
Table (2.31) becomes 

1 -w~l 

-w'1 1 -w'1 

1 - w~2 0 

and since ir( — w~ i) — Q~ X < 1 (recall that Q > 1) we conclude that a is stable. 

If ^ is a subfield of (£ valuated by (2.25), the crucial role plays the computation 

of m*. The following algorithm is proposed in [47; 31]; there are many others [58]. 

Given a polynomial m e (5[ z _ 1] of degree n ^ 0, compute 

m~m = ypz" + ... + ytz + y0 + y ^ 1 + ... + ypz~p , yp + 0 

and set 

g = y 0z-" + y l Z - ( p + 1) + ... + ypz~2p . 

Perform the recurrent division 

9 = fiAk + rk > 5rk<8fk, k = 0, 1, . . . 

by/fc. where 

/o = ~-p , 

h = « ;_ ! , fc = i , 2 , . . . 

Then 

lim gft = a 
*-»M 

and if a e 5 [ z _ 1 ] , we have m* = o modulo a unit of <y[z_1]- If *5 i s not topologically 
complete it may happen that q does not belong to 3 [ z _ 1 ] a n d , therefore, it cannot be 
equal to m*. 

Having computed q via the above iterative technique, we can use the definition 
of m* to take 

m- = z-<"-»(m, q~) , m + = - ^ -
m 

and thus avoid the computation of roots of polynomials at any stage of the synthesis 
procedure. 

Example 2.13. Consider 

m = z ' 1 - 2 z - 2 e « [ z _ 1 ] 

and use the iterative technique to compute m~, m+, and m*. 

We have 

m~m = - 2 2 + 5 - 2 z _ 1 
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and hence 

Initializing with 

we obtain after scaling 

ø = Sz-1 - 2z-2 . 

jo = z" 

9o = i - ! * - 1 . 

<łi = L - ^ z - 1 

<łz = L - ^ z " 1 

L 85 Z 

«3 = L - i I 2 z -
L 341^ etc. and, evidently * 

4 = 1 - 0-5z~ 
It follows that 

m~ = z-^z'1 - 0-5), m + = - 2 

modulo a unit of SR[z_1] and hence 

m* = - 2 ( 1 - 0-5z_ 1) = z _ 1 - 2 . 

When only the m* is required, we can compute 

(1 - 0-5z)_ 1 m = m(l - 0 - S z " 1 ) ' 1 = 4 = ( - 2 ) ( - 2 ) 

and obtain 
= - 2 ( 1 - 0 - 5 z - = z - 1 - 2 . 

Given a polynomial matrix over 5/,m> t n e matrix factorizations can be reduced 
to factorizations of invariant polynomials and the above procedure is still applicable. 
Nevertheless, the following original algorithm for direct computation of M* and 
M* is useful; there are many others [59; 60; 64]. 

Given a polynomial matrix M e f j z " 1 ] of degree n ^ 0 and rank M = m, 
compute 

M"M =r'pz
p + ... + r\z + r0 +r1z~i + ... + rpz-p, rp * o 

and set 

G = r 0z- p + r 1z- ( p + 1 ) + ... + r p z- 2 p . ' 

Perform the recurrent left division 

(2.32) G = FukQr,k + RUk, dRUk<8Fuk, fc-0,1,..., 
by Ej ik, where 

F L O - = / « - - ' , 

F l f f c = e i : * - i . k - i , 2 , . . . 
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Then 

lim 6 M = Ql 
*->00 

and if Qi 6 <~m,m[z_1], we have M* = E1Q1, where Ex is a unit of - f m , m [ z _ 1 ] . 

Similarly, given a polynomial matrix M e f j z " 1 ] of degree n 2: 0 and 
rank M = /, compute 

MM'= = A;z« + ... + A\z + A0 + A^z'1 + ... + Aqz~q, Aq + 0 

and set 

L = Aoz"' + A,z~(<!+1) + ... + Aqz-2". 

Perform the recurrent right division 

L= Q2.kF2,k + R2,k, SR2,k<dF2tk; fc = 0, 1 

by F2,k, where 

F2,o = IiZ-q, 

F2,k = Q2,k-x, l< = 1 . 2 , . . . 
Then 

lim Q2>i = S 2 
k-+oo 

and if Q2 e e5i,i[-'"1], we have M* = Q2E2, where E2 is a unit of S i , . [z _ 1 ] . 

Unfortunately, no general proof of this algorithm is known at present. It is present­
ed here just as a conjecture backed by computational experience. 

Example 2.14. Given 

M = 

Lo t-\í - 2Z"1)] 

over 3R[z 1 ] , use the iterative technique to compute M * and M* . 
We have 

M' = M = 

Initializing with 

П 1 - 2 Z - 1 

Ll-2z 2(l-2z)(l-2z^)J 
Г 0 01 z + Г1 П + ГO - 2 1 z" 

L-2 -4J L1 10J L° -4J 

G = П Л z" 1 + Г0 - 2 1 z " 2 . 

Ll юj L° -4J 
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we obtain after scaling 

e,,0 = 

etc. and evidently, 

Qi = 

"-GÎTC-ÏT 
12 = r i o i + ro - f f f i z - 1 , 

Lo i j Lo - & J 
.,, =-ri o-i + ro - i ^ l z - 1 , 

. Lo ij Lo-mJ 

1 = n ol + ro - i - 5 l z - 1 = p - i - 5 z - n 
Lo l j L° -°-5J L° l -0-5z - 1 J . 

The matrix El can be computed as follows. Since 

Г 1 0 T 'M' = MГl - l-5z-1"j-: 

L-l'5z 1-0-5-J L° 1 - 0-5z-1J 

Li s j Li -2JL0 - 2 J , 

Î = П 11 Гl - l-5z-П = Гl 1 - 2z-П 
Lo -2JL0 1 - 0-5z-1J L° z~l - 2 J • 

Г - 2 z - 1 + 6 - 2 z (1 - 2z- 1)(l -2z)l 
L ( l - 2 z - 1 ) ( l - 2 z ) ( l - 2 z - 1 ) ( l - 2 z ) J 

[тттттт 
Ш"TT-T 
•°tr 

we obtain 

M * = 

Similarly, we have 

MM'= = [ " - 2 Z - 1 + 6 - 2z (1 - 2 z - 1 ) ( l - 2z)" | = 

( l - 2 z ) ( l - 2 z - 1 ) ( l -

+ T6 51 + T-2 -21 z - 1 

- . J 
L = 

Initializing with 

F , n = 

we obtain after scaling 

Q2,o = 
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etc. and, evidently, 

Example 2.15. Given 

& "t3t:fr 
"-en I T 
ea^rio-i + ro-f^iz-1, 

LoiJ Lo-ffll 

r i oi + ro -o-5i z'1 = n - o-5z_1i. 
|_o I J [o -°5J L° i -o-sz-^ 

lputed as follows. Since 

"1 - 0-5z- 1 l - 1 MM'=n 0 l " 1 = 

0 1 - 0-5z_1J |_-0-5z 1 - 0-5zJ 

L44J [0-2JL-2-2J 

* = n -o-5z-nri-2i = n z~x - 2 1 . 
[0 1 - O-SZ^JLO -2J [0 z~x - 2J 

H l - z - l e Q . ^ z - 1 ] , 

Qг = 

The matrix E2 can be computed as follows. Since 

M* = 

M = 

use the iterative technique to compute M*. 

Since 

M'^M = T2 2 - z 

z2 - z 2 + 3 

we get 

Initializing with 

Г2 2 - z - •,= 
[2 - z! -z ! + 3 - z-J 

UTtП 0 : ! ] 
vrт-r 
•°t°Г 

G = Г2 
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we obtain after scaling 

Quo--

etc., that is, 

-°t:Jt~Г 
'•'tГГГ 

•t:Jt~rt:~ ł zl' ß i = 

an element of Q 2 ,2t z I 
Observe that Qlk converges to Qt in a finite number of steps. This is due to the fact that 

m p M ' = M = 1, a unit of Q f - " 1 ] . * 
Since 

Tl 0 1 - 1 Af' = A/Tl 1 - iz- 2 !" 1 = 

Li - iz2 i j Lo i J 

t:jt;« 
we obtain 

M ; I;UK:~ I Z II:!:J:1' 
To evaluate the performance of a least squares control for systems defined over 

a subfield of £ valuated by (2.25), we have to compute the quadratic norm | £ | 2 of 
the error sequence. 

There is an algorithm [2; 3; 46] to compute the quadratic norm 

H 2 = (e'-e} = 

of a single real error. We state here without proof its generalization to errors defined 
over an arbitrary subfield g of C valuated by (2.25). 

Given polynomials a, b e 5 [ z ] , db ̂  da = n, n = 0, a being stable. Introduce 
polynomials 

<*k = <%,o + « M Z + ••• + ak,n-kz"~k, 

, bk = pkt0 +fiktlz + ... +pk,n-kz"-k 

which are defined recursively by 

(2.33) zak+1 - a k - - ^ - a ; , k - 0,1 n - 1 , 

a0 = a 
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Therefore, t h e q u a d r a t i c n o r m of a mult ivar iable system er ror is the s u m of t h e 

q u a d r a t i c n o r m s of its single e r ror c o m p o n e n t s . 

Example 2.16. Given the error sequence 

'ЛÅX^à z x -

- 2 Z - 1 -
E = 

z ' 1 - 2 1 - 2 2 

over iR, compute H_"||2. 

We denote 

1 - 2z - 2 - 2z 
£?, = - _ _ , Є2 = 

1 - 2z 1 - 2z 

Table (2.31) becomes 

- 2 1 

1 - 2 - 0 - 5 

- 1 - 5 0 

Then table (2.35) for ey yields 

- 2 1 

1 - 2 - 0 - 5 

- 1 - 5 0 

- 1 - 5 0 

and 

" " -2V-2 -1-5 
Table (2.35) for <?2 yields 

- 2 - 2 

1 - 2 1 

- 3 0 

- 1 - 5 0 

and 

Therefore 

| |_T||2 = 1 + 4 = 5 . 

Example 2.17. Given the error 

E = ^ ^ i 
z + 0-5 i 

over % the field of algebraic numbers, compute ||J_ || . 
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Find a stable control sequence Ue gfm.i{z x} such that the error sequence E 
vanishes in a minimum time fcmin and thereafter. 

(3.2) Finite time optimal control problem. 

Given a system S which is a (not necessarily minimal) realization of 

s = ~eS( , m {z - 1 } , S * 0 
a 

and a reference sequence 

W=Qe$lA{z-1}, Q*0. 
P 

Find a finite control equence Ue5m,i[z_I] such that the error sequence 
E vanishes in a minimum time /cmin and thereafter. 

(3.3) Least squares control problem. 

Given a system s which is a (not necessarily minimal) realization of 

s=-€S;,m{z-1}, 5 * 0 
a 

and a reference sequence 

f F = ^ e f f u { z - 1 } , 2 * 0 . 
P 

Find a stable control sequence f i e g ^ f z " 1 } such that the quadratic norm 
| | £ | 2 of the error sequence E is minimized. 

It is to be noted that the control sequence is required to be stable in all control 
problems. This is rather a strict assumption motivated by physical realizability of 
the optimal control. However, an optimal control which is bounded instead of 
stable may be well acceptable in the engineering practice. This is to be born in mind 
when applying the synthesis procedures. 

Even if these problems can be considered classical the author is not aware of any 
solution of the open-loop optimal control problems in the literature. The only 
exception is [60], where a restricted version of problem (3-3) is considered. The 
open-loop optimal control problems for single-variable systems have been syste­
matically formulated and solved for the first time in [30; 31; 32; 33; 34; 35]. 
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3.2. Stable time optimal control problem 

Let g be an arbitrary field with valuation V and write 

5 = - = ByAlx , rank B1 = r , 
a 

(3.4) B. = B~,Bt . 

By the definition of B,~, see (2.19) and (2.30), we get 

B; = [Br. o], 

where Bn e $ i , r [ z _ 1 ] , Oe %t m _ r [ z _ 1 ] and rank B ^ = r. 

Then we have the following result. 

Theorem 3.1. Problem (3.1) has a solution if and only if the linear Diophantine 

equation 

(3.5) BnX + Yp=Q 

has a solution X°, Y° such that dY° = min subject to 

(3.6) u = A2(Btyru1i 

belongs to g * \{z~1}, where 

ut = *-, 
p 

f / ^ ^ - r , . ^ " 1 } -

The optimal control is not unigue, in general, and all optimal controls are given 
by (3.6). Moreover, 

E=Y° 
and 

kmln = 0 , Y° = 0 , 

= 1 + 0Y°, Y°+ 0 . 

Proof . Write 

E = W - SU =~ - BiA^-U = - - [ в - . o] вtA;lu= Q - B^Uj. , 
p p p 

where 
ìtA^U=ГuЛ 
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and 

Since the error is to vanish in a finite time and thereafter, E must be a polynomial 

matrix in ( 5 / , i [ z l ] , say Y Therefore 

(3.7) Y=Q-B;iUl = Q-E»liEi 
p p 

and since (p, Q) = 1 up to a unit in *y[ z _ 1 ] , we must take 

(3-8) £ / , = * , 
P 

where X e 5 r , i [ z l ] is a polynomial matrix to be specified. 

