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Necessary Optimality Conditions for N-Player 
Nonzero-Sum Multistage Games 

JAROSLAV DOLEZAL 

A general class of JV-player nonzero-sum multistage games with state-dependent regions 
of admissible controls of each player is studied from the point of view of equilibrium, minimax 
and noninferior solution type. For all these solutions the necessary optimality conditions are 
obtained following the general author's scheme in [18]. Also some problems arising in connection 
with open-loop and closed-loop strategy classes are pointed out. 

A special case of linear multistage games with quadratic cost functionals is treated separately. 
This effort resulted in analytic form of all studied solution types. To illustrate the presented 
theory, several simple examples are solved in detail, and also some areas of its possible applica
tion are briefly reviewed. 

1. INTRODUCTION 

The subject of the so-called multistage (discrete time) games is a relatively new 
one. In a certain sense, the multistage games can be considered as an approximation 
of more often and more in detail studied differential games. Especially in the last 
decade a number of interesting results and properties concerning the differential 
games was published. Let us mention at least the references [1] — [8] in this respect. 
To the author's knowledge, the literature dealing with the multistage games is not 
so rich. 

The first systematic study in the field of multistage games is probably due to 
Blaquiere, Leitman et al. in [9] —[11] and Propoj in [12] and [13]. Some problems 
arising in connection with the multistage games including delays were explored 
later by Rudnianski [14]. But all these authors study only the so-called two-player 
zero-sum multistage games. In fact, very little was done concerning the theory of 
general iV-player nonzero-sum multistage games in comparison with the existing 
results in the theory of differential games, e.g., see [1] —[5]. 

Results described in this contribution are based on the author's thesis [15] and 



were partially presented in [16]. We study here, in principle, a certain class of N-
player nonzero-sum multistage games with state-dependent regions of admissible 
controls for each player. For this class of multistage games we derive necessary 
optimality conditions for the equilibrium, minimax and noninferior solution types 
using the results of the author for the optimization of discrete systems with a state-
-dependent region of admissible controls [17] and [18]. 

The structure of the paper is as follows. In the next section we summarize the 
necessary foundations of the classical game theory. Third section contains the precise 
formulation of an iV-player nonzero-sum multistage game with state-dependent 
regions of admissible controls. The following two sections are devoted to the deriva
tion of necessary optimality conditions for the above mentioned solution types. 
We point out also some interesting aspects concerning the open-loop and the closed-
-loop strategy classes. 

In the final sections, the obtained results are applied to the class of linear iV-player 
nonzero-sum multistage games with quadratic cost functional. For every studied 
solution type it is then possible to compute its analytic form in terms of the solution 
of discrete matrix Riccati-like equations. As an illustration of the presented results, 
also simple examples of multistage games are included, which are solved on applying 
the developed theory. 

2. BASIC CONCEPTS FROM THE GAME THEORY 

In this section we recall, for convenience, some basic concepts concerning the 
classical game theory. The reader unfamiliar with this theory can consult any text
book dealing with this subject, e.g. the monographs of Luce and Raiffa [19] and 
Owen [20] were consulted by the author in this respect. The following simple defini
tion of iV-player nonzero-sum game will be quite sufficient for our purposes. 

Definition 1. Denote by Qt the so-called set of admissible strategies s; of player 
i, i = 1, ..., N. Further let Jt(su ..., sN), i = l,...,N be real-valued functions 
defined on Q = ft. x Q2 x ... x QN and let these functions describe the cost func
tional (costs) of player i, i = 1, ..., N for an admissible strategy iV-tuple(s1; ..., sN)eQ. 
Then the triple 

(2.1) [N,(ft.,...,ftN), (/.,...,/„)] 

is called the iV-player nonzero-sum game. 

We see that for JV = 2 and Jl — — J , we obtain the frequently studied two-player 
zero-sum game. We are interested in the following three solution types for such 
game: equilibrium, minimax and noninferior. 



270 Definition 2. An admissible strategy iV-tuple (s*, ..., sN) is said the equilibrium 

strategy iV-tuple if, for i = 1, ...,N, 

(2.2) J* = Jt(si, ..., s*) ^ J 1st ..., s*.,, s , s*+1, ..., s*) , 

where s, e £2; is any admissible strategy of player i. 

Otherwise speaking, the equilibrium strategy will be the optimal strategy for each 
of the players, provided that all of the other players are playing their corresponding 
equilibrium strategies. If the game in question is two-player and zero-sum, the equi
librium solution (strategy pair) is the well-known saddle-point solution. Let us also 
note that, in general, there can exist more equilibrium solutions (strategy iV-tuples), 
which give different outcomes to the same player. For the more detailed discussion 
of this problem the reader is referred to [19]. 

Definition 3. An admissible strategy s ; e Qt is the minimax strategy of player i 
if, for all admissible strategy iV-tuples ( s , , . . . , sN), 

(2.3) J ; = max J;(Sj, ..., s;, ..., sN) ^ max J£sx,..., st,..., sN). 

The minimax strategy guarantees to the corresponding player that his costs does 
not exceed the security level given by Definition 3. This solution is extremely pessimis
tic, because it is assumed that all remaining players have the only objective to "des
troy" the j'-th player playing against him, i.e. maximizing his costs as much as pos
sible. Clearly such solution is then hardly probable, especially in connection with 
nonzero-sum games. Moreover, in some realistic and well-posed problems we can 
have J ; = +oo, and thus the player i is forced to construct his strategy from other 
reasons. 

Definition 4. The admissible strategy iV-tuple (su ..., sN) belongs to the noninferior 
set if, for any other admissible strategy iV-tuple (su ..., sN), from 

(2.4) Jl(s1,...,sN)£Ji(si,...,SN) = Ji, i = l,...,N 

follows the relation 

(2.5) Ji(sl,...,sN) = Ji(su...,SN) = Ji, i = l , . . . , i V . 

In other words, to find the noninferior set, i.e. the set of all noninferior solutions, 
is equivalent to the solution of an optimization problem with the vector cost functional 
J = (Ju ..., Jjy). Sometimes such solution is denoted also as a negotiated one. 
It is interesting to note that there exist certain cases, where one or more noninferior 
solutions strictly dominate the existing equilibrium solution, i.e. the equilibrium 
solution is not necessarily also noninferior — the so-called "prisoners' dilemma" 
situation. To these questions we shall return later when studying multistage games. 



Of course, the above mentioned solution types do not exhaust all possibilities 
how to define some other solution types for N-player nonzero-sum game. For example, 
in the author's paper [21] the question of the so-called hierarchical (Stackelberg) 
solution for two-player nonzero-sum multistage game with a certain information 
structure is studied and necessary optimality conditions derived. Finally, let us point 
out that we consider only the "pure" strategies, i.e. the "mixed" strategies (regular 
Borel measures on the set of all pure strategies) approach is not explored in this 
contribution. 

3. FORMULATION OF A MULTISTAGE GAME 

Multistage (discrete) optimal control problems are studied for example in [18]. 
A multistage game can be defined in a quite analogous way as a discrete optimal 
control problem, provided that there exist more inputs (control vectors) in the given 
discrete controlled system. These inputs are governed by rational individuals (players). 
Each of them wants to influence the system, using his appropriate control, in accor
dance with his aim, which is expressed as a certain cost functional (costs). Then an 
N-player nonzero-sum multistage game may be formulated in the following way. 

