
KYBERNETIKA —VOLUME 12 (1976), NUMBER 3 

Algebraic Methods in Discrete Linear 
Estimation 

VLADIMÍR KUČERA 

In a series of recent papers the author has developed a new algebraic theory of discrete linear 
control. It is based exclusively on algebraic properties of polynomials and the synthesis procedure 
reduces to solving a linear Diophantine equation in polynomials. In this paper an application 
of these algebraic methods to the minimum variance filtering, prediction and smoothing of scalar 
random sequences is considered. 

INTRODUCTION 

In his pioneering work, Wiener [36] formulated the problems of prediction 
of random signals and separation of random signals from random noise. He showed 
that these problems lead to the so-called Wiener-Hopf integral equation and gave 
a method of solution in the important case of stationary statistics and rational 
spectra. It is the method of spectral factorization in the complex domain [3; 6; 28; 
32; 35]. 

Kalman [13; 14] generalized his results to the nonstationary case using the time-
domain approach. He obtained the optimal filter and predictor through the solution 
of nonlinear matrix Riccati differential equation [1; 5; 11; 12; 16; 30; 34]. The optimal 
smoothing was subsequently solved in [4; 8; 12; 30; 33]. For the stationary Wiener 
problem the Riccati equation reduces to a matrix quadratic algebraic equation [23; 
24; 25; 26]. 

The Wiener's solution is conceptually simple but the numerical computations 
are quite involved and poorly suited to machine processing. The Kalman's solution 
of the stationary filtering can be easily algorithmized but solving matrix quadratic 
equations is not a simple task [23; 24; 25; 26]. 

The algebraic approach presented here is applicable to stationary random sequences 
with rational spectra and leads to solving a linear Diophantine equation in poly­
nomials. This is not only conceptually simpler but also yields a very efficient com-



172 putational algorithm. The method was originally developed to solve optimal control 
problems [17; 18; 19; 20; 21; 22] and its application to optimal filtering was inspired 
by the duality principle of Kalman [13; 15; 16]. 

The problems considered in the paper can be loosely described as follows. Let S 
be an observed mixture of a random signal W and some random noise N. Find 
a linear system J~ whose output at time k recovers in an optimal way the value of W 
at time /, where / may be less than, equal to, or greater than k; see Fig. 1. If / < k, 
this is a smoothing problem. If / = k, this is called filtering. If / > k, we have 
a prediction problem. A collective term for the three problems is estimation. 

J_ 

Fig. 1. The optimal estimation. 

POLYNOMIALS AND RATIONAL FUNCTIONS 

For detail discussion of algebraic concepts used below, the reader is referred to 
[16; 17; 20; 27; 38]. 

Let 9. be the field of reals and 9*(z_1) the field of rational functions over 9L 
An element A e 9?(z~J) can be written as 

A = a„z~n + aB+1z~ ("+1) + . . . , ake 9. 

for some integer n. If a„ + 0, then n is the order of A. We denote <A> = a0, the 
coefficient of A at z°. 

The elements of 9t(z~ x) with nonnegative order form the ring 9t{z" l) of realizable 
rational functions. They have the form 

(1) A = a0 + a i z " 1 + a 2 z" 2 + . . . , afc e 91. 

Elements (1) for which the sequence {a0, a1; a2, . . . } converges to zero constitute 
the ring of stable realizable rational functions denoted by 9t+{z~1}. Let 

A = a0 + a j z - 1 + a2z~2 + . . . e 9 t + { z - 1 } . 

Viewing 9l+{z - 1}- as a vector space over 91, the norm ||A|| of A e 9 t + {z - 1 } can be 
defined by 

(2) | |A | |2=£|a*|2 . 
k = 0 

With the notation 

A = a0 + axz + a2z2 + . . . 



the norm (2) can be expressed as the inner product 173 

Ml2 = <^> • 
Elements (1) with only a finite number of nonzero coefficients form the ring 

SR[z_1] of polynomials over 9?. If 

(3) a «= a0 + a j z " 1 + . . . + anz"""eiR[z~1] 

and a„ =t= 0, then n is the degree of a, denoted by da. By convention, 30 = — oo. 
If a, fc e 9 t [ z - 1 ] , we write b | a to denote that & divides a and (a, fo) for the greatest 
common divisor of a and b. A polynomial a e 9?[z_ 1] is said to be stable if 1/a e 
eSR+jz-1}. 