In fact, the X and Y satisfy equation (3.5) by virtue of (3.7) and (3.8). Among all 
solutions of equation (3.5) we have to take only those which make the U stable and 
within this class further those which minimize the degree of E. Therefore 

u w A2(Bty1ru1i, 

where 

P 

U2 G g m - r , i { z _ 1 } arbitrary but such that A2(B
+

l)~
1[ 0 ] eF„ +

] 1 {z" ' j 

and 
E = Y°, 

\:rUť 

the X°, Y° being a solution of equation (3.5) such that 8Y° = min among all solutions 
yielding a stable U. Then 

kmin = 0 if Y° = 0 , 

= 1 + 8Y° otherwise. 

The stability of U cannot be inferred until the general solution of equation (5) is 
found. • • 

Example 3.1. Consider the system over the field 31 valuated by (2.25) which is a realization of 

V 1 o 1 
s = Lo -"'(i - O 2 ] J ^ ' o I f i - z - ' o r 1 

l - z - 1 " [ o z-x(l - z_1)JLo lj ' 



the reference sequence 

and solve problem (3.1). 

We carry out factorization (3.4) 

„ja 
1 - Z" 

equation (3.5) becomes 

(3.9) 

Lo z-'tl-z-'J-JLo lj 

5r1 = r--1o 1, 
LO z-'O-z-1)] 

p - 1 o ix + Y(i - z-1) = r r . 
Lo 2-*(i - z-1)] Li. 

It is to be noted that the matrix 

tra " z _ 1 0 0 

0 2-Ҷl - z"1) 0 
0 0 1 - z" 

has the invariant polynomials 1, z _ 1 ( l — z - 1 ) , z _ 1 ( l — z _ 1 ) while the matrix 

И 2 _ 1 0 1 

0 z - Ҷ l - z - 1 ) ! 
0 0 1 - z" 

has the invariant polynomials 1, z , z (1 — z ) . Since they are not equal, the above matrices 
are not associates and equation (3.9) has no solution by Theorem 1.1. Hence our problem has no 
solution. 

Example 3.2. Consider the system over the field Dv valuated by (2.25) which is a realization of 

s = 

Z " 1 0 1 
2"2 2-Ҷl - 2--)J Гz-1 0 1Г1 - Z"1 0"]-1 

L--aHLo iJ ' 1 - z" 

the reference sequence 

and solve problem (3.1). 

W _ [-(- - --j 
1 - z" 
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Equation (3.5) now reads 

(3-10) [-Z--0 i x + Y(i-z-1) = n -i 

U- 2 -" 'J 1.2(1 - z"1)] 
and it has a solution. We find 

ra-мrҹ 
and, by Theorem 1.1, equation (3.10) is converted into the set of polynomial equations 

z - 1 x 1 + j - 1 ( l - z - 1 ) = l , < 

X = 

, +ӯa(i -z- ^ г - з z - 1 

ш ү%m 
We obtain 

* ! = 1 + ( l - . J - 1 ) . 1 . . , 7 j = 1 - Z _ 1 t l , 

x 2 = - 1 + ( l - z - 1 ) ^ , , p 2 = 2 - z - 1 f 2 , 

for arbitrary Cj, r2 6 :R[z-' ] and 

X = 

Y = 

üľEГ0, 

l^iтаи 
by (1.19). 

All tentative controls have the form 

that is, 
-i-fM::} 

-r^B^ric:]-
[riC;] 1 - z" 

and no one is stable. We conclude that problem (3.1) has no solution in the sense of our definition. 
However, the solution may be well acceptable in the enginnering practice because it is bounded. 
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Example 3.3. Solve problem (3.1) for a realization of 

s = rz-1 

U\z-a-z-)J Uu—a-z-a] 
[ i]- 1 

over the field 9\ valuated by (2.25) and for the reference sequence 

JL_" 

V 2 

W = 
- 1 

z~l -2 

We are to solve the equation 

X + Y(z~l - 2 ) "_L 
V2 
- 1 

Since 

L/^z-a-z-1). 

U2\z-\i-z-4 UKI-Z-^JLO J' 
equation (3.11) reduces to the set of polynomial equations 

_--*. +?.(_--- 2) - — 

and 

?_(_-*-2) = z " 1 - 2 

X - . [>_], Y=Г1 

[V2\(l -z-^) i J U j 
We obtain 

«,-_!_+<.--2), . . , , _ - _ L _.-._, 

Л - 1 
for arbitrary »•_, ?_ e 3.[z ' ] and 

- - 5 - _ + . _ . - - . ) . 

Y = 
• 1 _ 

2V2 
1 + Z " 1 

-[^.-.'(i-.-_w-
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The solution X°, Y° satisfying dY° = min reads 

X° = , Y° = 
2^/2 

1_ 

2^2 

1 + Z " 1 

on setting t{ = 0. 
The control 

U = 
1 1 

2V2z"1-2 

is optimal since it is stable. The associated error becomes 

£ = 
1 

2V2 

and kmi„ = 2. 

Example 3.4. Consider problem (3.1) for a realization of 

[ z ' H z - 1 - ^ ( l - z - ' ) ( 2 - ' - 2 ) ] _ r , _ . . Q T p - z - 1 1 - z - H -

1 - z " 1 L" J L l - z - 1 - z - 1 ] 

over the field £. valuated by (2.25) and the reference sequence 

1 
w = 1 - z 

We make decomposition (3.4) 

Since rank B1 = 1, we find 

Thus equation (3.5) becomes 

and its general solution obtains as 

[Г 
B, = [1 O^fz- 1 - 2 0" 

1 

Bn = 1 • 

X + 7(1 - z " 1 ) = 1 

X = 1 + ( 1 _ z - 1 ) * , 

Y= 0 - . 

where / E D . [ Z _ 1 ] arbitrary. The particular solution X°, Y° satisfying dY° — min becomes 

x° - i, r = o 
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Ut = 
1 - z" 

All optimal controls are then 

" x - 2 0"1"1 

- G : : : : ' : : : ] [ : 1 - Z " 

U, -ČҺ+Ï--Я 
for an arbitrary U2 e Q + {z ! } ; the control is not unique. The resulting error is unique and 

E = 0, femin = 0 . 

This nonuniqueness of the optimal control is due to the fact that I < m. 

Example 3.5. Consider a system given by 

s = 

"z-1 z" 1 "I 
0 z-Ҷl - 2Z-1 - z~2)j 

1 -

p - o IГ 1- 2" 1
 - ( І - 2 " 1 ) ! - 1 . 

|_0 z-Ҷl -2Z" 1 -z- 2 )J[0 1 - Z _ 1 J 

the reference sequence 

w = 
1 - z- 1 

and solve problem (3.1). 

We shall demonstrate the importance of the ground field %. First consider g = Q, with valuation 
(2.25); then factorization (3.4) yields 

B, = 

and equation (3.5) reads 

0 

[o z-Ҷi-гz-^-z-JLoiJ 

X + У(l - z"1) = 

Evidently, 

Г z - 0 | 
LO z - Ҷ l - 2 z - x - z-2)J 

L-iJ Ь+ł-^ + ł^J 
x° = 
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and the optimal control 

yields the error 

kmin = 3 . 

n - z " 1 -(1-z-m L-J _ p ] 
Lo I - Z - ^ I - Z - 1 Li 

Ll+fz"1 +_z-2J 

with valuation (2.25); thei 

Lo *--(!--(i+-y2)--1)JLoi-(i-V-)*-1J 

+ IZ-1 + _z" 

Now consider $5=9?, again with valuation (2.25); then factorization (3.4) becomes 

B, = 

and equation (3.5) reads 

[V1 o ix + Y(i - z-2) = 
|_o z-^i-ti+V^z-^J 

Evidently, 

x° = 

L V^J 

, Y° = 

1 + i±V2z-t 
V2 

and the optimal control 

П - - " 1 - ( i - z - w i 0 ľ Ч V2J_ 
Lo 1 - z ' Ч L o 1 - ( 1 - V 2 ) - _ 1 J i - z " 1 

1 - V 2 
V2 

-(1-V2K1 

_1_ 

V2 
l - í l - V ^ z - 1 

yields the error 

E = 

V2 

. fcmin = 2 . 

Therefore, a larger field gives more opportunity to improve the optimal control. 

Example 3.6. This example illustrates that 8Y° is to be minimal among all solutions of (3.5) 
yielding a stable U, not among all existing solutions. 

74 



Let the system over the field 3, valuated by (2.25) be given by 

i - Lo ^( í -oJLo ij ' 

,„ _ L(i - --1)'] 

s = 

the reference sequence by 

1 - Z 

and solve problem (3.1). 

We have to solve the equation 

Г z - 0 -ІX + Yd-z-Wl - I , 

Lo *-ҷi-oJ L0---TJ 
i.e. the set of polynomial equations 

z-1*. +;.(! - z - ^ i 

z - Ҷ l - z - l ) З Є a + J 2 ( l - z - 1 ) - ( l - г - 1 ) 2 , 

z = йľ yt;ľ 
The general solution can be written as 

X = 

Y = 
Lu Lo Z - K I - Z - ^ J L O I - Z - J L-j 

by (1.19). The solution X°, Y° satisfying 8Y° = min without any respect to U becomes 

X° = ' I - ! ] ' "°~[I] 
on setting tl = 0, t2 = 0 but the control 

t/ = Ì -
0 

'1_г 1 
o] Ш . Li J 
i j l - z - 1 1-z-1 

is not stable. 
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However, all possible controls are given as 

l + f l - z - 1 ) . -
n _ v-' m l _ 

U 
[-iirr __ Гl - z"1 01 |_-1 + t2 

Lo l j 1 - z" 1 

1 + í l - z " 1 ) ^ 

- 1 + t2 

Ll - z-1 

and they will be stable if and only if ?2 = 1 — (1 — z 1) t for any t e ?R[z ]. Therefore, the 
solution X°, Y° such that dY° = min subject to U stable becomes 

x° = r ( i + T 0 ) - T 0 z - 1 i , Y° = ri~T0z-n 

on setting tl — T0 , ?2 = 1 where T0 E SR arbitraty. Then the optimal control is 

m + T0) - T0z-n 

and the resulting error 

£• = n -CHÍT 
fcm,-„ = 2 . 

Example 3.7. Given a system 

r , - i , - i 

5 = Ь 

Z Z 

0 z-Ҷl-2z- 1)(.-- 1-2)J 
1 - z-1 

= p - 1 o , n r i - z - 1 - ( i - z - 1 ) ! -
_0 z~\\ - 2Z-1) (z-1 - 2)J Lo 1 - z"1 J 

over the field Sft valuated by (2.25) and the reference sequence 

C-2-] 
w = 

1 - --
solve problem (3.1). 

We find factorization (3.4) 

, - r z - M i r i o i . 
L0 z~\\ -2z-1)JLo z"1 - 2 j 

equation 

p - 1 0 l,Y + Y(l-z-1) = 

Lo _--(! - 2*--)J 

Then we are to solve the equation 
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the Solution being 

x-й + Иa-o. 

for any t u t2 e R{z 1J. The solution X°, Y° becomes 

X° = 

on setting tt — 0, t2 = 0 

The control 

lj [o zT-(l-2z-»)Jbj 
У°bec 

_ п _ z-1 _(i _ _-m п o "I-1 [oj _ m 
L0 1 - z - 1 J [ 0 z- 1 - 2 ] 1 - z - 1 [O. 

Y° = ГP 

1 

U = 

is optimal since it is stable, and it yields the error 

E = , Kin = 1 • 

Note that the control sequence is finite, not only stable, even though B* is not a unit. 

Example 3.8. Given a realization of 

s = 
z-1 +z~2 

- 1 _ , - 2 1 + Z - 1 + Z 

over the field $2 ( w i t h valuation (2.24), of course), solve problem (3.1) for the reference sequence 

W = 1 + Z - 2 . 

As no polynomial of 3 2 t z l ] ' s stable save the units in 3_[z~']» w e n a v e 

B-,x = z-1 + z~2 . 

Equation (3.5) then becomes 

(z-1 +z~2)X + Y= 1 +z~2 

and its general solution is 

X = 0 + t, 

Y=l + z - 2 - ( z " 1 + z - 2 ) * 
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for any te$2[z - ] . Remember that all calculations have to be carried out in the modulo 
2 arithmetics. 

The solution X°, Y° satisfying BY0 = min is, evidently, 

X° = 1 , Y° = 1 + z~l 

on setting t = 1. Therefore, 

U = 1 + z-1 + z~2 • 

is the optimal control and 

E= 1 +z~l , kmin = 2 

is the resulting error. 

3.3. Finite time optimal control problem 

Let g be an arbitrary field with valuation f and write 

S = - = BlA2
1, rank B1 = r. 

a 

By the definition of B t in (2.19) we get 

Bi = [Bit 0] 

where B u e j , , ^ " 1 ] , 0 e g;> m_ r[z_ 1] and rank B t l = r. 

Then we have the following result. 

Theorem 3.2. Problem (3.2) has a solution if and only if the linear Diophantine 
equation 

(3.12) BuX + Yp=Q 

has a solution X°, Y° such that dY° = min subject to 

(3.13) V = A2 r U f i 

belongs to t5m,i[z-1]> where 

tli = - , 

Ok> 8f-r . l t ' -1} . 
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The optimal control is not unique, in general, and all optimal controls are given 
by (3.13). Moreover, 

E=Y° 

and 
km{n = 0 , Y° = 0 , 

= 1 +dY°, Y° + 0 . 

Proof. Write 

£•= W - SU = Q - B,A2
 XU = Q - [Bn 0 ] A 2

_ 1 U = ^ - BxlUx , 
P P P 

where 

A; '"1Э 
and 

t l i - ^ . i K 1 } , lta6gf._M{z-1}. 

