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Solving of Heat Shock on a Hybrid System*) 

RŮŽENA APALOVIČOVA, JOZEF BABIRÁD 

The paper deals with solving of heat conduction by a large diameter cylindrical wall described 
by means of a diffusion equation. 

INTRODUCTION 

The paper deals with the question of heat conduction by a cylindrical wall, the 
conduction being described by a parabolic partial differential equation of heat 
conduction in an idealized rod with a boundary condition of the third kind (Robin's 
problem). The entire transfer phenomenon is studied through the implementation 
of the classical CSDT method (continuous space — discrete time). The start of the 
transitory phenomenon is studied by the decomposition method according to Silvey 
and Barker. The resulting temperature courses can be used for the investigation 
of heat stress in materials. 

1. FORMULATION OF THE TASK 

In dealing with the problem of heat conduction by a cylindrical wall of large 
diameter (300 mm) on account of the ratio of the wall thickness (10 mm) and the 
cylinder diameter the diffusion equation in form (l) can be used for the mathematical 
description. The influence of the curvature radius of the cylindrical surface and of 
the exterior surface of the cylinder can be neglected. The solution gives results 
sufficiently acurate for technical practice. 

*) The paper was presented on AICA - International Symposium on Hybrid Computation 
in Dynamic Systems Design in Rome, Italy, November 11 — 14, 1974. 



212 The phenomenon in question is described by the heat conduction equation (diffu

sion equation) in the form 

8S(x, t) = a d29(x, t) 
v ; dt dx2 

where: S - the temperature in the place x at the time t, 

x - the space variable, 

/ — the time, 

a — the factor of heat conduction. 

Initial condition: 

9(x, 0) = f(x) 

is a straight line dropping in the direction of axis x. Its value on the exterior edge 

of the cylinder must satisfy the second boundary condition. At temperature j(0) = 

= 100 °C the temperature in point L equals/(L) = 75 °C. 

Boundary Conditions 

The first boundary condition determining the temperature inside the cylinder is 

3(0, 0 = AH(0 

For fii(t) the following holds good: 

in the interval 0 < t < 2s 

A*i(0) = 100 deg ; ^ = 100 deg/s ; 
df 

for t > 2s 

A-i(*) = 300 deg . 

The other boundary condition fi2(t) describing the temperature conditions at the 

limit solid matter — air is given in the form 

( 2 ) dЭ(x,Q 

dx 
= -ЏĄL,t)-&0] 

where X — the factor of the heat conductivity of the material, 
a - the specific cooling capacity of the environment, 
90 - the temperature of the environment. 



Given values of the constants: 

a = 0,167 mm2/s a = 7 W/m2 deg 
L = 10 mm X = 0,3 W/m deg 
ð0 = 20 deg 

2. SELECTION OF THE METHOD OF SOLUTION 

Considering the requirements of the task in question, especially taking account 
of the boundary condition of the third kind (Robin's problem) and the knowledge 
of the heat profile in the direction of axis x, the CSDT method appears to be the most 
suitable. This method described in literature [5] and [6] and also in some works of 
the authors [2], [3] and [4] requires the utilisation of a hybrid computer. For dealing 
with this task we made use of the hybrid computer system AP 3M — RC 1000/22 — 
GIER. On account of the unstable program circuit diagram it is not possible with 
the above CSDT method to choose At lower than 50 seconds. To obtain heat courses 
at lower intervals (At = 1 second) one of the CSDT methods should be used which 
do away with the instability of the program circuit diagram. In our case we used 
the decomposition method according to Silvey and Barker [10]. 

3. THE CSDT METHOD - CONSTRUCTION OF EQUATIONS 

By applying the CSDT method directly to the equation (1) we get 

(3) ^ # = ^-[W-S i_1(x)]. 
ax a . At 

In order that the speed of convergence of the iterating process necessary for ensuring 
the fulfilment of the other boundary condition be maximal we must, along with 
equation (3), deal also with the sensitivity equation which we get through a partial 
derivation of the equation (l) according to the 50 parameter where 

a - d S 

dx 

This method is given more in detail in [1], [7], [8], [9]. We shall give here only 
the last relation 
, •. d2w 1 Bw 

~h2~~a'~dt' 
where 

89 
w = ——. 

d&o 



214 After arrangement into the difference-differential relation and applying the CSDT 
method we get 

(5) 
d2w = 1 

dx2 a . Лt 
(W; - WІ.J). 