Given a nonzero polynomial a e 9 . [z _ 1 ] , we define the factorization [17, 20] 

(4) a = a + a~ , 

where a+ is the stable factor of a having highest degree and belonging to SR[z -1]. 
Given a polynomial (3) of degree n ^ 0, we define the polynomials [17, 20] 

(5) a = z"na = a0z~" + OL1Z~<-"~1) + . . . + a„ 

and 

(6) a* = a + a~ .f 

Note that aa = a*a* . 

DIOPHANTINE EQUATIONS 

Consider the equation 

(7) ax + by = c 

for unknown polynomials x, y and given polynomials a, b, ce $R[z_1]. This equa­
tion has been called a linear Diophantine equation in polynomials, see [10; 31]. 

It is shown in [17; 31] that equation (7) has a solution if and only if (a, b) | c. 
If xt, yt is a solution of (7), then 

x = x1 + b0* 

J = ^ i - a0t 

is also a solution of (7), where 

and f is an arbitrary polynomial of $R[z -1]. 

t For typographical reasons, the symbols a~, a*, a*, etc. are used in place of a~, a*, a*, etc. 
throughout. 



A particular solution of equation (7) can be effectively found via the Euclidean 
algorithm, see [10; 17;, 31]. This algorithm is very simple, fast, and well-adapted 
for machine processing. 

In applications we often seek for a particular solution x0, y0 of equation (7) that 
satisfies dy0 < da. This solution is not unique unless (a, b) = 1 and can be found 
by applying the division algorithm. 

SYSTEMS AND RANDOM SEQUENCES 

Throughout the paper we shall consider finite-dimensional discrete linear constant 
single-input single-output systems defined over the field JR. They are described by the 
equations 

(8) xk+l - Axk + Buk 

yk =Cxk + Duk, fc = 0 , l , . . . . 

for the input u e 5R, output y e 9? and the state vector x e 5R". System (8) is said to be 
stable if Ak -> 0 for k ~> oo. 

The sequence 

(9) S = D + z~1C(\n - z _ 1A)- 1B€5R{z- 1} 

is called the impulse response of the system. Conversely, any quadruple {A, 8, C, D} 
satisfying (9) is a realization of S; if A is of least possible size, the realization is minimal 
[16, 20]. 

The S can be written as the ratio of two polynomials [17; 20; 22] 

s = " 
a 

which satisfy (a, b) = 1, (a, z"1) = 1. 

For convenience, we review here some elementary facts about random sequences. 
The details could be found in [7; 9; 12; 28; 29] or [2; 6; 32; 35]. 

A random variable over 91 is a function whose values belong to 9? and depend 
on the outcome of a chance event. A random variable a can be defined by stating 
the probability that a is less than or equal to some constant a e iR, 

P(a = a) = F„(a) . 

The expectation of a random variable a is defined by the integral 

Ea = V adFJÍa) . 



A sequence of random variables 

(10) A = { . . . ,a 0 ,a 1 ,a 2 , . . . } 

is called a random sequence over 5R. The k function with values Eafc is called the mean 
value function of A. The /, m function whose values are Ea,am is the correlation 
function of A. If 

B = { . . . ,P 0 ,p l 5 p 2 , . . . } 

is another random sequence, the /, m function with values Ea(p,„ is the cross-correla­
tion function of A and B (in this order). 

A random sequence (10) is said to be (weakly) stationary if Eat is independent 
of k and Ea,am depends only on l-m and is bounded. A random sequence (10) is 
called white (uncorrelated) if 

E(a, - Ea,) (am — Eam) = 1 , / = m , 

= 0, I + m. 

In most cases, observed random sequences are not white. The correlation between 
random sequences observed at different times is usually explained by the presence 

Fig. 2. Random sequence model. 

of a dynamic system between the primary random source and the observer. Thus 
a random sequence A may be thought of as the output of a system !FA excited by 
a white random sequence Q, see Fig. 2. The 3F A is usually called the shaping filter 
of A. 

Throughout the paper we shall restrict ourselves to random sequences which may 
be observed at times k — 0 , 1 , . . . at the output of a shaping filter governed by 
equations (8) and having a zero-mean white random sequence applied at its input 
at time k = — oo. 