Since the error is to vanish in a finite time and thereafter, E must be a polynomial 

matrix in 5 ; , i [ z - 1 ] , s a y Y Therefore 

(3.14) Y=Q-B11U1 = ^ J * ^ 
P P 

and since (p, Q) = 1 up to a unit in 5 [ z _ 1 ] , we must take 

(3.15) E ^ - , 
P 

where X e 5 r , i [ z _ 1 ] is an unspecified polynomial matrix as yet. 

In fact, the X and Y satisfy equation (3.12) by virtue of (3A4) and (3.15). Among 
all solutions of equation (3.12) we have to take only those which make the U polyno­
mial and within the class only those which minimize the degree of E. Therefore 

U= A 

where 
m 

Y° 

P 

U2 e g,„-r,i{z'~1} arbitrary but such that A2["0 ~| e g m > 1 [ z - 1 ] 

and 
ÍУ 

E=Y°, 
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where X°, Y° is a solution of equation (3.12) such that dY° = min among all solutions 
yielding a polynomial U. Then 

kmin = 0 if Y° = 0 , 

= 1 + <3Y° otherwise. 

The finiteness of U cannot be inferred until the general solution of equation (3.12) 
is found. • 

Example 3.9. Consider the system which is a realization of 

, - l , - i - - 3 -

E":3 s = 
1 - Z" 

Гz--0 1 П - Z - 1 - ( l - ж - - ) ( l - * - » Л 

L z - 3 z - 5 J L o 1 - z - 1 

over the field jR valuated by (2.25), the reference sequence 

w = 1 - z" 
and solve problem (3.2). 

Equation (12) reads 

(3.16) fz"1 o ] x + Y(i - z"1) = m . 

Write 

- . : ; . _ f j , + »tl-,-vjч]. 

í:-::-*ľ[:->:][ГЧ; 

then equation (3.16) reduces to the set of polynomial equations 

x-% + ?.(i - z-1) = i , 

z - % + ^ 2 ( l - z - 1 ) = - z - 2 

and 

X-EJ yt-<» 
The general solution obtains as 

J. = 1 + ( l - z - i ) f l , p1 = 1 - z - 1 ^ , 

x2 = - 1 + (1 - z-1) t2, y2= - z ' 2 - z" 3 - z- 4 - z " s

( 2 
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where t1,t2 e 3l[z l] arbitrary; hence 

x = \ n + n 1 " | ( i - z - 1 ) , 

Y = 

ura 
The particular solution X°, Y° satisfying dY° = min is given as 

X° = 

U 

'-[-•,!• '•-[:*•""••] 

••-Й 
_ п - z-1 -(1 - z-1)(1 - z-2лL-i j _ г л 

Lo ì - z - 1 J i - z _ i L-iJ 

on setting tx = —\ — z , r2 = 0. Then 

and 

is the unique optimal control, and it yields the error 

E = Г 2 ~ ' + 2 1 femi„ = 3 . 

Example 3.10. Consider the Galois field g = 32[ z lz 2 +z + t> a n algebraic extension of 3 2 

consisting of the elements {0, 1, e, e2}, where £3 = 1. The addition and multiplication tables are 
given below. 

+ 0 1 £ £2 

0 0 1 £ £2 

1 1 0 E2 £ 
£ Є £2 0 1 
£ " є2 £ 1 0 

0 1 £ £ 2 

0 0 0 0 0 
1 0 1 £ £ 2 

£ 0 £ el 1 
£ 2 0 £ 2 1 e 

The only valuation is the trivial one, see (2.24). 

Given the system 

í - z - O l 

_•=-"' ti - r° z _ lir° i+z-H-1 

l + z - 1 \ý ez-^L- +z~l 0 

81 



and the reference sequence 

W = И 
1 + Z ' 1 

over the above defined field g, solve problem (3.2). 

Equation (3.12) becomes 

(3.17) ro z - ' i i + Y(i + z - l ) = r e i . 

\f «-xJ U2J 
We write 

y.ez-1} U2 JLo --d' 
then equation (3.17) reduces to the set of polynomial equations 

Xi + J?i(l + z " 1 ) = 0 , 

z~H2 + | 2 ( 1 +Z" 1 ) = e 
and 

X = шү%ш 
The general solution can be written as 

jc< = 0 + (1 - z " 1 ) ry , jlj = 0 - t j , 

f2 = e + (1 - z " 1 ) * 2 , j?2 = g - z~1t2 

for arbitrary / j , t2 e g [ z _ 1 ] and 

x = roi +pi" | ( i + z _ 1 ), 

Y = 

EГӨ 
L2J L«a«-iJL-j 

The solution A"0, y ° satisfying <3y° = min is obtained on setting tx = T 0 , r2 = 0, where i 0 e g 
arbitrary, and 

X° = 

The optimal control is not unique, 

° = rT0+T0z-n, Y° = p i . 

Le J L«2(l - *o)J 
unique, 

rT0 + T0z-n 

U=r° i + ^iL» J = p i 
Ll + Z"1 0 J 1 + Z - 1 |_T0 +T1Z~1J 
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and it yields the error 

E = km;„ = 1 . 

Example 3.11. Consider once more the system given by 

and the reference sequence 

L2(i-?o)j 

re the System giv 

Lz-iz-ifl-z-1)] 
1 - z " 1 

,,_. L-fi---1)] 
1 - Z" 

of Example 3.2 and solve problem (3.2). 

All tentative controls have the form 

U = 
1 - z - U [r-'m 

and it is easy to see that U is not a polynomial matrix regardless of tx and t2. Therefore, problem 
(3.2) has no solution at all. 

Example 3.12. The method of the paper is general enough to effectively treat systems whose 
transfer function matrix is singular. For example, let a system over the field fK valuated by (2.24) 
be given by 

( 3 ' I 8 )

 s_ L--1--1] rz- 1 o-|r(i-z- i )(z- i -2) - i i- 1 

(l-z- 1 )(z- 1 -2) L-_1oJLo U 

and solve problem (3.2) for the reference sequence 

w = 
Ы 

Since 

we are to solve the equation 

2 _ 1 - 2 

[ : - ; ľ + ^ - 2 , - И -
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We can write 

and, hence, we obtain 
[ITM1 

Î. + ӯ . ( z - 1 - 2 ) - - 2 , 

X = 

ўг(z-"-2) = z-"-2, 

[:-:]• ' " Ш 
The general solution is 

xt = 1 + ( z - 1 - 2) t, yt = - 1 - z"1.-

J 2 = 1 
id 

X = 1 + < z " 1 - 2 ) , 

Y= r-n -

for arbitrary / e 5K[z l ] . Evidently, 

X0 = 1, Y 

Пľй' 
["3 

o _ 1 v o -

when one sets / = 0. Then 

v* = Z=ï z" 1 - 2 

1 

U 
_ Г ( l - 2 - - ) ( z - - - 2 ) - г 

•[? orHr^] 
is the optimal control for any C/2 6 3t[z * ]. The resulting error becomes 

E = r-i 

and 
ra 

kml„ = 1 . 

Because of the singularity of Bv the admissible reference sequences fFfor which the problem 
has a solution given the system (3.18) are quite restricted. It can be shown using Theorem 1.1 that 
if 

W=^, 
P 
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where a, b, p e rR[z 1 ] , the relation 

p \ b - a 

must hold. 

Example 3.13. There is another sort of nonuniqueness of the optimal controls due to the internal 
structure of the system. 

Let the system over the field JR valuated by (2.25) be given by 

r z - 1 ( z - 1 - 2 ) 0 "I 

^[.---'(--z-*) H _ 
( l - z " 1 ) ( z - 1 - 2 ) 

= r z-1(z-
l-2) z-nr(i-z- l)(z- i-2) z-*(i - z-m-1 

L-z-^i-z-1) z-2JLo - ( i - o J 

_ CJ. 
and the reference sequence by 

w = 
1 - z" find a solution to problem (3.2). 

Equation (3.12) becomes 

Writing 

r z-1(z-
1~2) z-nx + Y(i-z-i) = n i. 

L-z-^i-z-1) Z-
2J Lid 

r 2~
1(z-1-2) z-n = r z- 1- 2 n r v ' o i, 

L-z-^i-z-1) Z-
2J L-a---1) iJLo z-\| 

the above equation reduces to the set of polynomial equations 

z - 1 * i + J i ( l - z _ 1 ) = 0 - 5 , 

z - % + y2{\ - z - 1 ) = 2 - 0-5Z- 1 

and 

X = 

UJ' L-(----I)ІJLЇÜ 
The general solution reads 

X. . . o - S + ^ - z - 1 ) ^ , ^ - - 0 - 5 - z - ^ , 

3c2 = 1-5 + (1 - z"1) f2 , J72 = 2 + 1-5Z-1 - z~2t2 
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for t1,t2 e SR[z ' ] arbitrary and 

x = ro-5"i + r t i i ( i - z _ 1 ) , 

Y= Гl + 2 Z - П - Г z-Ҷz-^-2) z - П M . 

Li-s + гz-̂ J L-^-ҷi---1) *-2JUJ 
It can be seen that the solution X°, Y° satisfying 8Y° = min is obtained by setting t1 = 

= — 1 2 = T0, T 0 e 3t arbitrary, and 

X° = 

Y° = 

Then neither the optimal control 

^Ro-s + т o ) - ^ - 1 ! , 
L(15 - т0) + Toz-1] 

Г l + ( 2 + 2 т 0 ) z - П . 
Ll-5 +(2 +т 0 )z-

|-(0-5 + T0) - T 0 Z - H 

T(l - z-1)(z-1 - 2) z-'(l - z - ' J ] [ ( l - S - T 0 ) + V - » J 

Lo -a-^oJ i-^-1 

= r - ( l + 2 T 0 ) + ( 2 + 2 T 0 ) z - 1 l 
L-(L5 - T0) - ToZ-1 J 

e error 

E = fl + (2 + 2T0) Z" Г l + ( 2 + 2 т 0 ) z - 1 l 

Ll-5+(2+т0)Z-

is unique. All the errors give kmm = 2, however. 
There are two typical solutions: 

T0 = - 1 gives E = 

and 

T0 = — 2 gives E = ["1 — 

[l-5+z- ! 

erт 
3.4. Least squares control problem 

Let g be a subfield of the field £ of complex numbers valuated by (2.25) and write 

s = - = BiAJ1 , rank Bi = r , 
a 

(3.19) Bt = BTBt . 
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By the definition of -87/, see (2.19) and (2.30), we have 

B; = [Br, o], 

where Bxl 6 3f(,r[z_1]> 0 e g ; , m - r [
z _ 1 ] a n d rank Bxl = r. 

Further let 

(3.20) B-'B-xl={B-^'{Bltf 

and denote 

(3.21) d = 5B~iy - diB^f . 

For convenience, we shall use the notation 

(57.)* =d e f H . 

Then we have the following result. 

Theorem 3.3. Let g be a subfield of <£ valuated by (2.25). Then problem (3.3) 
has a solution if and only if the linear Diophantine equation 

(3.22) z~dH~'X + Yp = B-~'Q 

has a solution X°, Y° such that dY° < dz~dH~' and 

(3.23) U = A2(B1
+rirU1i, 

(3.24) £ = rV-B1"1U1 

belong to S5m,i{z-1} and 5; t i{ z _ 1} respectively, where 

P 

U2e%m^rA{z-1}. 

The optimal control is not unique, in general, and all optimal controls are given 
by (3.23). Moreover, E is given by (3.24) and satisfies 

(3.25) B;~'E = Y° ; 

also 

\\E\\2
min = <((H~')-1 J " ) " ' ( ( I I^)" 1 Y°)> + <^ = ' ( I i - B^H'^H")-1 Bir) W} . 

Proof. In order to minimize | | £ | 2 we shall assume that E is stable whereby 

||£||2 = <£='£> . 
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Then we will manipulate the expression <£ '£> so as to make the minimizing choice 
of U obvious. 

Write 
E=W-SU=W- [Btt 0] BlA'^U = W - BtlUt , 

where 
B1

+AJ1t/ = m 
and 

Ut e drA2'1} • - I - e S . . - , . , ! - - 1 } . 
Then 

(3.26) £='£• = W='W - W = ' BttUt - U"' Bu" W + Ut' Btt' BttUt = 

= ((H-'Y1 B; = 'W - HUt)
=' ((//=')-! B~tt'W - HUt) + 

+ w=w - W='B11H~1(H=')-1 B;=,W. 

Since the last two terms in (3.26) are independent of Ut (and hence U), the expres­
sion <£='£> attains its minimum for the same control sequence U as the expression 
<£='£'1> does, where 

Et = (H"')'1 Btt'W - HUt . 

Using (2.28) and (3.21) we have 

(3.27) (H-'Y1 B-lt
=' = (J£1!JIL1 

and, therefore, 

(3.28) Et = (H~TlBIi~'Q _ HUj 

z dp 

Now take the partial fraction expansion 

(H-)-1 Btt-"Q =X+ (H-'Y'Y 
z-"p p z~d 

of the first term on the right-hand side of (3.28). It follows that the X and Y are 
coupled by equation (3.22). 

Collecting the terms gives us 

(3.29) Et m (J£TU + A f 

where 

(3.30) A = — - HUt . 
P 



Hence, by virtue of (3.29) 

.„o ^^/((jniix'iijLiiiv 

Any solution of equation (3.22) can be written in the form 

(3.32) X =X° + D~lTp, 

(3.33) Y = Y° - z-dH~'D~lT 

by (1.19), where Te t_-,i[--r] is arbitrary and DeS r> r[z_1] is defined in (1.20), 
and where 

(3.34) BY0 < dz~dH~' . 