It is assumed that the discrete dynamic system is described by a vector difference 
equation (upper index will denote the corresponding player) 

(3.1) xk+x=fk(xk,ul....,uN
k), k = 0,l,...,K-l, x0 g iven , 

where K is a given positive integer (number of stages), k = 0, 1, ...,K denotes the 
current stage of the system, xk e E" (n-dimensional Eulidean space) denotes stage 
of the system at the stage k, ul

k e Emi is control (input) of player i at the stage k, and 
finally fk : E" X Emi x . . . X EmN -* E". If not otherwise stated, the all vectors are 
supposed to be column-vectors. 

The aim of each player is to choose his control sequence «' = (w0, u\, ..., w^_i), 
i = 1, ..., N and a corresponding state trajectory x = (x0, x., ..., xK), determined 
by (3.1), such that his cost functional 

K - l 

(3.2) J, = g'(xK) + £ h[(xk, ul, ..., u") , i = l,...,N 
fe = o 

is minimized. Here g' : E" -> E\ h[ : E" X Emi X . . . x EmN -» E1. 

An admissible control vector ul
k of player i at the stage k,i = 1, ..., N,k = 0, 1 , . . . 

..., K — 1 is supposed to satisfy the state-dependent constraints 

(3.3) w£eUE(xt), i = l,...,N, k = 0, 1, ..., K - 1 , 



where 
Ut(x) = {ul | Q'k(x, ul)=0, q'k(x, ul) g 0} , 

and Ql : E" X Emt -»• Erk\ q'k: E" x Emi -* ESk'. The inequality sign for vectors is 
used in the following sense: Let a e Ep; then a g 0 o a} ^ 0, j = 1, ..., p. 

Definition 5. The triple 

(3.4) [N, (U{(x), i = 1 , . . . , N, k = 0, 1, . . . , K - 1) , (Jt, i = 1, ..., N)] 

subject to (3.1) is called the iV-player nonzero-sum multistage game. 

Through this paper we consider two types of strategy classes defined further. 

Definition 6. Any sequence of points 

u' = {u'0, u[, ..., «x- i I ule U'k(x), k = 0, 1, . . . , K — 1} 

is denoted as an admissible open-loop strategy of the i-th player, i = 1, ...,N. 

Definition 7. In analogous was, any sequence of functions 

(p'(x) = {(p0(x), (p[(x), ..., <p^ !(x) | <pk(x) e U'k(x), k = 0, 1, ..., K - 1} 

where q>'k:E" -> £m'', is denoted as an admissible closed-loop strategy of the i-th 
player, i = 1, . . . , JV. 

To have the multistage game just stated well-posed, it is always necessary to specify 
for which strategy class (open-loop or closed-loop) and which solution type the 
necessary optimality conditions should be derived. 

In the next sections we often refer to [18] in order to derive necessary optimality 
conditions for various solution types. Therefore it is assumed that the reader is to 
a certain degree acquainted with [18]. This primarily concerns the discussion of va
rious concepts and assumptions, which is not repeated here. 

Assumption 1. All functions appearing in the relations (3.1) —(3.3) are continuously 
differentiable in their domains of definition. 

Such assumption is a natural one when dealing with necessary optimality condi
tions. Further we need the so-called directional convexity concept, which is a basic 
one the derivation of necessary optimality conditions in the form of discrete maximum 
principle — see [18]. 

Definition 8. Let R be a closed convex cone in E" with vertex in the origin. A set 
r e E" is said to be R-directionally convex if, for every vector z in the convex hull 
of r, there exists a vector zR eR such that z + zReF. 



For this purpose, let us denote 2 7 3 

(3.5) h'k(x,u\...,uN) = h'k(x,u\...,uN), i = l,...,N, k = 0, 1, ..., K - 2, 

h\.l%, «\..., uN) = „i_.(x, M\ ..., «») + ^(A.^x, «\ ..., _«)), 
i = \,...,N, 

and consider in E" + 1 sets 

(3.6) Vt'(x,M1,...,u'-\«'+\...,MiV) = { ( a , » ) l f l e £ \ i . e . _ " , 

a = hl
k(x, u\..., uN), v = fk(x, u\ ..., uN), u' e U!

k(x)} , 

i = 1, ...,N, k = 0 , 1, ...,K - 1 , 

and a closed convex cone with vertex in the origin 

(3.7) R = { r | r e E " + 1, r = (g,0,...,0), g ^ 0} . ' 

Assumption 2. For i = 1, ...,N, the sets Vk'(x, M \ ..., u'~\ _ ' + \ ..., uN), k = 

= 0 , 1 , . . . , K — 1 are R-directionally convex for any x e E", uJ e Emj, j = 1, ..., N, 

J * >• 

Finally, we need certain "regularity" properties of the state-dependent constraints 
(3.3). Consider therefore the constraints 

(3.8) U(x) = {_ e Em | Q(x, u) = 0 , q(x, u) ^ 0} , 

where the functions Q : E" x £'" -* Er, q : E" x Em -* Es are continuously differen-
tiable. For a given pair (x, u) denote by 

(3.9) l[q(x,u)]={le{\,...,s}\ql(x,u)=0} 

the so-called active index set of the constraining function q, where I = I, ..., s denotes 
single component of q. 

Assumption 3. For i = 1, ...,2V and k -= 0 , 1 , . . . , K — 1, the vectors (., m denote 
the single components of constraints in (3.3)) 

(3.10) i - fii'(x, «') , I - 1, . . . , ri , / - a''"(x, M'), m e / |>'(x, _')] 

are linearly independent for any x e E", u' e Uk(x). 

It is easy to see that in this setting it is not possible to handle multistage games 
with explicite state constraints. Namely, the Assumption 3 requires the explicite 
dependence on u' for functions Qk, q

l
k, i = 1, . . . , N, k = 0, 1, ..., K — 1. On the 

other hand, if we try to incorporate into the formulation of a multistage game also 
state constraints, as it is usually done in discrete optimal control problems, the 
obtained necessary optimality conditions for equilibrium solution contain certain 



number of reduntant multipliers. Therefore such conditions would be of little practi
cal importance — see [15]. However, in the case of vector optimization problems 
(noninferior solution) we are able to include also state constraints by this ap
proach, as it is shown in [15] and [17]. 

4. NECESSARY OPTIMALITY CONDITIONS FOR EQUILIBRIUM 
SOLUTION 

First, let us consider the equilibrium solution over the class of open-loop strategies. 
From Definition 2 we can conclude, that each player solves only a discrete optimiza
tion problem with a state-dependent region of admissible controls, provided that the 
other players use corresponding equilibrium strategies. Then we can immediately 
apply the general results from [18, Theorem 5] to this optimization problem. 

Through this and also next sections the Hamiltonian notation from [18] will be 
used for simplicity. As usual, let us introduce the Hamiltonian of the z'-th player, 
i = 1, ..., N at the stage k, k = 0, 1,..., K - 1 by formula 

(4.1) H'k+1(x, u\..., uN) = -hk(x, u\ ..., uN) + X[+tfk(x, u\ .... uN), 

where row-vectors Xk + 1e E" will be defined later. 

