf} < £{r1[n]2} (w[n - 1] - w[n - 2])2/y[„]2 + 

+ E{s[nf} + 2[E{(ri[n\f} (w[n - 1] - w[n - 2\f E{*[n]2}]1/2/y[»] . 



Using the above lemma, one obtains 

(3.24) E{s'[n]2} g R,[n - l ] 2 + lRx[n - 1] (1 + E{s[n]2}) + E{s[n]2} ^ 

^ X'[n] + K1 J(w[n - 1]) + K2 V J(w[n - ]1)T E{s[n]} . 

Employing Theorem 2 we get finally 

(3.25) E{s'[n]2} ^ X[n] + K,J(w[n - 1]) + K2 V J(w[n - 1])T E{s'[n]} 

and the proof is completed. 

4. COMPARISON OF THE OPTIMAL CONVERGENCE SPEEDS 

It is not stated by Theorem 2 that convergence can be really accelerated by two-step 
principles. For this purpose it is necessary to optimize the algorithms of both types 
separately and to compare the resulting convergence speeds. The comparison consists 
of three parts: 

1) to obtain the optimal step width for both the one-step algorithm and the 
two-step one, 

2) to determine the resulting convergence behaviour, 

3) to discuss the cases where the two-step principle offers advantages. 

The performance criterion of Albert and Gardner is used which gives only sub-
optimal results, but has the advantage that the optimal step width can be obtained 
explicitely. 

We define a regular problem by 

(4.1) V J(w[n - 1])T (w[n - 1] - w*) g 0 

and confine ourselves to such problems. 

Using the following notations 

E(a) = a for any a , 

s[n] = E(s[n]) + A s[n] = sjn] + A s[n] , 

v[n] = w[n] — w* , 

we get for the one-step algorithm 

i A ~\ r -i s[n]T v[n — 1] 
(4.2) y[«]opt = = j ^ J L ± . 

s[n]2 + A s[n]2 



280 Employing eq. (4.2), the optimal convergence behaviour in the sense of eq. (1.4) 
is given by 

(4.3) v[n&t = v [ n - ! ? - ? * " ? . 
s[n]2 + A s[n]2 

For the two-step algorithm a similar derivation can be made. Assuming 

(4.4) E{(w[n - 1] - w* - y s[n])T A s[n]} = 0 

and 

(4.5) E{ri[n] (w[n - 1] - w[n - 2])T A s[n]} = 0 

we obtain 

(4.6) y[n]opt = p 0 ~ 1 ] T sFl + K j ^ H (H> ~ ljj-J"[> - 2 ]) . 
s[n]2 + A s[n]2 

Using this optimal step width for the two-step algorithm its optimal convergence 
behaviour is described by 

(4.7) v[n]2
opt = -[„ - I ] 2 - A 5 [ " ľ + (w[n - 1] - w[n - 2]) 2 . 

s[n]2 + A s[n]2 

L s[n]2 + A s[n]2) 

+ Гl[n] v[n - íf(w[n - 1] - w[n - 2]) . - M ď 
s[n]2 + A s[n]2 

The first term of the right-hand side of eq. (4.7) corresponds to the right-hand side 
of eq. (4.2), the second term is of second order in w[n — 1] — w[n - 2] and will 
be disregarded. The third term is a first-order one and will be discussed further. 
From Theorem 3 we have 

(4.8) rj[n] . V J(w[n - 1])T (w[n - 1] - w[n - 2]) g 0 . 

The property of this term to be nonpositive is transferred to the third term of eq. (4.4) 
to such a degree as it is possible to identify the direction of the vector v[n - 1] 
with that of the gradient V J(w[n — 1]). Therefore we have 

Theorem 4. Let the following assumptions be satisfied: (1.3), (3.1) to (3.5), (4.1), (4.4) 
and (4.5). Then there exist cases where the convergence behaviour in the sense 
of eq. (1.4) can be improved using two-step algorithms as given by (2.1) to (2.4) 
instead of the classic one-step algorithm as given by eq. (1.2) with optimal y[n]. 



This result indicates that the statements of Tsypkin and Polyak [8] concern

ing maximum performance of adaptation algorithms in the sense of eq. (1.4) have 

to be interpreted very carefully, taking into account the special form of the considered 

algorithms. According to Theorem 3 the effectivity of the two-step algorithms depends 

on the actual values of the parameters <xt. 

In practical cases the existing problem knowledge has to be used in properly 

choosing these parameters. The two-step algorithms were tested in such cases as 

stochastic approximation of regression functions, generalized perceptron learning 

and random search. In all tests they proved to be superior to the one-step algorithms. 

(Received May 10, 1976.) 
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