It follows from the definition that such a random sequence 

A = { . . . , a0, aj, a2, .. .} , Eafc = 0 

is stationary if and only if the shaping filter SF A is stable. Then the correlation func­
tion of A can be written as 

*iU = • • • + <P-iz + <Po + (Piz'1 + ••• , 
where 

9k = Eafc + , a , = cp_k, 



and <PAA = FAFA. The (p0 is called the variance of A and, since 

<7>o = <$AA> = <FAFA} = \\FA\\2, 

it can be interpretted as the squared norm of the impulse response of its shaping 
filter. 

If 

B « { . . . , p0, Pi, P 3 , . . . } , EPfc = 0 

is another zero-mean stationary random sequence, the cross-correlation function 
of A and B can be written as 

$AB = .... + t / ^ z + ^ 0 + tfr.--1 + . . . , 

where 

•A* = -«*+ . p,, 

and ^ B = F ^ F R for some FL, FR e SR+{z -1}. Evidently, <PBA = $AB. 

Now consider a random sequences S = A ± B obtained as the sum (difference) 
of two stationary random sequences A and B. Then [6, 28; 29; 32; 35] 

(11) $SS = $AA ± $AB ± $BA + ®BB , 

®AS = ^AA ± &AB • 

If a stationary random sequence E passes through a stable system <3 with impulse 
response G to yield a random sequence A, i.e. A = GE, then [6; 28; 29; 32; 35] 

(12) $AA = G$EEG , 

$EA = ®EEG 

in the steady state. 

MINIMUM VARIANCE ESTIMATION 

As stated in the Introduction, the observed random sequence S is a mixture of 
a random signal W to be recovered and a random noise N. Since the noise is not 
explicitely known, the most natural initial data to solve the estimation problems 
would be the four impulse responses Fw, Fs, FL, FR e ? l + {z" 1 } , which define the 
random characteristics 

(13) $ww = FWFW , 4>ws = FRFL 

®sw = FLFR , 4>ss = FSFS 

of S and W. The relations between Fw, Fs, FL and FR depend on the type of interac­
tion between the signal W and noise N. In the case of additive interaction, S = W + N, 



a necessary and sufficient condition for the Fw, Fs, FL and FB to be meaningfull is the 177 
existence of a matrix F with elements from 5R+{z - 1} such that 

(14) 

where 

r<lw $WN1 __ pF, 

L&NW &NNJ 

$WN = ®WS - &WW , 

&NW = $SW - $WW , 

®NN = $SS - ®SW ~ ®WS + $WW 

and F' is the transpose of F. If 

ғ = p n ғl2l 

we have the model of random sequences Wand N shown in Fig. 3. 

Fig. 3. Additive model of signal and noise. 

If the Fw, Fs, FL and FR happen not to satisfy condition (14), they correspond 
to some non-additive interaction between W and N. However, this has no effect on 
the solution of estimation problems. 

For our estimation to be optimal, we have to define some optimality criterion. 
Since we want the optimal estimator to be linear, our object will be to minimize 
the steady-state variance of the estimation error E, which is to say, to minimize 
the norm | |E£ |2 of the impulse response of the shaping filter for E. 

Hence we have the following formal formulations: 

(15) Minimum variance filtering 

Given the configuration of Fig. 1, where the zero-mean stationary random se­
quences W and S are characterized by 

F^iet t+Jz- 1}, 
P 

Fs = -e9i + {z-1}, b*-0, 
a 



r 

and the filtering error is defined as E = JF — Y. 
Find a stable filter J^ which is a (not necessarily minimal) realization of some 

F e 9?+{z - 1} such that the norm ||E£J|2 of the filtering error is minimized. • 

(16) Minimum variance prediction 

Given the configuration of Fig. 1, where the zero-mean stationary random se­
quences W and S are characterized by 

Fw = ^e^{z~1}, 
P 

F s = - e < R + {z-1}, b + 0, 
a 

FL = V-e^{z-1}, 
u 

F , = * e * + { z - 1 } 
r 

and the prediction error for X = / — k stage prediction is defined as E = 
= ( l / z - A ) J F - Y. 