Theorem 1. Let the multistage game satisfy Assumptions 1 - 3. Suppose that the 
admissible strategy N-tuple (u*1, ..., u*N) is an equilibrium solution of the game 
in question on the class of open-loop strategies. The corresponding state trajectory 
is denoted by x*, x*,..., x^. 

Then for each i = 1, ..., N there exist row-vectors 

X\ 6 £", k = 1, ..., K , Cl e Erk\ t[ e ESk\ k = 0, 1, ..., K - 1 

such that the following conditions (a) - (c) are satisfied: 

(a) X'k = 1 Wk + 1(xt, ut\ ..., utN) + Cl f Qi(xt, uV) + t'kj- ql(xt «*') . 
ox ox ox 

with 
k = 1,...,K - 1, 

4 = -~gЏ*к); 
õx 

(b) / - Hl+ .(i*, ut\ ..., u*k
N) + a~ Qi(4, uV) + tlj-t q&xt, uV) = 0 , 

ou' dur du' 

k = 0,l,...,K-l; 

(c) Í Í Š O , tiqi(xt,uti) = 0, k = 0,l,...,K-í. 



This theorem can be also denoted as an iV-sided discrete maximum principle, i.e. 
we have N discrete optimization problems coupled through (3,1) and (3.2). To 
formulate the analogous conditions for the closed-loop strategy class, we must take 
into the account function dependence given in Definition 7. Thus, after the obvious 
changes in the formulation of Theorem 1, we obtain: 

Theorem 2. Consider again a multistage game (3.4) satisfying the Assumptions 
1 — 3. Let the strategy N-tuple (cp*i(x), ..., cp*N(x)) be its equilibrium solution on 
the class of closed-loop strategies, and let x*, x*, ..., x% be the corresponding state 
trajectory. Finally, let us suppose that the functions cp*l(x), i = I, ..., N, k = 0, I, ... 
...,K — 1 are continuously differentiate in the neighbourhood of this trajectory, 
i.e. in the neighbourhood of the points x*, k = 0, 1,:.., K. 

Then for each i = 1, ..., N there exist row-vectors 

4 e Ea, k = 1,..., K - 1, Ci e £*', Ck e £st', k = 0, 1, ..., K - 1 

such that the following conditions (a)-(c) are satisfied: 

(a) K = f HU1(x*k, <pV(xt), ..., cp*N(x*k)) + ti± Q[(x*k, cptXxt)) + 
ex ox 

+ a~ ql(x*k, 9t\xt)) + £ \8— HU i(x*k, cptXxt),..., cp*k
N(xt))] \~ cp*k

J(x*kj\, 
ex j=i \ BuJ ex 

j * i J J 

k = 1,...,K- 1, 
with 

*K = - — 9 (xK); 
dx 

(b) ± HU,(x*k, cp*k\x*k), ..., cp*k
N(x*k)) + '$JL Qfal <ptXx*)) + 

ou ou 

+ Ql ~ ll(xt, <pt\xt)) = 0 , fc - 0 ,1, . . . , K - 1 ; 
ou 

(c) & & 0, Hi qk(xt, cptl(xt)) = 0 , k = 0, 1, ..., X - 1 . 

On comparing Theorems 1 and 2 we see, that the equilibrium costs (outcomes) 
differ, in general, as the result of the summation term in condition (a) of Theorem 2. 
We can, therefore, expect that for the same multistage game, the equilibrium 
solutions on the open-loop and closed-loop strategy classes will not be generally 
identical. The situation is thus the same as in the case of differential games, as 
reported by Starr and Ho in [1] and [2]. However, Sandell in his paper [22] 
explored this question for a general case of the so-called "feedback games" of Wit-



senhausen [23]. He came to the conclusion that any open-loop equilibrium strategy 
JV-tuple would be also a closed-loop one. On the one hand, it seems reasonable 
to treat the open-loop strategy class to be a special case (with a trivial state-depen
dence) of the closed-loop one. But on the other hand, further research in this 
direction will be needed to clear up this matter. 

Maybe, it would be more appropriate (from practical point of view) to consider 
only the constant regions of admissible controls for each player in (3.3) when dealing 
with the open-loop strategy class. Otherwise it can easily happen, that the deviation 
from his open-loop strategy by player i will result into the inadmissible control 
sequence of all remaining players, which hold fast their equilibrium strategies. Such 
conclusion is directly obtained, if we realize the given state-dependence of control 
constraints in (3.3), i.e. a certain change of the existing state can convert the existing 
admissible open-loop strategies into the inadmissible ones. 

Let us also remark that if in Theorem 2 (closed-loop case) we assume N = 2 and 
J j = — J2, i.e. a two-player zero-sum multistage game, our results are almost identi
cal with those of [9]. The results in [9] were derived applying a geometric method, 
while we used the general theory of discrete systems (discrete maximum principle) 
derived in [18] using the mathematical programming theory. 

5. NECESSARY OPTIMALITY CONDITIONS FOR OTHER SOLUTION 
TYPES 

From the definition of the minimax solution we see that, in fact, only two-player 
zero-sum multistage game must be solved, in which as a theoretical opponent of the 
i-th player (cost functional J,) act all remaining players. For such game the both 
theorems stated in the previous section are identical, provided that the admissible 
control regions (3.3) are constant, i.e. functions Ql

k, q{ do not depend on x - see 
also the pertinent discussion in Section 4. Then the closed-loop solution (saddle-
point) will be a synthesis of open-loop problems. This is also a reason, that we prefer 
to study the more general case of a closed-loop minimax solution for the multistage 
game (3.4). 

Theorem 3. Let two-player zero-sum multistage game, in which results the mini
max problem of player i, satisfy Assumptions 1 — 3. Suppose that the admissible 
strategy JV-tuple (cpn(x), ..., (p'i~1(x), <p'(x), cp" + 1(x), ..., (p'N(x)) is a saddle-point 
(minimax solution) of this game. The corresponding state trajectory denote by 

* 0 > X l > • • •> XK-

Then there exist row-vectors 

l'keE", k = l,...,K, UeErki, Z{eESki, k = 0, 1, ...,K - 1 , 

;• m 1,...,N 



such that the following conditions (a) —(e) are satisfied: 2 7 7 

(a) l'k = — Hk+ i(3ct, u'k\ ..., u'k, .., u'k
N) + H — g^(xt, «£) + # — q'k(xk, u'k) -

dx ex ex 

-lUi-T Q^ "*' + &T ifc* U'M - k - 1,..-, K - 1, 
y=i L ox ox J 

with 

І І = - — З'(xк), 
ÖX 

where we for simplicity denoted 

«1 = P*(x), H ^ = ^ ' ( x t ) , j = l , , . . . , J V , j 4 = i , fc=0,l,...,K- 1 , 

and where 

m + 1 ( x , u\ ..., uN) = -h'k(x, u\..., uN) + H+Jk(x, u\..., uN) 

k =0,l,...,K - 1 ; 

(b) — H'k+1(xk, u'k\ ...,ui,..., u'k
N) + H — Ql(xk, ui) + U —. li(xk, ui) = 0 , 

0« OM CM 

fe = -0 ,1 , ...,K - 1 ; 

(c) ~ Hi+1(xk, uk\...,ui,..., u'N) + U ~ Q{(xk, u'J) + l{ A ^ (x , , «;0 = 0 > 
ou-' cV duJ 

j = 1,...,N, j + i, k = 0,\,...,K - 1 ; 

(d) Vk<0, Ziqi(xk,ui) = 0, k=0,\,...,K-l; 

(e) H < o , .S^:(xk,«;-) = o , ; = 1 , . . . , N , j + I, k = O,\,...,K-1. 