Substituting (3.33) into (3.31) we obtain 

<*•-•> - (^°y (^)) - <fpy .-_) -
- ((o-rr^y^)) + «»--"(-"-,>+(((iq2_.y_)_ 

- <(D- -T)-' A> + ( A - A H l_l y0^\ _ <^-"/)--r> + <^=^>. 

The key observation is that 

/ ( i -~ , )~ 1 Y°\-' _ z- ( a---H~'-syo)H_iyo~/ 

is divisible by z~l due to (3.34) and hence 

(«-)-'rVVrUo 
and 

__\ = 0 . 

Therefore, 

<_.r'--i> = <((H~')~' ^°)= ' ((H-')"1 T°)> + <(A - D-if)" (A - D -JT)> . 
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The first term on the right-hand side above cannot be affected by any choice of 17,. 
The best we can do to minimize <£"f E^ is to set A — D~1T = 0. By virtue of 
(3.30) we obtain 

- - HUy - D~lT = 0, 
P 

i.e. 

X - D~1Tp = pHUi . 

But 

(3.32) X - D~1Tp =X° 

by (3.32) and hence the (E^'E^ is minimized by setting 

(3-35) ! / . « - £ - * - : . 
P 

It means that | |E |2 = (E"'Ey is minimized by the same Ul provided the E is stable. 

Thus 
U = A2(B1

+)-1rUr 

[-3 
is the optimal control provided it is stable. It follows that U2 can be taken as an 
arbitrary element of 'Sm-rti{z~1} but such that 

И 
We also have 

| | £ | ]L = ( ( ( H - ) - 1 YT'tfH-'r1 Y°)> + <W~'(lt - B^H-^H")'1 B-') Wy 

by taking (3.26) into account. 

Further 

E = W - SU = Q - BlxU, 
P 

and the error sequence E satisfies the relation 

B^i'E = B7f 'Bn£ l i = 
P 

BJTQ R - ~ , f i - H - 1 ^ 0 BJ£Q ~ z-"H~'X° Y°p 

P P P P 

on using (3.35), (3.20), and (3.22). 
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Since decomposition (3.20) is unique modulo a unitary element in 1~r r, see [55; 64], 

we have to show that the optimal control is independent of a particular choice of this 

element. Indeed, let 

Hm = QH 

also satisfies (3.20), where Q e g r _ satisfies Q'Q = Q~'Q = Ir. Then H~' = H~'Q~' 

and we are to solve the equation 

z-dH~'Xa + Yap = B;~'Q 

instead of (3.22). Since Q is a unit in <5r,r[z_1]» w e _ e t 

Xa=(Q~'YiX, Ya=Y 

where X, Yis a solution of (3.22). Therefore Y° = Y° and 

__ _ н^xl _ H-ІQ-ҚQ-')-1 X° ГT 
^ l c o — Ul • 

p p 

Example 3.14. Given the system which is a realization of 

_ U - 1 ( l - 2 z - 1 ) z- 1 ( l -2z- 1 )J 
1 - z " 1 

= p - 1 o - i r i _ z - i o "T1 

Lz-1( l -2z-1) z-J(l -2z- 1 )J [o 1 - z 1 ] 
ie reference 

_ C _ 
over the field 3., solve problem (3.3) for the reference sequence 

w = 
1 - z 

We first find the decomposition (3.19) 

B, = 

and 

D 

U-X1-2Z-1) z- 1 ( l -2z- 1 )J |_0lJ 

u - p - 1 0 "I, B-~' =\z-1 z-^-2-1, 
[z-^1 - 2Z"1) z-J(l - 2Z"1)] _0 z'1 - 2J 

H = p 0 "1, H~' =Yz~1 l - 2 z _ 1 " | , d = \. 
[z" 1 - 2 z"1 - 2 J [0 1 - 2 Z - 1 ] 
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Then equation (3.22) repds 

(3.36) fz" 2 z- J(l - 2z-1Y]X + 7(1 - z-1) = [2Z-1 - 2"]. Гz-2 Z-Ҷ1-2Z"1)]. 
LO Z-Ҷ1-2Z" 1 )] [2TЭ 

r v 2 z-\\ - 2Z-1)"] = p on p-- o I p - 1 i - 2z-n 

Lo z-J(l - 2z-1)J L- - 2 z _ 1 -J 1-0 z-2(l - 2z"1)J L-l 2 J 

and hence equation (3.36) is equivalent to the set of polynomial equations 

z~% + j? , ( l - z " 1 ) = 2z- 1 - 2 , 

z " 2 ( l - 2z-L)5c2 + y2{\ - z " 1 ) = - 5 Z " 1 + 4 z " 2 

by Theorem 1.1 and 

T T 2 T G r i T - . » 
The general solution can be written as 

x t = 0 + (1 - z"1 ') t1 , yt = - 2 - z " 1 * ! , 

x2 = 1 + (1 - z " 1 ) , 2 , j?2 = - 5 Z " 1 - 2 z - 2 - z " 2 ( l - 2Z" 1 ) t2 

and 

X = T - l + 2 Z " 1 ! + T2 - 1 + 2 Z " 1 ! r t i l (1 - z _ 1 ) , 

Y= Г-

[ T T C ->:* ][::] 
L-2 - z-1 - 2z"2J U - ^ l - 2Z"1) z-2(l - 2z^)\ [tl\ 

by (1.19). The particular solution X°, Y° for which BY < 2 is evidently obtained as 

JГ° == f l l , Y° = Г - 2 - z"1" [:Г-Д 
on setting r, = 1, t2 = 0. 

Now we compute 

"T--T-J 
"Г 

i - V 
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Hence 

and, by (3.25), 

^ Г ' - 2 " ' 0 1.7,-Ь-'"-
Lû 1 - 2-'J z-1 - 2 

EJZ" Z-1-2- | -1r-2-z-11 L-2z-1-2j 
Lo z~l-2\ L"2-2z-1J z---2 

Since both (7 and E are stable, the U qualifies as the optimal control and 

||£||min = 1 + 4 = 5 . 

For effective computation of l|£|lmin see Example 2.16. 

Example 3.15. Consider again the system 

5 = 
L/2\Z-\Í - z-*)\ [ V2\x-Ҷl-z-ł)J 

over 5R, the reference sequence 

and solve problem (3.3). 
We compute factorization (3.19) 

B, = 

W = 

J_ 
V2 

L - І J 
z" 1 - 2 

and 

t - r ^ ]W 
LJ2\z"'(l-OJ 

Lv2\z-
i(i-^i)J 

BГ, = 

H = z~1-2, H~' = 1 - 2 z _ r , d - 1 . 

Then we are to solve the equation 

Ҷl -2z-1)ЛГ + У ( z - ł - 2 ) = V 2 - 1 
V2 ' 

obtaining 
X = 0 + ( z ~ 1 - 2)ř, 

Y= - — - z - Ҷ l - 2 z - ł ) ř 
V2 
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for any t e ~\[z 1 ] . The particular solution X°, Y° satisfying BY0 < 2 is obtained for / = 0 as 

J_ 
V2' 

x° = o, Yo = - A . 

Then the optimal control 

yields the error 

£7 = 0 

1 ' 

- 1 
£=-- != 

and 

z - 1 - 2 

||-?|£ta = * + * = *• 

It is to be noted that problem (3.1) and problem (3.3) may have different solutions, 
even if the system enjoys the "minimum-phase" property. Compare the above result 
with Example 3.3. 

Example 3.16. Given a realization of 

J - P - " , ' " ' " I - [ ! - , - 0 ] P " - 2 - T 
z-1 - 2 L J L° l j 

over the field SR, solve problem (3.3) for the reference sequence 

1 
W = 

z - 1 - 2 

We compute decomposition (3.19) 

B. = [1 - z - 1 0] Г1 0 

Î] 
Bi-! = 1 - z - 1 , B " ~ ' = z - 1 - 1 , 

if = l - z - 1 , H~ ' = z - 1 - l , d = 0 . 

The equation 

( z - 1 - l ) X + Y ( z - 1 - 2 ) = z - 1 - 1 

has the general solution 

X = 1 + ( z - 1 - 2 ) f , 

y = 0 - ( z - 1 - \)t 
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for arbitrary t e 9i[z 1] and the solution X°, Y° satisfying eY° < 1 becomes 

X ° = 1, Y° = 0 
on setting ? = 0. 

Thus 

and 

vi = 
( ì - O í - " 1 - - ) 

J7 = [г-2 -î]ta 1 - z" 

where C/2 e 9v + {z *} arbitrary, is the only candidate for optimal control. It yields the best 
possible error 

2s = 0 , \\E\\2
min = 0, 

but it is not stable. Therefore, the problem has no solution in the sense of our definition. 

Example 3.17. Consider a realization of the transfer function 

[72\*-»(i-z--y| 

s = - z" . J = IV-AO-̂  o ] [- - o-1 

over 9t and solve problem (3.3) for the reference sequence 

Since 

we have 

W = 
1 - z" 1 

B1-rv2\oi-oiw. гv^-^a-o] 

BГi-Г^z-Ҷl-z- 1)]., B Г Г - C ^ ^ z - 1 - ! ) z--], 

Я - z - ^ - 2 , Я ~ ' = 1 - Žz"* , ď - 1 

and the equation 

z - Ҷ l - 2 z " ł ) X + 7(1 - z- 1 ) = - Z " ł ( l - 2z- ł ) 
is to be solved. 
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Its general solution reads 

X = - 1 + ( 1 - z-x)t, 

Y = 0 - z - 1 ( l - 2 Z - 1 ) * 

for any t e K b " 1 ] and the solution X°, Y° with 8Y° < 2 becomes 

X° = -1 , Y° = 0 

when setting t = 0. 

Then 

ff-a-Oг-ï 
- i 

(Z--2H1-Z-1) z - 1 - 2 

Even though the V is stable, it does not represent the optimal control because the resulting 
error 

r -V2K 11 
E=W-B:IUI= 1-2(1 - Q j 

( l - z - 1 ) ( z - 1 - 2 ) 

is not stable. Hence, there is no solution. 

This example has illustrated that it is not rigorous to end up when computing U. 
We have to check the error, too. If the resulting error is not stable, its quadratic 
norm will not be finite contradicting our hypothesis. 

Example 3.18. Given again a realization of 

_b~3 -~3 J_r--1 o ip - 2 - 1 -(i-oa---2)]-1 

1 - z - 1 [_z~3 z~5J LO 1 - z" 1 J 
s = 

over fR and the reference sequence 

W = 
1 - Z 

solve problem (3.3). 

We first compute 

BГ, = Гz"1 0 

[::::-]• B:rTH 
H = V2 

V2 

0 — 

• V2 

, H~' = V2 

LV2 V2 

d = 3. 
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Then equation (3.22) can be written as 

(3.37) ГV'2\z-5 
0 X + 

1 _ - 3 1 _ - 5 

Ж V2 -

V2\z-0 -] = Г2z-M-| 

1 z - з 

V2 
1 z-5 

V2 -
Ь oj 

X + Y(l - z" 1 ) = Гz ґ,,-[n-
1 _ - 3 

V2 
0 

0 -\/2\Z-V 
[iП-

equation (3.37) reduces to the set of polynomial equations 

1 
z ~ 3 X , + ^ ( 1 - 2 - ^ = 0 , 

V 

and 

- V 2 \ z - 7 x 2 + J 2 ( l - z - 1 ) = z - 4 

x = r i z"2-]-1 pčn, y = r2ẑ  rrcrt^E]-
The general solution is 

x\ = 0 + ( l - z - 1 ) ř 1 , yí - 0 - — z ~ 3
ř l , 

V 2 

x 2 = - -i- + (1 - z- 1 ) ř2 , ý2 = z " 4 + z" 5 + z" 6 - V2\ z~7ř2 

•k/2 

and, by (1.19), 

X = 
- 1 

V2 
Z~\ 

- 1 

V2J 

rnc;]<— 

үт+г:+ ] 
V2\z"50 

i _, i 
z " 3 ^ - z " 5 

L V 2 V2 . 
БПИ 

The solution _f°, 7 ° satisfying 3 7 ° < 5 is 

X° = , Y° = 

V2 

_ _L 
L V2J 

L-ł*-3 - ^A 
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when setting 

h = — +Ą-Z-1, t2=0. 
V- V2 

U = Г - ( l - z - ^ l - z - * ) 

1 - z" 

V-

0 V2 J L V 2 J _ 

V2 

1 - z' 

[•5~T"] 
>ntrol and it yield; 

p - 4 z" 2 !" 1 T z- 4 "I = H +0-5Z"1 +0-5z- 2 l . 

Lo 1 J L - i z _ 3 - i z _ 4 J L -0-5z"3 - 0-5z-4J 

is the optimal control and it yields the error 

E = 

Apparently, 

||_1Pin _ 1.5 + 0 - 5 = 2 . 

Example 3.19. Consider the system 

s = Vz 

over 9», the reference sequence 

and find a solution to problem (3.3). 