Find a stable predictor & which is a (not necessarily minimal) realization of some 
F e SR+{z-1} such that the norm ||FE | |2 of the prediction error is minimized. • 

(17) Minimum variance smoothing 

Given the configuration of Fig. 1, where the zero-mean stationary random se­
quences W and S are characterized by 

Fw =
 q~e^{z-1}, 
P 

Es = - 6 * + { z - 1 } , b + 0, 
a 

F L = * e < R + { z - 1 } , 
u 

F*=^K+{z - 1} 
r 

and the smoothing error for y. = k — / stage smoothing is defined as £ = z'^W — Y. 



Find a stable smoother 2F which is a (not necessary minimal) realization of some 
F e 9 l + {z~ *} such that the norm | | F E | 2 of the smoothing error is minimized. ~~ 

The estimation problem could be generalized in the sense that some function 
of the r andom signal W is to be recovered from S. The estimation error is then defined 
as E = KW - Y, where K e 5R(z_1) represents the desired function of W. 

THE FILTERING PROBLEM 

Denoting 

(18) m = eav, n = eb*u , 

we are ready to prove the following result. 

Theorem 1. Problem (15) has a solution if and only if the linear Diophantine 
equation 

(19) z~mh*ux + ry = z~"avs 

has a solution x0, y0 such that ey0 < ez~mb*u and 

(20, , - a 

belongs to i K " ^ - 1 } . 

The optimal filter S~ is given as a stable realization of (20) and it is essentially 
unique when minimally realized. Moreover, 

(21) ML - ( ( £ ) ( £ ) ) + <*„ - *„«*w> • 

Proof . In order to minimize the norm ||E£||2 of the filtering error E, we shall 
assume that E is a stationary random sequence. Then FE e $i+{z~*} and 

(22) . \\FE\\2 = <FEFEy . 

We will manipulate the inner product (FEFE} so as to make the minimizing choice 
of F obvious. 

Write E =W- FS and, by (11), (12) and (13), 

(23) FEFE = FWFW - FRFLF - FFLFR + FFSFSF = 

m(±*L-*-F\(±*i- *-F\ + 
\B* Ur a J\B* ur a ) 

+ $ww - ťws^ťsw • 



180 Using (5) and (18), we obtain 

av _ z~"av 

b*u z~mB*u 

Since the last two terms on the right-hand side of (23) are independent of F, the 
(FEFEy attains its minimum for the same F as the (FEOFEoy does, where 

f-,A\ IT z~"avs b* 
(24) I£o=~3^^ F-

z mb*ur a 
Now take the decomposition 

z avs y x 

z mb*ur z mB*u r 

It follows that the polynomials x and y are coupled by equation (19). 

Collecting the terms gives us 

z mb*u 

where 

(25) A = * - b - F . 
r a 

Hence 

<*> <*-*-•>-(H*)fck.))+ 

Any solution of equation (19) can be written in the form 

r 
(27) x = x0 + - m , _ - t 

(28) y = y0 -

(z~mБ*й, r) 

nБ*ü 

(z~mB*u, r) 

for arbitrary t e W[z - 1 ] and 

(29) dy0 < dz~mB*u. 

The key observation is that 

~mB*u) b* 
-(дz-^ӣ-Єyo) 



is divisible by z l due to (29). Therefore 

(30) /pOxN-O, /Mp i 
\\z-mb*uj J \\z-mb*uj(z-mb*u,r) 

and the substitution of (28) into (26) yields 

= 0 

<зi> ™-(ШШ 
Л- ' 

(z-mB*u,r)l\ (z-mb*u, r ) , 

since the terms shown in (30) are zero. 

The first term on the right-hand side of (31) cannot be affected by any choice of F. 
The best we can do to minimize (31) is to set 

t 

by (25). But 

" - ( . -
= 0 , 

mb*ü*, r) 

_ _ _ ! ғ 
r a 

t _ _ _ ! ғ 
r a [z-mB*ü*, r) 

X t x0 

= 0 

r (z mb*ü*, r) r 

by virtue of (27). Hence (31) and, in turn, the inner product (FEFE} is minimized 
by the F given in (20). 

If this F belongs to 9 t + { z - 1 } , the E is indeed a stationary random sequence and 
our assumption (22) holds true. Then the optimal filter !F is a stable realization of 
(20). Since r and u are stable polynomials by assumption, we have (z"mb*M*, r) = 1 
and the solution x0, y0 is always unique. As a result, the F is also unique. 