If we want to formulate analogous results also for an open-loop strategy class, 
we must be aware of the following difficulty. Namely, the assumed state-dependent 
constraints (3.3) prevent us to obtain from Theorem 1, for a two-player zero-sum 
case, the "symmetric" optimality conditions, as we have in a closed-loop case. This 
problem was studied in [15]. Here we make only the obvious final conclusion. We 
have to assume the fact mentioned earlier, i.e. the admissible control regions (3.3) 
are not state-dependent. Then Theorem 3 will be valid also for the open-loop minimax 
solution, if in the formulation of this theorem all terms containing partial derivatives of 
the constraining functions (3.3) with respect to x are neglected. This result further 
implies that, if the regions of admissible controls (3.3) do not depend on x, the 
closed-loop minimax solution can be obtained as a synthesis of the open-loop mini
max problems. 



The minimax solution is extremely pessimistic, and thus little probable, as we 
briefly discussed in Section 2. Therefore it can be advisable to construct the solution 
from different reasons, e.g. see the hierarchical solution concept for multistage games 
in [21]. 

As the last case let us study the noninferior solutions of a multistage game. From 
the definition of a noninferior set it follows that in this case only a discrete optimal 
control problem with vector-valued cost functional must be solved. As controls 
we can choose any admissible strategy N-tuple. These optimization problems are 
treated in [15] and [17] in detail. It is further evident, that for both, open-loop and 
closed-loop strategy classes we obtain the same set of necessary optimality conditions 
for a noninferior solution. 

First, let us reformulate the Assumption 3. Instead of (3.6) we now define in 
En+N sets - ci.' also (3.5): 

(5.1) Vk(x) = {(a, v)\ae EN, v e E", aj = h{(x, u\...,uN), j = 1 ..., N , 

v,= fk(x, « - , . . . , uN), u' e Ul(x), i = 1, . . . , N}, 

k = 0 ,1 , ...,K - 1 
and 

(5.2) R = {r | reEn+N, r = (Ql, ..., QN, 0, .., 0), Qj = 0 , j = l,.,.,N} . 

Assumption 2a. The sets Vk(x), k = 0, 1, .,.,K — 1 are R-directionally convex 
for any x e E". 

Theorem 4. Consider discrete optimal control problem with a vector-valued cost 
functional J = (Ju ..., JN), in which results problem of finding the noninferior 
solution set for multistage game (3.4). Let the Assumption 1, 2a and 3 be satisfied 
for this problem. Finally, suppose that the admissible strategy JV-tuple (u1, ..., uN) 
belongs to the noninferior set and denote by xp, x,, ..., xK the corresponding state 
trajectory. 

N 

Then there exist a vector ji e EN, «i S 0, i = 1 , . . . , N, £ «,- = 1, and row-vectors 
i = l 

lke E", k = l,...,K, *CkeErk', ^ e £ s " ' , k = 0, 1, ..., K - 1 

such that the following conditions (a) - (c) are satisfied: 

(a) Xk = f Hk+l(xk, ul, ..., uN) + I \ll f Qi(xk, 4) + l i f qi(xk, 4)] , 
dx • i=i\_ ox Ox J 

k = l,...,K - 1 , 

with 

Һ = - I Vt V в'(*к)' 
i = 1 OX 



and where 

Hk+,(x,u\...,u") = -YJHihi
k(x,u\...,uN) + lk+Jk(x,u\...,uN), 

k = 0 , 1, ...,K- 1 ; 

(b) ~ Hk+, (**, <&..., fift + £< A oj(*k, $ + U ~ qiL*» t?0 = 0 , 
OM 5M' <3ir 

/ = 1, . . . , J V , k = 0 , l , . . . , K - l ; 

(c) # 5 0 , ?£.$*», «/.) = <), i = L . . . , JV, / c = 0 , l , . . . , K - l . 

Practically, we have obtained in this way the discrete maximum principle for 
discrete optimal control problems with a state-dependent region of admissible 
controls and with a vector-valued (JV-dimensional) cost functional. It is easy to prove 
that taking 

N N 

(5.3) J =%HiJi, Ht>0, i = l,...,N, £ > ; = 1 

as a scalar cost functional and solving the corresponding discrete optimal control 
problem, the resulting strategy JV-tuple will lie in the noninferior set. Thus, when 
(JV — l)-parameter family of discrete optimal control problems with scalar cost 
functional (5.3) is solved, the desired noninferior set is obtained except, maybe, 
of those points, which are computed with some nt = 0. In general, such points are 
not necessarily noninferior. Also certain convexity assumptions must hold for such 
conclusion - see [24]. In a concrete game the just mentioned points must be treated 
separately in order to obtain the whole noninferior set. 

From a practical point of view we can such noninferior solutions (with some 
Hi = 0) simply neglect, because they totally ignore the cost functional of some 
players. So it is hardly probable, that these players will take part in cooperation 
in such case. 

If we additionally assume that U'k + Ul
k(x), i = 1, . . . , JV, k = 0, 1, ...,K - I, 

i.e. the constant regions of admissible controls, then, except of Theorem 2, the all 
remaining theorems are also valid if in Assumption 1 only the continuity offk, h'k, 
i = 1, ..., JV, k = 0 , 1 , . . . , K — 1 with respect to u' (i = 1, . . . , JV) is required. 
Of course, then only a maximum condition can be always used — see [18, Theorem 4]. 

6. LINEAR MULTISTAGE GAMES WITH QUADRATIC COST 
FUNCTIONALS 

Through this section we study a special class of JV-player nonzero-sum multistage 
games. Namely, we assume that the system equations (3.1) are linear in state variable 
x and control variables u',i = 1,...,N, and that the cost functional (3.2) are 



quadratic functions of the same variables. The main advantage of this simplification 
of the original nonlinear case is the fact, that such case is amenable to the analytical 
treatment under the relatively mild, rather technical assumptions. Moreover, the 
class of linear multistage games with quadratic cost functionals can sometimes 
serve as the first approximation when working with more complicated, nonlinear 
cases. Therefore we assume that 

N 

(6.1) xk+l = Akxk + X Bkul + ek, k « 0 , 1 , . . . , K - 1 , x0 given . 
J'=I 

Here Ak is (n x «)-matrix, Bk are (n X m^-matrices, j = 1 , . . . ,N and the column-
-vector ek represents a constant forcing term. As in Section 3, x e E" and u1 e Emj, 
j = l,...,N. . 

The cost functionals are supposed to be quadratic, i.e. 