It is easy to see that 

B7, = 

[o z-Ҷl - 2Z-1)] 

|_1 - 0-52-

1 - 0-5z" 

i w ^ o i, Brr = [vo i, 
Lo z-^l-22-1)] Lo z-'.-2j 

H = p i 0 1, JET" = r z _ 1 0 1 á = l 
Lo z"1 - 2J Lo 1 - 2z-l\ 

and hence the equation 

[o Z-Ҷ1-2Z-1)] 

X + Y(l - 0-5Z"1) = [ V 1 

L(2- 1 -2)(l-0-5z-»)J 

P5 



yields the general solution 

X = 

Y = 

[ m ; ; ] ( 1 - „ , - , , 

| _z- 1 -2 j [o Z - 1 ( l - 2 z - 1 ) J U j 

for any tu t2 e ~\.[z~1}. The solution X°, Y° with BY0 < 2 is 

on setting t1 = 0, l_ = 0. 

The optimal control 

generates the error 

U = 

£ = 

__o _lLziL_J L ° J _ L Q J 
ì - o-Sz- 1 z - 1 - : 

_0 z - 1 - ^ ] U- 1 - 2J |_1_ 

| _ ? | 2 . n = 1 + 1 = 2 . 

Note that this optimal control is also the optimal control for problem (3.1), even though the 
system does not have the "minimum-phase" property. 

Example 3.20. This example illustrates that the condition BY0 < cz~dH~' may not yield 

a unique solution to (3.22) in which case the stability considerations for U are important. 

Given a realization of 

s = t 

z" 1 0 

0 Z~U1 ">~~r , - l г Л - i 2z~1)_J_rz-1 0 i r i - 2 z - 1 o - | 
Lo z--(l -2*--)J [ 0 ij 

the reference sequs 

_ L(l - 2z~1f\ 

1 - 2 Z - 1 

over the filed ~\, solve problem (3.3) for the reference sequence 

W = 
1 - 2z 

We compute 

B7, n=[--lo 1, в г , - = Гz-*o -1, 
Lo z-ҷi-гz- 1)] Lo * - - - 2 _ 
гю 1, я~'-г,--o 1, 
Loz-^-2] Lo 1-2,-

H = d = 1 
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and solve the equation 

p-- 0 -1 
Lo Z-Ҷ1-2Z" 1 )] 

X + Y(l - 2Z" 1 ) = ГV 

l(*-l-Щl -2Z-1Y\ 

Evidently, the general solution becomes 

X = 

Y = 

[U-.]+ĽU-.П;;Г20' 
L-2 J .[o z-Чl-2z- JLoi-2z-»J LíJ 

for arbitrary tu t2 e ?R[z 1 ] . 
Now the particular solution X°, Y° such that B Y° < 2 obtains as 

X° = 

L(5 + To) - 2z-Ą L-2-^z-J 
on setting tx = 0, /2 = T0 e 3i arbitrary. Computing 

17 = P - 2z'X °1 Lo ~̂Ł - 2J L(5+т,>)-2--*J 
L 0 l j 1 - 2Z"1 

(5 + т 0 ) - 2 z - 1 

fz-1-2)(l-2z-1)j 

it is seen that the U will be stable if and only if T0 = —4. Then 

- r,-2)] 
z - 1 - 2 

is the optimal control and 

E = 

-2 
1 - 2Z- 1 

z - 1 - 2 

is the corresponding error. It follows that 

||~1min = 1 + 4 = 5 . 
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Example 3.21. This example illustrates the importance of the ground field g. Consider the 
system given by 

..[ 0 z-Ҷl - 2 Z ' 1 - z-2) 
1 - z - 1 

]_ 

the reference sequence 

rv-o JГ1-^1 - (--^Л" 1 . 
LO z-Ҷl - 2 Z " 1 - z - 2 ) J LO 1 - z - 1 J 

_и 
and solve problem (3.3). 

If the system is viewed over the field Q, we compute 

Bt -

1. * ü ' - ґ - - > o 1, 
,J [0 .-1 -2Z-1 +z"2J 

П 0 -1, Я ~ ' = | V 2 0 T 
[0 - 1 -2Z" 1 + z " 2 J [0 l - 2 z - ł - z - 2 J 

ßГt = [ V 1 o 
Lo z-Ҷl - 2Z"1 - z"2) 

Я = d = 1 

and equation (3.22) reads 

Lo , - Ҷ l - 2 x " » - z~*)J 
X + ľ(l - z-1) = 

L_i -2Z- 1 + z - 2 J 

Evidently, 

X = 

Y = 

and 

GľGĹГ0, ' 
__! -4Z- 1 - z - 2 J Lo z-Ҷl - 2Z-1 + Зz-2)J Lt2J 

X° _ Г Л , Y° = Г z-2 1 . 

.lj L~l-4z-ł-z-2J 
ÍØÍ 



The only candidate for optimal control is 

= П - --- _(l _ 2 -i)- | [Q -i-Tz-i+z-Ą [ l 
Lo l - z " 1 ] l - z - 1 

rr+n 
- 1 - 2 Z - 1 + z ~ 2 

and it is not stable. Hence problem (3.3) has no solution. 
Now view the system over the field JR. Then 

B + - p O I, Bu-p-'O ], 
Lo 1 - (1 - V2) z- 1 ] Lo z-X(l - (1 W 2 ) - " ^ J 

H - p o i, srr'-rz-1 o -I 
Loi-a-v^z- 1 ] Lo z-»-(i + v2)J 

and equation (3.22) reads 

p- 2 o -]x + y(i-z-1) = p- 1 1. 
Lo *--(l-(l+V2)OJ Lz- i-(i + V2)J 

Evidently, 

Y = 

X - C]+C;1 ( 1-2 j 

L-(1+V2)-(1+J2)«-»J [o Ol-(-+V2)-- X JUJ 
and the solution 

o _ г n vo X° = , Гu = Г z" 

satisfies 5 Y° < 2. 

Then the optimal control 

(3.38) 

__(, +V2)-(1+V2)0 

ff-ri-z-- - ( - - O l -

[o i-(i-y2) g--J [ o O - ( i + V2)J [ 
HП 

1 - z" 
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-(2 + V 2 ) - ( l - V 2 ) - -

( ì - a - ^ í - Î^-íi+V-)) 
yields the error 

E = Пz 

Lo z - x _ ( i + v 2 ) J L-(1 + V2)_ 

+ V2) 
+ V2) - (1 + V2) 
- ^ - ( ì + V-) 

- - 1 

(1 + V2) - (1 + V2) 2" •] 
[ ^ - ( l + V ^ ) "1 

_L-(i + V2)- (i + v^z-

and 

(3.39) = 1 + 
3 + V2 _ 1 3 + 8 N/2 

(1 + V2)2 (2 + V2) Ю + 7 V2 

Therefore, a larger field may guarantee the existence of the optimal control. Since the reals 
are the topological closure of the rationals, optimal control (3.38) is the limit of all rational 
approximations and norm (3.39) is the infimum of the corresponding rational norms. 

To illustrate advantages of the present approach over the classical method of 

Wiener, we shall demonstrate that the latter does not work for unstable systems. 

Recall [60] the classical formula for the optimal control 

U = (s*)-1[(s* = ' ) - 1 s = 'FV]+, 

where s* is the minimum-phase spectral factor of the system transfer function 

matrix s, i.e. s*='s* = s='s, and [(S* = ' ) _ 1 S='W]+ represents the partial fraction 

expansion of the ( s * = ' ) _ 1 S='W with unstable fractions deleted. 

Example 3.22. Consider 

s = 
1 - 2z 

0 

, w = Г * 1 , w = 
z-1 - 2 

1 

Lz-1 - 2J 
over the field Di Then 

s* = 

1 
0 

1 - 2 

0 
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[(S*=')-i 5 ='W] + = - (z ~ -)z • 

( l - 2 z ) ( z - 1 - 2 ) 

3 - 2 Z ' 1 

C\z-i - 2f 
1 

- 2 J+ Lz-Ҷ-^-гjJ 

1 +0-25Z-1-" 

Therefore, 

U = 
z - Ł - 2 

0 1 

1 + 0-25Z'1 0-25 

( z ~ r - 2 ) 2 + z - ' 
0'5 O ^ 

z - 1 - 2 z ' 1 

1 + 0-25z" 

(z-1 - 2f 
0 5 

z ~ r - 2 

(z-1 - 2)2 

0-5 

Г 1 + 0-25z" 

z " 1 - 2 

0-5 

and 

£ = 
1 - z"1 + 0-25z" 

(Z--2H1-2Z-1) 
- 0 5 

. \w - °° 

but this is nor the optimal control. 
The method presented in this paper gives us 

and the equation 

has the solution 

*=r:-.]ГгT' *-•# 
Гz"1 0 - l Z + 7 ( z - l - 2 ) - Г l 

Г0-5І, Y° = Г-O-51' 
Lo-sJ L-0-5J 

x° = 

Thus the optimal control is 

[-M-I ro.3-.-n 
t . r _ n - 2 z - 1 Q - 1 LO-SJ _L05 

Lo i jz- 1 -: z- 1 - 2 
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and the resulting error 

£ = r-
ra 

= 0 - 5 . 

Note that the burdensome computations associated with the partial fractioning are elegantly 
avoided by solving a Diophantine equation. 

Up to now we have confined ourselves to systems defined over a field g which is 
a subfield of £ valuated by (2.25). If the system is defined over another field, the 
quadratic norm of E cannot be written as \\E\\2 = <£='.E> and Theorem 3.3 does 
not apply. It is necessary to develop a special procedure depending upon the valuation 
in 5 . 

For example, let g be an arbitrary field with the trivial valuation (2.24). Then the 
quadratic norm of an error sequence 

E = £ ю + £ n z + ••• 

£20 + £ 2 1 Z _ 1 + . . . 

S,„ + Є „ Z _ 1 + . . . 

є íЫz- 1 } 

is defined as 

W 2 = E Z*-2(£*)> 
i = l k = 0 

see (2.27), and it can be interpreted as the number of nonzero elements eik in the error 
sequence. 

A careful examination shows that no polynomial in 5 [ z _ 1 ] is stable with respect 
to (2.14) save the units of 5 [ z _ 1 ] . Thus a sequence in 5/ , i{z - 1} is stable if and only 
if it is finite. Therefore, the least squares control problem (3.3) reduces to solving 
equation (3.12), whose general solution X, Y determines all finite control sequences 
that yield a finite error sequence, and then finding a solution X1, Y1 minimizing the 
number of nonzero elements in the error sequence. 

Example 3.23. Consider a simple system over the field ^2 ( w i t n valuation (2.24), of course) 
given by 

s=1+Z'1+Z"2 

1 + Z - 1 

and solve problem (3.3) for the reference sequence 

W=z~2. 

Equation (3.12) becomes 

(1 + Z " 1 + z~2)X + Y = 
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and it has the general solution 

(3.40) X = 1 + t, 

Y = 1 + z-1 +(1 + z - 1 + z - 2 ) r 
for arbitrary / 6 32[z - 1]. 

Thus the controls 

U = (l + z - 1 ) ( l + t) 
yield the errors 

E = 1 + z - 1 + ( 1 + z _ 1 + z - 2 ) f . 
Setting 

t = T0 + T .z - 1 + . . . + T„z-" 
for some n, we obtain 

£ = (1 + T 0 ) + (1 + T 0 + T J Z - 1 + ( T 0 +T- + T 2 ) Z ~ 2 + . . . 

. . . +(T„_2 + T„_. + T n ) z - " + ( T n _ 1 +T„)z-("+ 1> +T„Z-<" + 2> 

and it can be easily verified that the choice 

T0 = 1 , Tj = T2 = .. . = T„ = 0 , 

i.e. t = 1, minimizes the number of nonzero elements in E. 
Hence 

X1 = 0 , Y1 = z - 2 

and the optimal control 

Z7 = 0 
gives the error 

£ = z-2, | |4L = 1. 

It is to be noted that problem (3.2) and problem (3.3) yield, in general, different optimal 
controls. True, the same equation is solved, but it is solved for different solutions. In this example 
the finite time optimal control is obtained as 

U = 1 + z - 1 , £ = 1 + Z " 1 

on setting t = 0 in (3.40). 

4. CLOSED-LOOP STABILITY 

4.1. The closed-loop system 

In this part we shall consider the closed-loop system shown in Fig. 5, which con­
sists of a system if to be controlled and a controller M. It is to be noted that this is 
not the most general feedback configuration, but it is reasonably general and widely 
used in practice and, therefore, it will be taken here to solve various control problems. 
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Throughout the chapter, the most important concept will be that of minimal 
realization. An interesting point is that the closed-loop system may not be a minimal 
realization of its impulse response even if the original components S" and Sft, are. As 
a matter of fact, we shall see later that the optimum system synthesis calls for certain 
procedures, called the „zero-pole" cancellations, which produce a nonminimally 
realized closed-loop system. As a result, we cannot infer dynamical properties and, 
in particular, stability of such a closed-loop system from its impulse response descrip­
tion. 

LøJľ Fig. 5. The closed-loop systém. 

We shall show that, besides stability, the impulse response of the closed-loop 
system must satisfy certain additional conditions to yield a stable closed-loop system. 
This fundamental result will be used in synthesizing optimal closed-loop control 
systems. 

4.2. The characteristic and invariant polynomials 

Consider the closed-loop system shown in Fig. 5, where S" is a system defined over 
an arbitrary field g valuated by TT that is described by the equations 

(4.1) xk+i =Axk + B u , , 

y* = Cxk + Du* 

and 91 is a system over g defined by the equations 

(4.2) zk+1 = F z , + G e k > 

Further, let 

and 

uk = HZfc + Jek 

x 6 g" , ze%p, 

u e g m , y e g ' , ee%1. 
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Since the closed-loop system must contain a delay of at least one time unit to be 
physically realizable, we shall agree on including the delay into the system Sf to be 
controlled. Therefore, any of the following equivalent conditions 

(4.3) D = 0 , 

dB < da, 

z~l\B 

is assumed to hold for any system Sf considered henceforth. 