Expression (21) for the minimized norm is a direct consequence of (23), (31) and 
the identity 

_̂___TV yp \ . ( _ V J / A V • 
rmb*u*)\z-mb*u*J \b*uj\b*uj 

Remark 1. When the mixture S is given by its correlation function <£ss rather than 
by Es, the shaping filter Fs is obtained through the decomposition $ s s = ESES. 
This decomposition is unique [35; 37] up to an element o> e 9t satisfying co2 = 1. 
We shall show, however, that the optimal filter J5" is independent of co. Indeed, let 

a a 



182 where b = mb^. Then b* = (ob* and we have to solve the equation 

(32) z~m(ob*ux + ry = z~navs 

instead of (19). The solution x10, yl0 of (32) is coupled with the solution x0, y0 of (19) 
as 

a>x10 = x0 , y10 = y0 

and, therefore, 

o ^ = A o x o = F 

rb* a,1 rb* 

Remark 2. If the random sequences W and N are not cross-correlated, we have 
<PWN = $NW = 0 and hence 

®sw = $ws = &ww , 
i.e. 

FL = FR = Fw . 
Equation (19) then reads 

(33) z~mb*px + py = z~"aqq 

and 

F = ^ . a 
Pb* 

Remark 3. In case there is no corrupting noise, we have 

&ss = ®sw = $ws = ®ww, 
i.e. 

Fs = FL = FR = Fw. 
Equation (19) then reads 

(34) z~mq*px + py = z~"pqq 

and m = dpq, n = dq*p. In view of the identity 

qq = z~(m~")q*q* 

equation (34) can be put into the form 

x + py2 = q* , 

where y = z~mq*py2. It follows that x0 = q*, y0 = 0 satisfies both equation (34) 
and dy0 < dz~mq*p. Thus the optimal filter is simply given by 

F = ^ o = l 
pq* 

and IIE£I!min = 0, an expected result. • 



Example 1. Let 

П L_ ғ

 l 2 - °'5z" 
*W - ГL = ГR - / - - — — — , ŕ s = 1 - 0 - 5 Z " 1 V 2 1 - 0 - 5 2 " 1 

This means that the S originated as the sum of W and a white noise N not cross-
correlated with W. Solve problem (15). 

We compute 

m = 1 , n — 2 , 

fo* = - 1 ( 2 - 0-5Z-1), 5* - — (2Z" 1 - 0 - 5 ) , 

V2 V2 

p = 1 - 0 - 5 z _ 1 , 4 = / - . 
V8 

Equation (33) becomes 

z - 1 - ^ - 1 - 0 - 5 ) ( z - 1 - 0 - 5 ) x + (l -0-5Z-
1)y = z - ^ z " 1 - 0 - 5 ) -

V2 ^ 

and using algorithm described in [17] we obtain the solution 

1 1 _ 2 1 _ ! 
x0 = -7- , y 0 = - - - - z 

V2 4 8 
satisfying dy0 < 3. 

Therefore, the optimal filter is a stable realization of 

F- 1 

2 - 0 - 5 Z - 1 

and yields the minimized steady-state variance of the filtering error 

11 " 30 6 10 2 

by virtue of (21). • 

Example 2. Consider 

F - 1 l
 F - - £ l-Z~l -r.. -•_ 2 1 - 0-5Z"1 2 1 - 0-5z" 

ғ _,.- 1 f _ - l - - " 1 

L 2 1 - 0 - 5 Z - 1 ' * 2 1 - 0 - 5 Z - 1 



184 It means that the signal W is contamined by an additive white noise N, the cross-
correlation between W and N being 

-0-25z  
WN~ (1 - 0 _ _ ) ( 1 - 0 - 5 Z " 1 ) ' 

Solve problem (15). 

Since 
m = 1 , n = 2 , 

&* _:*_?(_--_1). 5 * _ _ _ ( i _ z - i ) , 
2 V y 2 V y 

*-_, - - K - - * - 1 ) . 
equation (19) becomes 

' - - Ѓ 1 - Z -

- z - 2 ( _ - * - 0 . 5 ) ł K l - г " ł ) 

2 ( l - _ - 1 ) ( . - 1 - 0 - 5 ) . x + ( l - 0 - 5 г - 1 ) y -

and yields 

Then 

'--—j--1. ^ = 0. 