For the initial conditions of w; the following will hold 

(6) 
as* . , S9i0 

- ~ = Wí0 = 1 , —r— = W;o = 0 
8K 89i0 

The deviation in point x = Lis defined 

(7) S. + - [9 ;(L) - S0] = e, 
A 

where the value #;(L) is the correct value of the boundary condition derived from 
the equation (2). The initial value of temperature derivation according to the space 
variable for the individual iteration steps is obtained from the relation 

(8) ^ + 1 > = a.« + s&$ 

where k is the number of iterations. 
The increase of the initial condition is calculated: 

(9) Ô9І0 = - І 

Y,afii 
дSj 

Җo 

Program circuit diagram is on Fig. 1. 

Fig. 1. 



4. DECOMPOSITION METHOD ACCORDING TO SILVEY AND 
BARKER. CONSTRUCTION OF EQUATIONS 

(10) 

In clarifying the method we may start from the equation (3) which is arranged as 

9. d 2 9 г 

áx2 a . At 
9.-i 
a.At 

The left-hand side of the equation (10) is distributed into form 

1 \ / d 9 ; &t - Г A + 
(11) - - ^ - - i i 

dx2 a . At \dx y/(a . At)) \dx J (a . At) 

Transferring equation (11) into equation (10) we get 

(12) 
1 / d _ í _ 9г í__i 

a. At \dx J (a. At)) \dx yJ(a.At)j 

We include into the calculation the auxiliary variable ut which we define 

(13) 
d9. 9,-

dx J (a. At) J (a. At) 

Introducing ut into equation (12) we get 

«. 9,._, 
(14) f__ + 

dx yJ(a.At) J(a.At) 

Fig. 2. 



216 Equation (13) is unstable. By introducing y = L— x, dy = —dx we get from 
equation (13) a stable equation in a change of the space direction of integration 

(15) 
d _ 9, _ _ u, 

dy + V(a . At) v ( ű • -*0 

The solution obtained by this method has a much more complex algorithm than 
the CSDT method. 

Program circuit diagram is on Fig. 2. 

5. RESULTS • 

The results are curves representing the course of the temperature of the material 
as a function of the space variable in the individual time intervals At = 1 s and 
At = 50 s. 

Fig. 3. 

The courses of temperatures are on Fig. 3 - Classical CSDT methods, At — 50 s; 
Fig. 4 — Decomposition method At = I s , classical CSDT method At — 50s. 



L x[mm] 

6. CONCLUSION 

Obtaining the courses of temperatures in relation to the space variable is very 
advantageous for the further processing of the results. From the courses it is possible 
to solve the mechanical strain in the material. For the investigation of settled states 
it is suitable to use the classical CSDT method (^if = 50 s). With this method it is 
not possible, on account of the unstability of the program circuit diagram, to select 
any small At. That is why for the investigation of quick transferance phenomena 
in this task the decomposition method according to Silvey and Barker was used [10] 
this method doing away with the instability of the program circuit diagram. In the 
decomposition method the temperature courses in the material are solved for a time 
interval of At = 1 s. 

The utilization of two methods in dealing with the above problem was conditioned 
by the necessity of knowing the entire transferrance phenomenon which lasts relati
vely long and by need of investigating the courses of temperature at the beginning 
of the phenomenon at the so-called heat shock. 

This problem could be dealt with the decomposition method alone, according to 
Silvey and Barker. This method is, however, much more complicated, being there 
a greater number of steps in the accessible hybrid system, it is also less exact and much 
more exacting as to time than the classical CSDT method. That is why from an overal 
aspect (economy, precision) it is suitable to combine both the above methods. 



In conclusion we wish to thank the management of the Institute of Technical Cybernetics 
of the Slovak Academy of Sciences for allowing us the use of the above hybrid computer 
system. 

(Received October 23, 1974.) 
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