Fig. 6. A detail representation of the 

closed-loop. 

A detail representation of the closed-loop system is given in Fig. 6. The state 
equation of the system shown therein becomes 

[::ГЋľ 
where 

(4.4) K = A - BJC BH 
- GC F 

e On + p,n + p • 

The characteristic polynomial of the closed-loop system is defined as 

c = d e t ( z I „ + p - K ) e g [ z ] 
and it has the degree 

(4.5) õč = n + p . 

The invariant polynomials c; of the closed-loop system are defined as the monic 
invariant polynomials of the matrix 

zl„+p - K e g „ + w + p [ z ] , 
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It is interesting that the invariant polynomials it can be obtained from the transfer 
function matrices of Sf and Si. To do so, we have to assume that Sf is a minimal 
realization of the impulse response matrix 

(4.6) s = C(zl„ - A) - 1 B e g,,m{z_1} 

and that $2 is a minimal realization of the impulse response matrix 

(4.7) tf = H ( z I p - F ) 1 G + J + ^....{z-1} . 

Using (2.4) we shall make the decompositions 

(4.8) S = BiA2-
1 = A~^B2, 

where At and B2 are left coprime while 5X and A2 are right coprime and 

(4.9) det (zl„ - A) = det Ax = det A2 

modulo units of 8f[z]; also 

(4.io) R = S1R2
I =R r 1 s 2 , 

where R\ and S2 are left coprime while S\ and R2 are right coprime and 

(4.11) det (zlp - F) = det Rt = det £ 2 

modulo units of (5[z]. 
Then we have the following result. 

Theorem 4.1. Consider the closed-loop system shown in Fig. 5, where Sf and St, 
are minimal realizations of 

S =BJ2
X =A;1B2e%hm{z-i} 

and 

R = S1R2
l = R T 1 S 2 e 5 m ; / { z - 1 } 

respectively. Further denote 

(4A2) C, = R,AZ + S2B1 e gm,m[z] , 

C2 = A,R2 + B2St e 5,,,[z] . 

Then the characteristic polynomial c of the closed-loop system is given as 

c = det C] = det C2 

modulo a unit of g [ z ] -
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Proof. We apply the well-known [12] formula 

[23 
(4.13) det f A B~] = det D det (A - BD^C) = 

= detA det(D - CA -1B), 

where the indicated inverses are assumed to exist, to compute the characteristic 
polynomial 

2 = det(zI„+ p-K) = 

= det (zlp - F) det [zl„ - A + BJC + BH(zIp - F)"1 GC] = 

= det (zlp - F) det (zl„ - A + Bi?C) 

on using (4.13) and (4.7). 
Now observe that 

det Tzl„ - A B1 = det /„ det (zl„ - A + BRC) = 

l-RC / J 

= det (zl„ - A) det [Jm + RC(zln - A)"1 B] 
and 

det Tzl„ - A ~BR1 = det /, det (zl„ - A + BRC) = 

L c /J 
= det (zl„ - A) det [/, + C(zl„ - A)"1 BR] 

on using (4.13) and, hence, 

det (zl„ - A + BRC) = det (zl„ - A) det (/, + SR) = 

= det (zl„ - A) det (lm + RS) 
by virtue of (4.6). 

Thus 

(4.14) t = det (zlp - F) det (zl„ - A) det (/, + SR) = 

. = det (zlp — F) det (zl„ - A) det (Jm + RS) . 

Now 

(4.15) det (/, + SR) = det (/, + A^BJ^l) = 

= det[A 'r1(i1R2 +B 2 S 1 )RJ 1 ] = 

= (det Ax)~
l (det R2y

l det {Avk2 + &2SY) 

110 



and 

(4.16) det (Im + RS) = det (lm + Ar/sjfi.iij1) = 

= det[Rr1(R1 i2 + s2e1)Ar1] = 

= (det R,)_1 (det ^ ) _ 1 det (Rji2 + S-fi,) 

by (4.8) and (4A0). Substituting (4.15) into (4A4) and taking (4.9) and (4.H) into 
account we obtain 

c = det (A x R 2 + B2St) 

modulo a unit of 5 [ z ] ; substituting (4.16) into (4.14) and taking (4.9) and (4.U) 
into account we obtain 

t = dst(R1A2 + §2Bt) 
modulo a unit of %[z\. • 

Note the importance of the assumption that both y and 0t be minimal realizations 
of s and R, respectively. Otherwise (4.9) and/or (4.11) would not be valid and the 
final step in the proof above could not be taken. 

We have created polynomial marices C\ and C2 whose determinants are essentially 
equal to the characteristic polynomial of the closed-loop system. In fact, much more 
is true. We shall prove below that the invariant polynomials of €t and C2 are 
essentially equal to the invariant polynomials of the closed-loop system. 

Fig- 7. The closed-loop system with external inputs. 

To this effect we apply external signals V and W to the closed-loop system, see 
Fig. 7. Then all possible closed-loop impulse response matrices are listed below. 

KWIE = (/, +SR)-\ KVIV = (/m +RS)-1, 

KW/0 = R(I, + SR)-1 , Ky,y = s(/m + RS)-1 , 

KWIY = SR(I, + SR)-1 , Kv/D = -RS(Im +RS)'1 . 

Note the identities 

(4.17) R(It + SR)'1 = (Im + RS)1 R , 

(4.18) (/, + SR)'1 S = s(/m + RS)'1 , 

which can be directly verified. Then using the decompositions (4.8) and (4.10) we 
can write 
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(4.19) KWIE = (I, + Äl ІÊJ& T1 = 

- а д + U Г ^ -
= A 2 ć ; Ч ; 

кw/v = -?iAíҶ/i + AVA^Ŕj1)-1 = 
= ĄćjM. 

oг by viгtue of (4.17) 

/.V/ÍJ = (/ra + .RsY1.R = 

- - ( Ъ + Ä Г ^ M í 1 ) " 1 ^ 1 ^ - -
= Â2(ŘJ2 + ŠAУ1 Š2 = 

— Л2^i Л2 , 

Kw/Ï - S(lm + RS)-1 R = 

= MíҶ-» + AГ^Mľ"1)-1 Aг1^ = 

= ÈҖÂг + šAУ1 š2 = 

= ß^Ci š2; 

кv/v ^ ^ + A - ^ M ľ " 1 ) " ^ 
«, î a (M2 + W 1 * ! - -
^ Л č ľ ^ ; 

ÍГF/У = M.ľҶ/« + Aľ^Mľ"1)"1 = 
= AjCx Aj 

oг by viгtue of (4.18) 

Kv/Y ^Џt + SR-^S** 

- ( / l + л - i а дÄ 2 - i ) - l л - l - Ї 2 « 

-ÄЛyî.Äз + адГ1-^--

= Ř2C2^Ê2 ; 

Kv/D= ~R(I, + SR)-1 s = 

= -^AjҶ/, + Л ľ ^ A ľ 1 ) " 1 Å?вл = 

--Ś^ÃЉ + ÊAУ^Ê,-

= — Š1C2 A 2 . 
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Theorem 4.2. Consider the closed-loop system shown in Fig. 5, where S and R 
are minimal realizations of 

S^Bj^^A^B.eZ^z-1} 

and 

R ^ S ^ 1 =R;1S2e'SmJ{z-1} 

respectively. Further denote 

CL = RA2 + S2Bt £ gm,m[z] . 

C2 = A\R2 + B2SL 6 g I ( I[z] . 

Then the nonunit invariant polynomials of Cx are equal to the nonunit invariant 
polynomials of C2 up to units of S5[z] and both are equal to the nonunit invariant 
polynomials of the matrix zln+p — K, again up to units of g [ z ] . 

Proof. First consider the following four impulse response matrices 

Kw/Y = B1C1 S2 , 

Kw/v ~ A2CX S2 , 

Ky/y = B1C1 R! , 

Kv/u = ^ 2 ^ 1 Rl > 

and let cu denote the nonunit invariant polynomials of CL and let ph qh sh f; denote 
the nonunit invariant polynomials of KW!Y, Kw/U, KV!Y, Kv/U respectively. 

Then 
Pt\tu, qt\tu, Si\tu, tt\tu 

and write 

hi = PiPoi, 

= QiQoi, 

= si^Oi , 

= titOi, 

where poi, qoi, soi, t0i are polynomials of g [z ] representing possible cancallations 
in the Kw/Y, Kw/U, KVjY, Kv\v respectively. Since, by definition, the matrices kt and 
£2 are left coprime and the matrices Bt and A2 are right coprime, there can be 
no factor cancelled simultaneously in all four impulse response matrices, that is 

(Po., <2o.» -of. toi) = 1 • 
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Otherwise speaking, the least common multiple of pu qh s{ and tt is equal to i u up 
to a unit of 5[z], 

Now have a look at Fig. 8, where a detailed representation of the system shown 
in Fig. 7 is given. It is seen that the system 

(4.20) 

[:;:;Гк[:]+ra-
yk - [C 0] ГxЛ + [0] щ , 

Fig. 8. A detail reprezentation of 
the closed-loop system with exter­
nal inputs. 

realizes Kw/Y; the system 

(4.21) 

realizes Kw/U; the system 

(4.22) 

realizes Kv/Y; and the system 

(4.23) 

ĽrГШoT" 
uk = [ - J C H ] Г x Л + [ J ] W f c , 

[:::;ľк[::]+Kľ" 
[:. 

[::::ľк[::Ш'" 

j k = [C 0] ГxЛ + [0] v, , 

uk = [-JC H] 1X1 + [ I J v,, 

realizes Kv/U, where K is given in (4.4). 
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These realizations are not necessarily minimal but they all have the same state-
transition matrix K. Hence, denoting Jc; the invariant polynomials of zl„+ p — K, 
we obtain 

Pi | £.-> Qi | &.-> si | £|> ti | £. • 

It follows that also c1;, the least common multiple of ph qh s; and f; divides kh 

However, by Theorem 4.1, 

nfci = det (zl„+p - K) = det Ct = f p u 

up to a unit of 5 [ z ] a n d hence Cj; = k; for all i up to a unit of 5 [ z ] . 
Further consider the other impulse response matrices 

Kw/E — ^2c2 ^1 > 

-^ir/u = "1V2 A1 > 

iTF/ry = R2C2 B2 , 

~Kv/D = S1C2 °2 

and let i2i denote the nonunit invariant polynomials of C2 and let rh qh sh M; denote 
the nonunit invariant polynomials of Kw/E, KWiV, Kv/Y, Kv/D respectively. 

Then 
ri I C2h A; I C2h S; I C2h « ; I C2; 

and since, by definition, the matrices A\ and B2 are left coprime and the matrices 
Sj and k2

 a r e right coprime, and analogous reasoning gives us that the least common 
multiple of rh qh s; and w; is equal to c2i up to a unit of 5 [ z ] . 

From Fig. 8 it is seen that the system 

(4.24) r x , + . I = K Tx,-] + TBJ-J w,, 

^ = [-co]rx,-| + [i,]w,, 

= K [xkl + [BJl w,, 

realizes Kw/E, the system 

[::;]=K[a+[o] 
u, = [ - JC H] rvi + [J] w,, 
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realizes Kw/V; the system 

[::::rt]+rav" 
y* = [c o] Vxkl + [o] v,, 

realizes KY/Y, and the system 

[::::]=K[:]+[B]V-
d, = [ - J C H ] r x t - | + [0]vfc, 

realizes Kv/D, where K is given in (4.4). 
These realizations are not necessarily minimal but they all have the same state-

transition matrix K. Hence 

rt | £i, a,-1 £,, st1 fct, u, | Hi. 

It follows that also i2i, the least common multiple of rh qt, st and u; divides /cf. 
However, by Theorem 4.1, 

Lpi = det (zl„+p - K) = det C2 = l\t2i 
i i 

up to a unit of 5[ z] and hence 

c2i = £| 
for all i up to a unit of g[z]. G 

The pseudocharacteristic polynomial of the closed-loop system is defined as 

c = det(I , I + p- Z--K)e gL-"1] 

and it has a degree 
dc ^ dc . 

The pseudoinvariant polynomials of the closed-loop system are then defined as the 
invariant polynomials of the matrix I„+p — z_ 1Ke gn+p.n+p^"1] • 

To compute the pseudocharacteristic polynomial via the impulse response represen­
tations of s and R, we have to take the decompositions 

5 = B1A2-
1 =A r 1 5 2 £g, , m { z " 1 } 

and 
R=SlR2

1 =R r 1 5 2 eg m , i {z - 1 } . 
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Then arguments completely analogous to those in the proof of Theorem 4A yield 

(4.26) c = det Ct = det C2 

modulo units of 5 [ z _ ) ] , where 

(4.27) Ct = RtA2 + S2Bl e g - - [ z - 1 ] , 

C2 = A!R2 + _ 2 S, e 3f.,.[z-1] . 

Of course, 

c = det(I„+p - z --_) = z-(n + p)det(zl„ + p - K) = z-(n + p)c . 

Similarly, the nonunit invariant polynomials of the matrix C t are equal to the 
nonunit invariant polynomials of C2 up to units of 5 [ z - 1 ] and both are equal to the 
nonunit invariant polynomials c ; of the matrix I n + P - z_ 1K, again up to units 
of 5 [ - - 1 ] . We also have 

ct - z-de'cf 

and 
dct ^ dt}. 