(6.2) J, = i £ (z!
k - C>xkY QKzl - C'kxk) + / £ £ (uiY R'M, 

k=0 t = 0 ; = l 

i = 1, ...,2V 

Here Q'k are (f; X f;)-matrices with the positive integer t, denoting the dimension 
of the so called output vector C'kxk, C'k are (t; X n)-matrices and R'k

J are (nij X m/)-
matrices. Finally, z'k are prescribed constant column-vectors in Eu. The range of 
various indices i,j, k is always uniquely determined by (6.1) and (6.2). We assume 
that each player is currently informed about the realized state xk of the game. Without 
any loss of generality we also suppose that the matrices Q'k, i = 1, ..., N, k = 0, 1, ... 
...,K and R'k, i,j = 1, ..., N, k = 0, 1, ..., K — 1 are symmetric. Additionally, let 
the matrices Q'k, i = 1, ..., TV, k = 0, 1, ...,K be positive semidefinite and matrices 
Rk, i = 1, ..., N, k = 0, 1, ..., K - 1 positive definite. 

For the multistage game (6.1) and (6.2) we have the following practical interpreta
tion. Such game can describe a simple, discrete-time model of an economy governed 
by N players: xk is the state of economic system, the C'kxk are the outputs and z'k 

are the output schedules. Thus each player would like to keep up with his prescribed 
output schedule as close as possible. The cost functional J ; consists of three parts: 
(i) the actual control effort Y.(u'k)T R"UL 00 a penalty for not keeping up with the 
schedule, and (iii) direct costs resulting from the control effort of the other players. 

First, let us study the open-loop equilibrium solution. Due to our assumptions 
on the various matrices it is easy to see that the convexity assumption (Assumption 2) 
is satisfied. The remaining assumptions are satisfied in a trivial way, because there 
are no constraints and all functions appearing in (6.1) and (6.2) are either linear, 
or quadratic, i.e. continuously differentiable. 

Now we are able to apply Theorem 1 to this multistage game. Looking carefully 
through the conditions (a) and (b) of this theorem we can, in general, always deter
mine u*' explicitly in terms of kk+\, as indicated in condition (b). Inserting this 



value of u*' into the corresponding condition (a) and (6.1), we obtain a discrete 28: 
linear boundary-value problem. This problem is then possible to solve by standart 
methods. There exist two equivalent ways to determine open-loop equilibrium 
strategies. 

Method A. Suppose that (u*1, ..., u*N) is the desired open-loop equilibrium 
solution. From the point of view of player i, he only solves an optimal control 
problem with parameters u*j, j = 1, ...,N,j =t= i. From Theorem 1 we obtain for 
player i, i = 1, ..., N (Tdenotes transposition): 

(6.3) uV = (KY1 (Bi)T [Pi+1(Wlxk + wi) + (p'k + 1)
T] , k=0,l,...,K-l, 

where the symmetric matrices P'k+1 and row-vectors p'k+1 are determined by the 
equations 

(6.4) Pi = -(Ci)T QiCi + AT
k[(Pi+1Y

l - BfrRlY1 (BiYY'A, k = 1,...,K - 1, 

P'K= -(C'KYQKC'K, 

(6.5) pi=(ziYQ'kCi + [(wi)TP'k+1+p'k+1]Ak, k = l,...,K-l, 

PK = (ZKY QKC'K • 

We used the notation (E is the unit matrix of appropriate dimension) 

(6.6) Wi = [E - BkRHY1 (Bi)T Pi+l]~lAk, k=0,l,...,K-l, 

wi =[E- BiHRl1)-* (BiYPY.Y1 [ZBiuV + 
j = i 
j * i 

+ Bi(Ri!Yl (Bi)T(pi+1)
T + ek], k=0,l,...,K-l. 

At this place it is assumed that the inversions indicated in (6.6) exist. 

In fact, we have constructed directly a synthesis of the open-loop strategies for 
player i. The word "synthesis" is used here in the same sense as it has in the theory 
of optimal control. Eliminating now xk from (6.3) using repeatedly substitution 
via (6.1), and performing such procedure for every i = 1, ..., N, we see that a system 
of linear algebraic equations for u*\ i = 1, ...,N, k = 0, 1, ..., K — 1 is finally 
reached. These equations are not explicitely stated here, because of their rather great 
complexity in a general case. 

If we additionally consider (6.4) and (6.5) also for k = 0, we can write for open-
loop equilibrium costs of player i: 

(6.7) J* = -(%xlP'0x0 + p'0x0 + q0) 



2 8 2 where q0 is evaluated from the following equation 

(6.8) qi = qk\. + ̂ (wif Pl
k+i< + PU X - l(Zk)

T Qlzi -

- i i ( « r r R'MJ - m<ypi+x + PM • 
J = I 

• BliRl:)-1 (Bl)T [P'k+ lW'k + (p'k)
T] , k = 0,\,...,K-l , 

?K = i (4) rex. 

Method B. Suppose now that each player uses the open-loop synthesis (6.3). 
In a quite analogous way as above we obtain: 

(6.9) «*•-= (RHyi (B'k)
T [(ni+i)

T (Qkxk + cok) + (n'k+1)
T] , 

i = 1, ...,N , k = 0,l,...,K-l, 

where generally non-symmetric matrices Tll
k +i and row-vectors nl

k+1 are determined 
by the equations 

(6.10) n'k= -(Ck)
TQlC'k + Qlnl+1Ak, i = l,...,N, k = \,...,K-\, 

n'K = -(CK)Ql
KCK, i = l,...,N, 

(6.H) 4 =(zkfQkCl + [coT
kWk+1 + n'k+1]Ak, i = l,...,N, k = \,...,K-\ 

4 = (4)Te*c*, i = i,...,N. 

We denoted 

(6.12) Qk = [£ - £ B{(R»)-> (B{)T (n{+1)^ Ak , 
J = I 

-.-[E-iw'WM"1-
y = i 

. [*fc + £ 5/(Rf)_1 W (**'+ i)T] , k = 0,l,...,K-l. 
j = t 

Again it is assumed, that the inversions in (6.12) exist. In this approach we do not 
find an analogy of (6.7). Although the expression (6.9) can be somewhat misleading, 
because of its "closed-loop" form, we point out once again, that only an open-loop 
equilibrium solution is obtained applying the above stated relations. 

Now let us turn our attention to the closed-loop equilibrium solution. Similarly 
as in the previous case we see that all assumptions of Theorem 2 are satisfied, and 
that we again have to solve a certain discrete linear boundary-value problem. Thus 
we obtain that 

(6.13) cpV(xk) = (Rk)-
1 (Btf [P£+ i(Wkxk + wk) + (pi + ,)T] , 

i = h-.-,N, k = 0, 1, ...,K - 1 , 



where the symmetric matrices Pk+1 represent a solution of coupled, discrete, matrix 283 
Riccati-type equations 

(6.14) H ~ -(Ci)T QIC1, + WT[Pi + , -

- 1 H+l BiiRi/y1 RiW)"1 (Biy pj
k+i] wk, 

J = I 

i = 1, ..., M, k = 1, ...,K - 1, 
P K = -(CK)QKCK, i = l,...,At, 

and the row-vectors p'k+1 are given as 

(6A5) pi = (z'k)
T QiCi + [wT

kPk+1 + pk+1] Wk -

- 1 K ^ ' + i + pi+1] BiiRi/y1 RiW)"1 (Biypj
k+1wk, 

J = I 

i = l,...,N, k = \,...,K - 1, 

Px = ( 4 ) r QicC , ,i = l , . . . ,N. 
We denoted 

(6.16) Wfc = [£ - X ^(R//)"1 W P ^ . ] " 1 A-, 
J'=I 

wt = [E -Y.BW)-1 (Bi)T PL.T1 [ek + IBKRi1)-1 (B{)T (p'k+1)
T] , 

J = I j = i 

k = 0, 1, ...,K - 1 . 