ғ _ _ - - • 

3 1 - z - 1 

is not a stable realizable rational function and hence the problem has no solution. 
I ndeed, the filtering error variance will never reach a steady state. • 

Example 3. Let 

Fw = l- 1 - — , Es = y_3_L__jL__, 
2 1 - 0 - 5 Z - 1 2 1 - 0 . 5 Z - 1 

_ 1 1 - z - 1 1 1 - z - 1 

^ i = - : r-r—T , *R = z 4 1 - 0 - 5 Z - 1 2 1 - 0 - 5 Z - 1 

These data represent a signal W corrupted by an additive white noise N with correla­
tion functions 

0-25 • _ -0-125z - 0-125Z-1 

<!W = T. . w . rrr—re > -V_ = (1 - 0-5z)(l - 0-5Z"1) ' (1 - 0-5z)(l - 0-5Z-1) ' 

-0-125z - 0-125Z'1 

(Í-O^il-O-Sz-1) ' m~ 



Computing 
m = 2, n = 2 , 

t . _ : £ ( , - - _ 1 ) , S* = ^ ( i _ 2 - 1 ) 5 

0 - K z - 1 - ! ) , 5 = i ( l - z - > ) , 
equation (19) reads 

z - 2 V _ ( i - z " 1 ) ( z - 1 - 0 - 5 ) x + (l - 0 - 5 z - 1 ) j ; = 

= z " 2 ( Z - - - 0-5) i(z~l-\) 1(1 - z - 1 ) 
and gives 

* - 4 J ( . - - ' ) . »-<>. 
The optimal filter is then a stable realization of (20) 

E = * 
and yields 

l ' .ll.-0 + i - i - ! 
by virtue of (21). 

It is interesting to note that the problem has a solution even though b is divisible 
by the unstable polynomial 1 — z~l. The solvability of a given problem thus never 
can be inferred until the Diophantine equation (19) is solved. ~~ 

THE PREDICTION PROBLEM 

It is often of interest not only to separate a signal from noise but to predict future 
values of the separated signal. A sequence W predicted for A stages forward can be 
described as (l/z_ A) W and, therefore, the prediction problem (16) can be solved 
analogously to the filtering problem (15). 

Theorem 2. Problem (16) has a solution if and only if the linear Diophantine 
equation 

(35) z~x~mb*ux + ry = z~"avs 

has a solution x0, y0 such that dy0 < dz~k~mb*u and 

(36) F = ff_ 
rb* 

belongs to 5R+{z -1}. 



186 The optimal A-stage predictor 3F is given as a stable realization of (36) and it is 
essentially unique when minimally realized. Moreover, 

(37) | | F E « L = (jJ^ ^ + <*w - *ws*;s>*sw>. 

Proof . The proof is quite analogous to the proof of Theorem 1. We just write 

E = — - W - FS 

and hence (24) reads 

z "avs b* 
F E 0 = -A-mC*~ F • 

z b*ur a 

Taking the decomposition 

z-"ai;s 
nb*ӣr z k mB*ü + - , 

we obtain equation (35). The optimal predictor (36) and expression (37) follow by 
repeating the arguments. • 

Example 4. Consider again 

I V - . W . - Il-4^r. FS=
 l2-°->Z" 

l - 0 - 5 z - 1 7 2 1 - 0 - 5 z _ 1 

and solve problem (16) for A = 1, i.e. single-stage prediction. 

Equation (35) now becomes 

z - 2 - i - ( 2 z - 1 - 0-5) (z-1 - 0-5) x + (1 - 0-5z_1)>> = z~-{fx - 0-5) ' 

V2 

and has the solution 

x0 = - i - , y0 - z - 3 - 0-5z-2 

2 ^ 2 

satisfying 3y0 < 4. 

Thus the optimal single-stage predictor is a stable a realization of (36) 

2 2 - 0-5Z-1 



and it yields 

Naturally, the prediction variance is greater than the filtering variance, see Example 1. 

D 

Example 5. Given a noise-free stationary random sequence Why 

/ y = 1 , 
W 1 - 0 - 5 Z - 1 

solve problem (16) for all X = 1, 2, . . . . 