Example 4.1. Given a minimal realization of 

j - U - l J - p l [^-2)] - 1

 = 

z(z-2) U - 0 
= r z (z-2) _z(z-2)i-rr j 

L-(z-i) _ J LoJ 
and a minimal realization of 

*__zi__ = [ 1 0 ] [ - : ^_, .]--[ .-[ .-» .] 

over the field Sf,, compute the invariant and pseudoinvariant polynomials of the closed-loop 

system. 

We have 

e_-[_]W_-2)] + [_-i «]r. j = z 3 - 2 z , 

c 2 - r z ( . - 2 ) z(z-2)ir-z z i + r n [ i o] 
L-(z-i) z JL z - ( 2 - i ) J LoJ 

= Г-2z3 + 4z2 + 1 2z3 - 5z2 + 2z"|, 

L 2z2 - z -2z 2 + 2z J 
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- z + 21 TO Ol V-z2 + 2z + 1 z2 - 2zl 

1 JLoz3-2zJL 1 1 J 

and compute the canonical decompositions 

e,-[ i ] [-*-&][.], 
C2 =T -z 2 + 2z + 1 - z + 21 p 

and 

det C . = z 3 - 2z . 

det C2 = - z 3 + 2z . 

Thus the invariant polynomials of the closed-loop system, i.e. the monic invariant polynomials 
of the matrix zln+p— K, where n + p = 2 + 1 = 3, are 

e . _ i , g2 = i , e 3 = z 3 - 2z 

and the characteristic polynomial is 

t = z 3 - 2z . 

To compute the pseudoinvariant polynomials, we write 

_ L z - ^ l - ^ 1 ) ] _ [z-1 -I [1 - 2Z-1]-1 = 
1-2Z"1 L2_1(1-Z_1)J 

- I " 1 - 2 Z - 1 O T 1 ^ - 1 ! , 
L - a - z - 1 ) ij Lo J 

i? = [ i - z - 1 i] = [io]ro i - I - 1 - - " - ] - 1 " - - - 1 i ] . 
Li - ( I -Z-OJ 

Then 

Ct = [1] [1 - 2Z-1] + [1 - z-1 1] Tz-1 1 = 1 - 2z"2 

L*-'(i - *")\ 

c2 = r I - 2Z-1 oi ro I i + rz-n [i o] = 
L - ^ - z - 1 ) 1JL1 - ( i - o J Lo J-

- p - - i - 2 z - n = rz-1 n r o o i n -2 + 22-n 
Li -2 + 2z~1J L- 0JL0 i-2Z-2JLo 1 

d e t C ^ l - 2 z " 2 , 

detC2 = - 1 + 2 z " 2 . 
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Therefore, the pseudoinvariant polynomials of the closed-loop system are 

Ci = 1. C2 = 1, c 3 = 1 - 2 z ~ 2 

and the pseudocharacteristic polynomial is 

c = 1 - 2 z ' 2 

up to a unit of 9ft[z~ * ]. 

Example 4.2. Consider the system ST = {A, B, C, D} over JR, where 

A = n oi, B = r i oi, 
Lo i j Lo U 

C = [ 1 0 ] , D = [0 0 ] , 

and the controller M = { F , G, H, J } over 5R, where 

F = [ - l ] , G = [ l ] , 

H = p i , j = rol, 
lAI LoJ 

R -. i°l = p + - or1 pi = pit2 + i]- 1 • J_ = p + i oi-1 ГҐ 
i |_o i j Lo. 

It is to be noted that Sf is not a minimal realization of S. 

Then 

z l „ + p - K = z - 1 0 1 

0 z - 1 0 

- 1 0 z + 1 

and, by definition, the invariant polynomials of the closed-loop system are 1,1, z (z — 1) while 

the nonunit invariant polynomial of the matrices 

e2 = [z-i][z + i] + [io]rn = z2 

is evidently z 2 . 

The two polynomials do not coincide due to the nonminimal realization of S and there is no 

way of computing the actual invariant polynomials via the impulse response representations. 
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4.3. Assigning a characteristic and invariant polynomials by dynamical feedback 

Having established an expression for the characteristic and invariant polynomials 
of the closed-loop system shown in Fig. 5 we are interested in solving the problem 
of assigning desired characteristic or invariant polynomials to this system. Such a 
problem is sometimes referred to as the pole assignment problem since, in fact, we 
are assigning desired eigenvalues (poles) to the closed-loop system matrix. 

The pole assignement by state-variable feedback has been solved in [22; 43]. 
We recall that given a system (4.1) there exists a state feedback ufc = — Lxk such that 
det (zl„ — A + BL) is a preassigned monic polynomial of degree n belonging to 
5[z] if and only if system (4.1) is completely reachable. 

Using a constant output feddback uk = — Jyfc we cannot make det (zl„ — A + BJC) 
equal to an arbitrary monic polynomial of degree n belonging to g[z] even under 
the stronger assumption that system (4.1) be a minimal realization [11; 16]. 

Thus we are naturally led to use a dynamical output feedback [37] realized as 
a controller (4.2), see Fig. 5. This problem is formally defined as follows. 

(4.28) Given a system S* which is a minimal realization of 

S = J g 1 i 2 - 1 = i r 1 B 2 e g i > m { z _ 1 } . 

Find a controller ^ which is a minimal realization of some 

ReZnAz-1} 
such that the characteristic polynomial of the closed-loop system in Fig. 5 be 
equal to a given nonzero monic polynomial £ e *5[z]-

The dynamical feedback, however, can do much more than to assign a characteristic 
polynomial. This problem will be shown to be a special case of a more general 
problem of assigning desired invariant polynomials to the closed-loop system. 
By this way we assign not only a characteristic polynomial (it is the product of all 
invariant polynomials) but we endow the closed-loop system with a desired structure. 

The formal formulation is as follows. 

(4.29) Given a system if which is a minimal realization of 

S = B 1 i - 1 = l r 1 B 2 6 g ( ) m { z - 1 } . 

Find a controller 01 which is a minimal realization of some ' 

such that the invariant polynomials of the closed-loop system in Fig. 5 be 
equal to a given set of nonzero monic polynomials t u t2, ...,tse %{z\, where 
tk\tk+l,k = \,2, ...,s- \ and 

Ł = l 
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The dimension of the closed-loop system is £ dck and it must be equal to the 
k=l s 

number of given invariant polynomials; hence s = £ dck. 
k = l 

Theorem 4.3. Problem (4.29) has a solution if and only if either the linear 
Diophantine equation 

(4.30) XXA2 + Y2BV = C, 

has a solution X°, Y° satisfying 

(4.31) SdetX? = s - <? det A2 , 

d (adj X°) y2° g 3 det X°x . 

X° and y2° left coprime 

or the linear Diophantine equation 

(4.32) AXX2 + B2Yt = C2 

has a solution X°2, Yx satisfying 

(4.33) 8 det X2 = s - 8 det A'. 

ay,0 adj X°2 ^ 8detX°2 

X° and y° right coprime, 

y/here Ct e ^m^z] and C2 e 5;,j[z] are matrices having their nonunit invariant 
polynomials equal to the nonunit polynomials among tx, c2, ..., cs. 

The controller is not unique, in general, and all controllers are obtained as mini­
mal realizations of 

R=Z°-'Y° 

for all C, or as minimal realizations of 

R m y°z° - ' 

for all C2. 

Proof . The proof is trivial in view of Theorem 4.2. It just remains to check whether 
8k is a system according to our definition. Indeed, the second condition in (4.31) 
makes 

/? = x o - i y o = (adjZ?)y| 
1 2 detX° 
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physically realizable while the third condition in (4.31) guarantees that M be a minimal 
realization of R, Then d detX? = SR and the first condition in (4.31) reads 

£ cck = 5S + 5R, 
k=l 

which is relation (4.5). 

Conditions (4.33) play the same role for the solution X2, Y° of equation (4.32). • 

The requirement that ffl be a minimal realization of R certainly restricts the class 
of all controllers yielding given invariant polynomials ck, k = 1, 2, ..., s but it is 
an essential restriction because otherwise the cks would not be given by Theorem 4.2. 

Since C1 e ^m,m[z] and C2 e 3f,,i[z] and their nonunit invariant polynomials equal, 
it is" seen that the number of given nonunit invariant polynomials must not exceed 
min (/, m). 

It can also be seen that the matrices C, and C2 are given uniquely by ck, k = 1, 2 , . . . 
. . . , min (/, m) up to their associates. 

Equations (4.30) and (4.32) can be put into the unified form (1.5) by writting 

(4.34) YrAYl = C. , m 
[A! в2] X = ć2, 

where 

(4.35) x = r x 2 i , y = [X. Y] . m 
Then the results developed for (1.5) can be applied to solve equations (4.30) and 
(4.32). 

Corollary 4.1. Problem (4.28) has a solution if and only if either equation (4.30) 
has a solution X°, Y° satisfying 

(4.36) c det X°- = dt - d det A2 , 

d (adj X°) y2° S d det X\ , 

X° and y,° left coprime , 

or equation (4.32) has a solution X2, Yj° satisfying 

(4.37) d det X°2 = dt - 8 det At , 

d Y° adj X°2 ^ d det X°2 , 

X2 and Yj° right coprime, 
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where €t e 5m,m[z] and C2 6 5f,([z] are matrices such that 

c = det C! = det C2 , 

up to units of 5[z]-
The controller is not unique, in general, and all controllers are obtained as mini­

mal realizations of 
R = X°1-

1Y? 

for all C! or as minimal realizations of 

R = Y?X°2-' 
for all C2. 

Proof. Since the characteristic polynomial is the product of all invariant poly­
nomials, problem (4.28) is a special case of problem (4.29). The matrices C, and C2 

just will not be given by their invariant polynomials but only by the characteristic 
polynomial irrespective of their structure. Q 

This looser condition admits a wider choice of the Ci and C2 not confined to 
associated matrices and, therefore, one can expect that a solution will exist in more 
cases. 

Example 4.3. Given a minimal realization of 

s m [z z + J = ro z(z + i ) i - p z + 11 
z( z + i) b z J b i J 

%VlXtTT 
over SR, solve problem (4.29) for 

£t = l , 

c2 = z + 1 , 

c3 = z(z + 1) . 

3 

Observe that cy \ c2 \ c3, that J ) 8ck = 3, and that min ( / , » ; )= 2 as required. Consider 
e.g. equation (4.32) and choose k=l 

(4.38) C2 = [~Z + 1 Гz + 1 0 1, 
L 0 z(z + l)J 
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i.e. equation (4.32) becomes 

(4.39) 0 z(z + Щ X2 + 

1 z 

n x 2 + p z + n r 1 = p + i o i. 
i Li i J L o z(z + i)J 

We rewrite (4.39) into the form 

'0 z(z + 1) z z + П X = 

1 z 

1 X = Vz + 1 0 1 

J L 0 z(z+l)J 

Ľ ŕ + 1 , г + 1 Г 
ro iTTi o o oi 
[i oj L° i o oj 

1 0 - 1 1 
0 0 0 1 
0 - 1 z + 1 - (z + 1) 
0 - 1 - 2 0 

equation (4.39) is equivalent to the set of polynomial equations 

* n = 0, x12 = z(z + 1), 

5c21 = z + 1 , x2 2 = 0 

by Theorem 1.1. 

The general solution of (4.39) is then 

X = 1 0 - 1 1 
0 0 0 1 
0 - 1 z + 1 -(z + 1) 
0 1 - z 0 

+ 1 0 - 1 1 
0 0 0 1 
0 - 1 z + 1 -(z + 1) 
0 1 - z 0 

0 -(- + 1 ) " 
z + 1 0 

0 0 

0 0 

Гo 0 " 
0 0 

tll tl2 

Lť21 t2 2_ 

by (1.13) and (1.14), where / y e 3 . [ z ] arbitrary. Hence by (4.35) 

X2 =T0 z(z + 1)] + f - l r ] [ \ i t 
0 0 

i n [tu ti^i, 
0 lj Lť21 t22J 

i = r-(z + i) oi + p + i -(z + m p u . 1 2 n. 
L z + i oj lz o JLt21 t22J 
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Now we have to take the polynomials ttj so as to obtain a solution satisfying (4.33). First of all, 

d det X2 = s - d det J . = 3 - 2 = 1 . 

Thus all polynomials ?(j- such that 

detX 2 = - t n t 2 2 + *21t*12 - z(z + l)t2t 

is a polynomial of degree 1 are acceptable. Let us choose for simplicity 

(4.40) tn — 1 , r12 arbitrary , 

t2i = 0 , t22 = T0 + xtz , Tj 4= 0 ; 

then 

det.Y2 = — T0 — T£Z 

and 

x 2 - r - i z(z + I) + T0 + T . Z - r 1 2 i , 
L 0 T0 + TlZ J 

Yt = T 0 (z + l ) f 1 2 - ( z + l)(T0 + T1z)-l. 

Computing 

Г i -C 
r i a djx 2 = r o -( 

LT 0 + TjZ - Z 

0 - ( z + l ) í 1 2 + (z + l ) ( т 0 + т l Z ) "1 . 