Also here we cannot, at least not in a simple way, guarantee the existence of inver
sions in (6.16), and we are thus forced to assume this fact. 

If we formally consider (6.14) and (6.15) also for k = 0, we can write the closed-
-loop equilibrium costs for all players 

(6.17) J* = -(ixJPfco + Po*o + 1o), i = l,...,N, 

where q'0 is evaluated from the following equation: 

(6.18) q'k = q'k+1 + iwT
kP

l
k+1wk + p'k+1wk - i(zl)T Q!

kzi -

-$ZWH+i + pi+1] Bi(RiJy' RiiRi'y1 (Bj
ky. 

J = I 

•[Pi+1wk + (pJ
k+1)

T], i = l,...,N, k=0,l,...,K~l, 

qlK= -HZK)TQK4, ' = I,...,N. 

Further we briefly discuss the minimax solution for player i. Let us additionally 
assume that the matrices Q'k k = 0, 1, ..., K are positive definite and matrices R'k

J, 



284 j = ], ...,N, j + i, k => 0, 1 , . . . ,K — 1 negative definite. Then we can evidently 
apply Theorem 3 to this case. It is possible to seek directly the closed-loop minimax 
strategy for player /. Thus we have 

(6.19) ul = cp!(xk) = (Ri')-1 (B'ky [P'k+1(Wlxk + vvj) + (p>k+iy] , 

k = 0 , 1 , ...,K - 1 , 

and the corresponding strategies of the other players 

(6.20) u'k
J = <p'k

J(xk) = - (R")-1 (BJ
k)

T [P'k+ ,(Wlxk + vv<) + pi+1)
T] , 

j = l,...,N, y + / , Jc = 0, 1, ...,K - 1 , 

where the symmetric matrices P'k+1 and row-vectors pk+1 are determined by the 
equations 

(6.2i) PI = ~(ck) aid + Aim,,)-1 - £emr 1 (Bin-1 A , 
J = I 

k = \,...,K - 1 , 

P'K = ~(CK) QKCK, 

(6.22) pi = (ziy Qici + [(wiy p«+1 + pk+,] wi - [(wi
ky ?k+1 + fk+1'\. 

.[lB^ri(B{y]PLiWl, fc-l,...,K-l, 
J = I 

PK - (4Y e^ci • 
We denoted 

(6.23) wi = (prr1 m^r1 - £-wr w r ^ . 
J = I 

^ = (PL,)-1 [(p^o-1 -iBHRir1 (Biyr1 . 
J = I 

. [et + £ BiXRJ/r' (Bi)T (Pi+ >)r] , k = 0,l,...,K-lk. 
j = l 

In this case we see that the inversions in (6.23) are a priori guaranteed. If we further 
consider the equation 

(6.24) ^ = ^+ 1 + i(w'ky
 pL i*l + PL M - i(4Y Qic* ~ 

- l^iypLi + i M [£-#**V(Btfi[PLrt + (pLiY], 
; = i 

k = 0, 1, ...,K - 1 , 

^ = -K4) r Q i 4 , 



and if in (6.21) and (6.22) also k = 0 is admitted, the minimax costs of player i 285 
can be written 

(6.25) J ; = - ( i x J P 0 x 0 + PoX0 + q'0) . 

Finally let us study the noninferior solution set. We assume that also the matrices 
Qi, i = [,...,N,k = 0, 1,...,K and R'j, i,j - 1, . . . , N, i * j , k = 0, 1, ...,K - 1 
are positive definite. Hence we conclude, that all studied solution types cannot, 
in general, exist simultaneously for linear multistage game with quadratic cost 
functional, e.g. see the assumption needed for the derivation of a minimax solution. 
Under just stated assumptions it is possible to obtain the noninferior solution set, 
having in mind the exceptions discussed in Section 5, as the solution of the para
metric, discrete optimal control problem with the cost functional 

(6.26) J((i) = I M;J;, Ht > 0, i = 1, . . . , N , £ A'; = I • 
;=i ;=i 

We have denoted /i = (p.l, ..., j.iN). The noninferior strategies are then obtained as 
functions of the parameter p.. Namely, 

(6.27) «&.) = ti(xk, ft) - [ I PjHT1 (Btf [ -V.00OW ** + W ) + 
J = l 

+ PLM, '=1,- . . ,N, /c=0, 1 , . . . ,K-1 , 

where the symmetric matrices Pk+l(p) are the solution of the parametric, discrete, 
matrix Riccati-type equation 

(6.28) f\(p) = -itij(CiY Qid + AT
k[P;+\(n) - iBilZujRiT1 • 

J'=I ;=i j = i 

• W ] _ 1 A . k = l,...,K- 1, 

PM=-lHj(CK)QKCi, 

and for the row-vectors pk+1(p) we have 

(6.29) MM) = £ /;,(rOr Qjq + [<%.) p4+I(M) + fc+ ,(M)] | % ) -

- [tfíOO !V,M + A+I(M)] [ l B»[ £ ^ ž T ' (e;)7'] P*+10») i % ) , 
; = i j = i 

fc = l , . . . , K - 1, 

l3K(M) = L J ( 4 ) T e í c i . 



286 We used notation 

(6.30) wk = pk+\(p) [pk-u^ - i BiiinjRir'wr1 Ak , 
i = l j = \ 

k = 0 , 1, ..., K - I , 
(6.3i) wk = Pk+\(,x) [ j v + » -isiiinjRi'pi (Eiyy*. 

i = i j = i 

•[^ + Z^[E!'J«
J'i]"1(^fAT

+.W]. 
i = i j = i 

fc = 0 , 1,...,K - 1. 

Again, the necessary inversions in (6.30) and (6.31) exist due to the stated assumptions. 
If we consider (6.28) and (6.29) also for fc = 0, and if we use the equation 

(6.32) qk(p) = $k+1(n) + iwl(fi) Pk+ ,(,u) wk(p) + pk+.(» wk(p) -

- i i »M)T QUI - [>*» n+.(/<) + pt+iW] • 
J = I 

• [ I Bk[ i vjRfi-i (Bin IA+IM <W + PLiW , 
i = l j = l 

fc = 0 , 1, ...,K - 1 , 

$x(/0 = -±Z%(4)rQ£-i. 
J = I 

we can express the total costs of all players (6.26) as a function of parameter p.: 

(6.33) 5(n) = - [ i 4 ^ o W *o + p0(/i) x0 + q0(p)~\ . 