In this particular case we have 

Is = FL = IV = IV 
and hence the equation 

- - - - - ( - - » - 0-5) x + (1 - 0-5z-«) j = z - ^ z - 1 - 0-5) 

is to be solved. We obtain 

1 

3'„ = (z--0-5z-1)(l+lz-1
 + . . . + i c z - + . . . + J r T z - - 1 ) ) 

and, therefore, the optimal 1-stage predictor is a stable realization of 

' - ? • 
The resulting prediction error variance can be written as 

IN|L = 1(1-0-5"). 

It increases with X but it remains bounded for large X. fj 

THE SMOOTHING PROBLEM 

The filtering and prediction problems are usually associated with real-time opera­
tions, in which estimates are required on the basis of observations or data available 
now. In a post mortem analysis, it is possible to wait for more observations to accumu­
late. In that case the estimate can be improved by smoothing. A sequence If smoothed 
for fi stages backward can be described as z'^W and, therefore, the smoothing 
problem (17) can again be solved analogously to the filtering problem (15). 



188 Theorem 3. Problem (17) has a solution if and only if the linear Diophantine equation 

(38) ' z~mb*ux + ry = z~"~"avs 

has a solution x0, y0 such that dy0 < dz~mb*u and 

(39) F = ^ 
rb* 

belongs to 91+ { z - ' } . 

The optimal /(-stage smoother S~ is given as a stable realization of (39) and it is 
essentially unique when minimally realized. Moreover, 

(40) |F£||L = ({Jfy (j±-^ + <<*W - _V.*_V*_-> • 

Proof. The proof is again analogous to the proof of Theorem 1. We just write 

E = z~'lW-FS 
and hence (24) becomes 

Taking the decomposition 

_•-»- -_« . b* 
E 0 ~~ - м C * . ' 

z b*ur a 

+ - , z mb*ӣr z mb*ü r 

we obtain equation (38). The optimal smoother (39) and expression (40) follow 
by repeating the arguments. • 

Example 6. Consider again 

, , _ , . _ , . _ 11,-L^r, *.- I 2 - 0 ^ ' 
1 - 0 - 5 Z - ' V2 1-0-5Z""1 

and solve problem (17) for /.i = 1, i.e. single-stage smoothing. 

Equation (38) now reads 

Z - - _ L ( 2 Z - 1 - 0 '5)(z- J - 0-5) x + (1 - 0 -5z- ' ) j ' = z~\z~' - 0-5)J 
v -

and has the solution 

>-» = A(z-!-o.5,-') 
satisfying 3y0 < 3. 



Thus the optimal single-stage smoother is a stable realization of 

ir = i . 2 + 7z~1 

2 - 0 - 5 Z - 1 

and it yields 

1 1 F E | 1 L = ^ + I ~ ^ = I -
Naturally, the smoothing variance is less than the filtering variance, see Example 1. • 

Example 7. Given a noise-free stationary random sequence W by 

1 - 0-5z" 

solve problem (17) for all ji = 1, 2, 
In this particular case we have 

Fs = FL = FR = Fw 

and hence the equation 

z - 2 ( l - z " 1 ) ( z - 1 - 0-5) x + (1 - 0-5z~1)y = 

= z - - 2 ( z - 1 - 0 - 5 ) ( z - 1 - l ) ( l - z - 1 ) 

is to be solved. We obtain 

x0 = z - " ( z - 1 - l ) , J o = 0 

and, therefore, the optimal /j-stage smoother is a stable realization of 

F = - - " . 

The minimized variance of the smoothing error results 

N i - = o 
irrespective of ji. 

CONCLUDING REMARKS 

The algebraic approach, originally developed for the synthesis of discrete optimal 
control, has been applied to the problem of minimum variance filtering, prediction 
and smoothing. The synthesis procedure is very simple and, in contrast to traditional 
methods, reduces to solving a linear Diophantine equation in polynomials. Thus 
a complete algorithmization and machine processing is possible. 



190 The reader's attention is drawn to a formal similarity between the deterministic 
problem of open-loop least squares control [18, 22] and the stochastic problem 
of minimum variance filtering. Even if conceptually very different, the two problems 
lead to solving essentially the same polynomial equation. 

(Received November 13, 1975.) 
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