Each player can compute his own costs as a function of p using (6.2) and (6.27). 
As mentioned earlier, the cases with some p., = 0, i = I, ...,N must be explored 
separately in order to determine the whole noninferior set. 

7. ILLUSTRATIVE EXAMPLES 

This section is devoted to the solution of three simple examples of twb-player 
nonzero-sum multistage games in order to illustrate and clarify certain aspects 
of the presented theory. First two examples are simple linear multistage games with 
quadratic cost functionals. The last example has additional control constraints 
for both players. The computational procedure is always only briefly sketched; 
the detailed description and some additional results can be found in [15]. We also 
remark that all variables will be scalars through this section. 



Example 1. Suppose that the dynamic system is described by the equation 

(7.1) xk + 1 = xk + ul + u\ , k = 0, 1, ..., K — 1, x0 given . 

The cost functional have the form 

(7.2) . j t = i(xKy + ij:\uiy, J2 = i(xKy + iiUy. 
k=0 k=0 

In this simple game both players try to cooperate in minimizing the final distance 
from the origin, but each player is penalized for such effort. 

Let us compute the open-loop equilibrium strategies using the Method B from 
the previous section. We obtain the following results (transposition is neglected 
in this scalar case): 

(7.3) a*' = n'k + 1Qkxk, k = 0, 1, ...,K - 1, i = 1,2, 

(7.4) nl
k=QkWk+1, k = l,...,K-l, nK=-l, i = l,2, 

(7.5) Qk = (i -nl+1 -n2
k+1)~\ k = o,i,...,K-i. 

All other variables, e.g. nk, cok are zero in this case. From (7.4) and (7.5) we have 

nl = n2
k = 1 , k = l,...,K, 

2(K-k)+l 

and according to (7.3) 

uV=uV = ~^h)+-\X- k = 0,l,...,K-l, 

from which, taking into the account (7.1), it follows 

(7.6) U * 1 = M * 2 = x0, k = 0, 1, ...,K - 1. 
2K + 1 

From (7.2) we compute the corresponding costs 

<") ji.j-.igt^vr. 

The same results can be obtained also by Method A. However, such approach is 
more tedious also in this simple case. By the way, the result (7.6) can be easily checked, 
if we convert the multistage game in question to a static one, substituting repeatedly 
for xk in (7.2) according to (7.1). Then it is sufficient to apply necessary conditions 
for extreme of function. 



For the closed-loop equilibrium solution evidently hold the relations 

(7.8) 9t'(xk) = P'kWkxk , k = 0, 1 , . . . , K - 1 , i = 1, 2 , 

(7.9) Pi = V/t[P- + 1 - ( P ' + 1 ) 2 ] , k = 0,l,...,K-l, 

PK = - 1 , i = 1,2, 

vn = a - pi+1 - P 2 ^ ) - 1 , fc = o, i, .. . ,K - 1 . 

Now it is not possible to solve (7.9) for a general K. Therefore we have chosen 
K = 3. We get 

(7.10) Pl=Pl = - l , p i = p 2 _ _ f , p j = p 2 _ _ ^ ! 

D l _ D 2 _ *202 
r 0 - r 0 - - 2 1 3 2 • 

Using (7.8) we can write 

(7.11) (p*0
1(x0) = cp*0

2(x0)= -£-3x0, 

<?r(*i) = <pV(xi) = - n * i = - ^ o , 

fl)*1^) = ^ " f e ) = -4 *2 = - 2 ^ * 0 • 

We can conclude that the absolute effort of both players increases during the course 
of the game. The corresponding closed-loop equilibrium costs are 

(7.12) J* = H = - iPo(xo)2 = - iP^(xo) 2 = ^ ( x o ) 2 = 0-0463(x0)
2 . 

For K = 3 we have from (7.7) that 

JX = J% = i ^ o ) 2 = 0-0408(x0)
2 . 

Hence, in this case the open-loop equilibrium is more attractive for the both 
players than the closed-loop one. On the other hand, the open-loop equilibrium 
solution is clearly more sensitive to sudden changes in the system (disturbances, 
opposing player, etc.). 

The minimax solutions of this example cannot exist, while R^2 = R^1 = 0, and 
thus the security level is + GO for both players. 

Therefore, let us try to find the noninferior solution set. In this case we optimize 
the cost functional 

J(fi) = fiJt + (1 - n) J2 , 0 < jX < 1 . 

From (6.27) —(6.31) we have 

(7.13) Pk(,)= ?f ~ { ° V ° f V * ~ < U . - . K - - . PM'-U 
n(i - pi) - Pk+i(pi) 

" » > - .. "(1'P M- * - * > • • • - * - > • 
/i(l - ii) - P f c + i W 



Hence, 

(7-14) 

189 

1 A 1 -џ 
tíi

k = ti(xk)=-pk+1(n)nti = - , 
u n(l - u) + K - k 

k = O, 1, .... K - 1 , 

xk, 

and 

(7.15) 

ÛІ = Фi(Xk) = ^— Л + 1 Í » ед = - — — + u - — — - xfc, 
1 - џ џ(í - џ) + K - k 

fc = 0, 1, ..., X - 1, 

1 - // 

"* = 

џ(l - џ) + K 

џ 

џ(\ -џ) + K 

k = 0 , 1.....X - 1 , 

i.e. the noninferior strategies of both players are constant during the course of the 
game. The cost functionals have the corresponding value 

J(u)_H±zJtOl±ll(xY , 
t ^ Jl{fl)~~2 [,(!-,) + Kf{Xo) ' 
(7.16) L V ; J \0 = fi = l . 

j (a)-1 jf!£0 ~ tf ± £l (x V 

We have included in (7.16) also the values fi = 0 and \i = 1, because these values 
of parameter n define noninferior solutions in this case. If we, for example, choose 

Fig. 1. Set of attainable outcomes for Example 1. 



(i = 0-5, we have 

j^O-5) = j2(05) = -;— (x0)2 = 0-0382(x0)
2 for K = 3 . 

Therefore, if cooperating, both players can benefit, i.e. they achieve lower costs than 
for equilibrium solutions. We see that also in this "academic" example we encoun
ter the "prisoners' dilemma" situation. 

In Fig. 1 we schematically depicted (not in scale) the set of attainable outcomes & 
for this game. As E0, resp. Ec, we denoted open-loop, resp. closed-loop, equilibrium 
solution. Curve RZS denotes the noninferior set, e.g. point R corresponds to [i = 1, 
Z to n = 0-5 and S to /.i = 0. 

Example 2. Consider again the dynamical system (7.1) and the cost functionals 

(7.H) Ji-W+iEW-Kf]. 
k=0 

J2 = i(*K)2 + i 2 L-Kr + K)2] • 
k = 0 

The open-loop equilibrium solution is the same as in previous example, i.e. it is 
given by (7.6). However, the equilibrium outcome differs from (7.7): 

J t = J 2 = 2(2^Tl7 ( X o ) 2 = 0 ' 0 1 0 2 ( X o ) 2 f° r K = 3-

The closed-loop equilibrium solution for K = 3 is given: 

(7.18) (p*l(x0) = cp*0
2(x0) = - - f - x 0 , 

q>V(*i) = <pV(xi) = - n * i = -TJ9xo » 

<P*\x2) = (pt\x2) = -}x2 = - ^ x 0 , 

and the corresponding costs 

(7A9) J* = J*2 = i ( ^ ) 2 (x0)2 = 0'0282(x0)2 

Similarly as in Example 1, the effort of both players increases during the course 
of the game and also the open-loop equilibrium solution gives lower costs to both 
players than the closed-loop one. 

We have constructed this example to illustrate the concept of minimax solution. 
Now we have RJ,2 = R21 = — 1, k = 0, 1, . . . , K — 1, i.e. the minimax solution 
exists. In a simple way we have for this case (because of the symmetry of the game 



in question, only the minimax solution for player 1 is considered): 

(7.20) ul = cpl(xk) = -xk= -x0 
k = 0 , 1 , ...,K - 1 . 

u'k = <Pk{xk) = xk= x0 

The minimax costs for player 1 and the corresponding costs of player 2 are: 

(7-21) J , = H*o)2 , J'2 = i(*o)2 • 

In this example we do not study the noninferior set, because it can be shown that 
the necessary convexity assumptions methioned in Section 5 are not satisfied. 

Example 3. Also in this last example the dynamic system is defined by (7.1) with 
the following changes. Namely, we assume that the initial state x0 = 0. Further, 
the control of each player is constrained: 

(7.22) 0 *a u'k S 1 , i = 1,2, k = 0, 1 , . . . , K - 1 . 

Each player strives to have terminal state xK as large as possible and each is pena
lized for his control effort to enlarge xk. Then the cost functionals can have a form 
(normalized with respect to the number of stages K): 

(7.23) Ji-~L-xK+Kl(u'kf], i = l,2. 
K A = 0 

To solve this problem we must apply the general theory of Sections 4 and 5. 
For the sake of simplicity we shall consider the open-loop strategy class. The equi
librium solution is obtained from Theorem 1, because all assumptions of this theorem 
are satisfied, as can be readily verified. Thus we have 

(7.24) uf = i, i = 1, 2, k = 0, 1,. . . , K - 1 , 

i.e. the constraints (7.22) are not active for the equilibrium solution. The correspond
ing equilibrium costs: 

For the minimax solution for player 1 we obtain from Theorem 3 that 

(7-25) u{ = \ 1 
K } k I k=0,l,...,K- 1 . 

u'k
2=0\ 

The minimax costs (security level) for player 1 and the corresponding costs of player 2 
are 

Ji = - i , J'2 - - i , 



i.e. both players have higher costs during the minimax play in comparison with 

equilibrium solution. Interchanging the roles of both players we obtain also the 

minimax solution for player 2, because the game is fully symmetric. 

The noninferior set is determined by Theorem 4. As in Example 1, we solve one-

parameter family of scalar optimization problems, i.e. 

(7.26) J(n) = fiJ, + (1 - n) J2 , 0 < ^ <= 1 . 

It will be clear from the subsequent construction, that we are allowed to incorporate 

into (7.26) also the values ^ = 0 and [i — 1. The condition (b) of Theorem 4 implies 

that 

(7.27) V ' \ k = 0 , 1, ...,K - 1. 

al - f , ul = I , f <, fi = l 

After inserting these values in (7.23) we get 

1 

(7.28) Л0.) = 

ш = 

2(1 - џ) 
0 ѓ Џ ѓ i , 

2џ 4џ2 

-1 + , 0 < џ < i , 
2(1 - џ) 4(1 - џf - -

- f ł ś ^ L 
2/Í 

Then it clearly holds that 

• W = ^2(1 - /t), 0 ^ M < 1 , 

as we expected, because of the existing symmetry of the game in question. Further 
it follows from (7.28) that 

(7.29) j,(/i) = (j2(p))2 + j2(X) - 1 , i < M = § l , 

j2(n) = (j,(^))2 + j^) - 1 , 0 < n <. i . 

Thus, the noninferior set is given by two parts of parabolas, which are parametri-
cally defined by (7.29). Moreover, it is not very hard to show that if we fix one cost 
functional, say Jl = c, — 1 ^ c ^ 0, we see that the other cost functional J2 can 
vary, using the admissible controls, in range from zero to its minimal value J2 = 



— c2 + c — I, and vice versa. This shows that the set of attainable outcomes 0* 293 
is bounded by coordinate axes and the parts of parabolas 

(7.30) Jt = c , J2 = c 2 + c - 1 , 

J x = c2 + c - 1 / 2 = c 

-0,75 -05 -0 25 

' J . 

o J,Ш 

?/ 

-0,25 

-0,50 

-0,75 

-1 

F 
-0,25 

-0,50 

-0,75 

-1 

> 

-0,25 

-0,50 

-0,75 

-1 

c\ 

Z 

E 

-0,25 

-0,50 

-0,75 

-1 
Z 

C ̂
4-

^Q 

/%. 2. Set of attainable outcomes for Example 3. 

The obtained set of attainable outcomes & is indicated in Fig. 2. Point F denotes 
minimax (security) levels for both players and point £ the equilibrium solution. 
Curve RZS is the noninferior set - see (7.29). Finally CZD denotes the so called 
dominant negotiation set, i.e. the set of such noninferior solutions, which dominate 
equilibrium outcome £. The mentioned parts of parabolas in (7.30) are given by 
QSZ and PRZ. 

8. CONCLUDING REMARKS 

In the presented paper an attempt has been made to study certain well-known 
solution types for a general class of JV-player nonzero-sum multistage games with 
state-dependent regions of admissible controls. In this way necessary optimality 
conditions for equilibrium, minimax and noninferior solution type have been obtained 
applying the general results from [18]. These optimality conditions enabled us, 
for the class of linear multistage games with quadratic cost functionals, to compute 
the analytic form of all considered solution types. To be more concrete, it was always 
necessary to solve a discrete linear boundary-value problem. 



As we could expect, when studying open-loop and closed-loop equilibrium solu
tions, we encountered here the same difficulties as in the case of N-player nonzero-
-sum differential games. This problem should be explored in more detailed way in the 
future, especially in connection with some new approaches to this subject — see [22] 
and [23]. Other interesting and still open problem is the incorporation of state 
constraints into the formulation of multistage game. 

A question may arise, concerning possible applications of the developed theory. 
The primal area, where the theory of multistage games can be successfully applied, 
seems to be the field of economic analysis. It is mainly the theory of nonzero-sum 
dynamic games, either differential or multistage, that makes it possible to analyse 
the behaviour of economic systems. For instance, within the framework of dynamic 
nonzero-sum games it is possible to study the dividend policies of firms operating 
in an imperfect competitive market [1], or to analyse a macroeconomic system as 
illustrated on the balance-of-payment adjustment problem between two countries 
in [25]. 

In fact, the problem studied by Myoken in [25] is nothing else than a linear two-
player nonzero-sum multistage game with quadratic cost functionals. In [25] the 
problem of interest is solved using the pseudoinversion. In this respect it is felt, 
that the deeper results concerning the multistage games presented in this paper can 
brought more light into certain problems of economic analysis. Moreover, a nonzero-
sum multistage game can serve as a basic tool in analysing economic competition 
between the individuals, companies, or countries. 

(Received March 25, 1976.) 
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