(z + 1) - т0 - т.z + (z + l ) í l j 

the /x 2 must be of the form 

ti2 = Фo + 2 

T . = l 

in order that the second condition (4.33) may be satisfied. Hence 

(4.41) :° = г - i -- + 2 _ ( Ф o - т o Л , 
L 0 z + т0 J 

Yï = Г° (•Po -?o)z + (ę0 - т0) c - z - «7>0z J 

and it remains to guarantee that the X\ and Y\ be right coprime. Since 

(4.42) 

R] 
1 0 0 0 

0 1 0 0 

0 0 1 0 

- 1 0 0 1 

- 1 0 

0 z + т 0 

0 (ę0 - т0) z - (ç>0 - т0) 

0 ~(ę0 ~ l ) z - ( ф 0 - т0) 

1 - z 2 - z + ( ę ? 0 - т 0 ) _ 

0 1 
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we have to exclude 

4 = 1, 

•to = <Po • 

For these particular values the invariant polynomials of the matrix (4.42) would be different 
from unity and hence the X2 and y j would not be right coprime. For example, if T 0 = 1, we have 

x, = r-: r-i zip <p0-n, 
L o ij Lo z + 1 J 

Y! = r i - z - ( < p 0 - i ) i p <p0-ii 

Lo <PO - 1 J Lo z + 1 J 

Therefore, the required controller is a minimal realization of 

R= Y?X°2'\ 

where X2 and Y° are given by (4.41) for any T 0 , <p0 e SR, T 0 4= 1, T 0 4= <P0- However, other 
controllers exist because the choices (4.38) and (4.40) are not the most general ones. 

Example 4.4. Given the system over Q. which is a minimal realization of 

s = L- - iJ _ Г- 1W---Г 
Ф - 2) Ь - IJ 

= Г z ( z - 2 ) - z ( z - 2 ) 1 - ^ 1 1 

L-(z-i) z J Lo_ 
solve problem (4.29) for 

г. = ì , 

ê2 = i , 

Ê, = z3 - 2z . 

We observe that cl [ c2 | c3 , that ^_ Scfc = 3, and min (/, m) — 1. Let us first choose 
fc=l 

c, = ri o п o -I. 
|_0 z> - 2zJ 

Then equation (4.32) becomes 

[z(z-2) -z(z-2)-|x2 + rnY 1 =ri o i 
L-(z-i) z J Loj Loz

3-2zJ 
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Г z ( z - 2 ) - z ( z - 2 ) 1ЪY = Г1 0 1 , 

L-(z -1) z oj L° z3 - 2 z J 
x=m 

Г z ( z - 2 ) - z ( z - 2 ) l l = Г Ю O l 

L-(z - 1) z Oj Lo 1 Oj 

0 1 - z 

0 1 1 - z 

1 0 z(z - 2) 

xц = 1 , x 1 2 = 0 , 

x2l = 0 , x22 = z 3 — 2z 

and the general solution reads 

X = 0 1 - z 

0 1 1 - z 

1 0 z ( z - 2) 

1 0 + 
0 z 3 - 2z 

0 0 

0 1 - z "0 0 " 

0 1 1 - z 0 0 

1 0 z(z - 2) t l l tl2_ 

for arbitrary tu e Q[z]. Hence 

X7 = Г 0 z 3 - 2 z l - Г z l [ . u . 1 2 ] , 

L0z3-2zJ L--1J 
Yt = [1 0] + z(z - 2) [ . u t12] 

and the /;j-' s should be chosen so that conditions (4.33) are met. 

First, 

Since 
d det X2 = 3 - 2 = 1 . 

d e t X 2 = - ( z 3 - 2 z ) f u , 

it is seen that no such r u exists. 
It does not mean, however, that the problem has no solution. We can choose e.g. 

C, = n 
[_! z3 - 2zJ 

and start again. Equation (4.32) will have the general solution 

X7 = Tl z 3 - 2zl - Yz -\ [ t u t12] 

Llz 3-2zJ U - l J 
Yt = [1 0] + [z(z - 2)] [ ř l I ř 1 2 ] 

for any tu бû[ř]. 
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Again, 8 det X2 = 1. Since 

we have to set 

detX2 = . 1 2 - ( z 3 - 2 z ) f u , 

f x ! arbitrary , 

f12 = (Z 3 - 2z) t t l + T0 + T l Z , Tj + 0 

Computing 

d e t Z 2 = T 0 + Tjz . 

Yt adj X2 = 

= Г(l - тt) z3 + (тt - т0) z2 + (т0 + TІ - 2) z + т0 + (1 - z) (z3 - 2z) ť u T 
L-(l - т t) z3 - (т. - т0) z2 - (т0 - 2) z + z(z3 - 2z) ť u J 

we must také 

ť u = 0 , 

Tj = 1 , T 0 = Tj , 

to satisfy SYj adj X2 ^ 8 det X2 = 1. 

Then 

§ = П z3 - z2 - Зz 1, 

Ll z3 - z2 - 2z + l j 

Y° = [1 z3 - z2 - 2z] 

are right coprime and, therefore, a minimal realization of 

R = Y°Z°- = H-f l 
z + 1 

is a solution to our problem. 

This solution is not the only one, however. For example, take 

C\ = z 3 - 2z 

and solve equation (4.30) which becomes 

(4.43) X 1 [ z ( z - 2)] + Y2 \z "I = z 3 - 2z , U 
" Ф - 2)' 
z 
Z - 1 

= z 3 - 2z . 
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"z(z - 2) 
z 

= 

z - 1 

Write 

and hence equation (4.43) reduces to 

j ? u = z2 - 2 z . 

The general solution reads 

Y=[z3-2z tu ti2] 

1 0 z - 1 - i 1 
1 1 - z 0 
z -- 1 0 - z 2 + 2z 0 

- 1 0 z - 1 
1 1 - z 

j - I 0 -z2 + 2z 

for any tfj- e Q[z] and 

X, = - z 3 + 2z + [*11 f 1 2 ] n 1 , 

Y2 = [ 0 ( z - l ) ( z 3 - 2 z ) ] + [t1 1 (12]T1 - z 1 . 

Lo - z 2 + 2zJ . 
Again 8 det ^ = 1, i.e. we have to take 

tn = z3 - 2z - (z - 1) f12 + T0 + TtZ , T. 4= 0 , 

f12 arbitrary 

to obtain 

Xx = T0 + TjZ . 

Computing 

(adjX1)Y2 = 

= [z3 + (Tl - 2) z + T0 - (z - 1) tl2 - z 3 - T I Z
2 - (T0 - 2) z + zr12] 

the condition 8(adj Xx) Y2 £ 1 will yield 

r12 = z2 + z + a0 , 

T.. - 1 . 

Then 

X? = T0 + Z , 

Y2° = [-cr0z + (cr0 + T0) (<r0 - T0 + 2) z] 

are left coprime if and only if 

T0 - (2<T0 + 3) T0 - a0 + 0 
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and other controllers that solve our problem can be taken as minimal realizations of 

R = x°-'Y° = [- f f o z + (ffo + To) ( O - 0 - T 0 + 2 ) Z ] 
Z + T0 

In particular, T 0 = 0, <r0 = — 1 gives the controller considered in Example 4.1. 

Example 4.5. Given the system which is a minimal realization of 

-Џ=raт 
over the field $2, show that there is no controller which assigns to the closed-loop system the 
invariant polynomials 

2i = 1 , 

c2 = l , 

g3 = z 3 . 

We start with equation (4.32). Let 

e2 = p n ci2~j 

LC21 C22J 

be any matrix over $2[z] whose invariant polynomials are 1, z 3 . Then 

(4.44) i v oi x2 + n oi Y, = p u c12i 

Lo z\ Lo u Lc2i c22J 

and the general solution becomes 

X2 = [ t i l tl2~| , 

Lt21 t22J 

Yi = [ c u c i 2 l - p 2 01 p 2 1 t22l 

LC21 C22J LO z j Lt41 t42J 
for arbitrary tije'ii2[z]. 

Since 

d det X2 = s - 8 det A1 = 3 - 3 = 0 , 

we have to confine ourselves to those ttj which gives 

d e t X 2 = tL1t12 - f2 1f2 2 = 1 . 

Further the requirement 

aY tadjZ 2 = 8detX2 = 0 
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implies that 

(4.45) det(Y adjZ2) = 1. 

However, 

Y! adjZ2 = [~cu - z 2

n i c 1 2 - z 2

H 2 " i r t22 -tl2l = 

Lc21 - zt21 c22 - zt22 JL- t2i tuj 

= C l l t 2 2 — c12t21 ~ z C 1 2 t l l — c l l t l 2 

LC21t22 - C22t21 C22ttl - C21t12 - Z] 

and 

d e t ( y i a d j X 2 ) = 

= z 3 + ( c 2 1 M 2 - c 2 2 r u ) z 2 + ( c 1 2 t 2 1 - cnt22) z + det C 2 . 

Since det C 2 = z 3 , we obtain z | det (Yx adj A"2), a contradiction to (4.45). Hence no solution 
X2, Tj exists regardless of C2-

Now consider equation (4.30). Since / = m, the Cx may be taken as C2 without any lost of 
generality. Then the equation 

r , П + У г П 1 oп = c, 

is the transposed equation (4.32) and it can have no solution either. 
We conclude that there is no controller making the closed-loop invariant polynomials equal 

to cx — 1, c 2 = 1, c 3 = z 3. 

Example 4.6. Consider again the system from Example 4.5. We will show here that the characte­
ristic polynomial c = z3 can be assigned even though the invariant polynomials 1, 1, z3 cannot. 

Let us choose (this is the crucial step) 

C, = Vz2 0" 

Then we are to solve the equation 

ĚTTľt2:] 
the general solution of which reads 

X, = [ t u ti2~|> 

L*21 t 2 2 J , 

Lo z\ |_0 J L i t22J 
for arbitrary t;je£2[z]. 
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The **;,• must be choosen so that 

d det X2 = dt - d det A\ = 3 - 3 = 0 , 

that is, 

tllt22 — t21tl2 = 1 • 

Computing 

Yl&d]X2 = Vz2t22- z2 - z 2 Г z 2 f 2 2 - z 2 - z 2 í 1 2 - ] , 

Ut21 Ztll - ZJ 

it is seen that the only choice satisfying 9 y t adj X 2 g 3 det X2 = 0 is 

til = 1, tl2 = 0 , 

f 2 1 = 0 , t22 = l . 

Then 

X' = f-Бî]- * " П 
and the minimal realization of 

R = Y?X°2~
2 = 0 

solves our problem. 

Example 4.7. Given a minimal realization of 

1 
s = 2(z - 1) 

over 3,, try to solve problem (4.28) for c = z3(z — 0-5). 

We are to solve the equation 

z\z - 1) X + Y = z3(z - 0-5) 

where X= Xt = X2, Y= Yt = Y2. Its general solution is evidently 

X = t, 

Y = z3(z - 0-5) - z2(z - 1) t 

for any t e SR[-]. 
Since 8X= Be — 8a = 4 - 3 = 1, we have to take / = T0 + -,-, ti 4= 0. Then 

X = T0 + T.Z , 

Y = (1 - T,) Z4 + (Tt - T0 - 0-5) Z3 + T0Z
2 

and no choice of T0, Tt will give 8Y ^ 8X. Hence no controller exists for c = z3(z — 0-5). 
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Example 4.8. The requirement that 31 be a minimal realization of R certainly restricts the 
class of controllers yielding a given characteristic polynomial. It may happen that no such con­
troller exists whereas there are nonminimal realizations of R that solve the problem. 

Consider a minimal realization of 

over 3ft and solve problem (4.28) for 

c = z3. 

Equations (4.30) and (4.32) read 

z2X + Y = z3 

and give the general solution 

X = z + t , 

Y = - z 2 f , 
for arbitrary / e 3?[z]. 

Since dX= 8c — S'a = 3 — 2 = 1, we have to take t = T 0 + T.Z, T« 4= — 1. Then 

X = (1 + T.) Z + T0 , 

Y = - T l Z
3 - T0Z2 

and the only choice to get 8 Y ^ 6 A" is r 0 = 0, xt = 0. Then, however, A"0 = z, y ° = 0 and we 
have destroyed the primeness of X° and Y° because (z, 0) = z. 

We conclude that no minimally realized controller exists that would assign the polynomial 
c = z3. Indeed, R = 0/z = 0 would have the minimal realization 3t = {0, 0, 0, 0} and it would 
yield c = z2. 

On the other hand, there are nonminimal realizations of R = 0, e.g. the Si = {0, 0, 1, 0}, 
that do yield the desired polynomial c= z3. They cannot be found on the basis of the impulse 
response description, however. The resulting feedback system is degenerated, see Fig. 9. 

i——J_£J |E Fig. 9. The degenerated closed-loop system from 
<&j Example 4.8. 

Quite similarly, we can pose the problems of assigning a given pseudocharacteristic 

polynomial or pseudoinvariant polynomials. The formal definitions are as follows. 

(4.46) Given a system Sf which is a minimal realization of 

S = B,A-2" = Ar1526 3- i>ra{z-1}. 
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Find a controller &l which is a minimal realization of some 

Redn.A2'1} 

such that the pseudocharacteristic polynomial of the closed-loop system in 
Fig. 5 be equal modulo a unit of 3f[ z _ 1 ] to a given nonzero polynomial 
c e S [ z _ 1 ] , where (c, z"1) = 1 . 

(4.47) Given a system Sf which is a minimal realization of 

S=BtA2
l =A-1

1B2e%l>m{z-1} , 

Find a controller 0t which is a minimal realization of some 

i ?eg m , , {z - 1 } 

such that the pseudoinvariant polynomials of the closed-loop system in Fig. 5 
be equal modulo units of »J[z~ l~] to a given set of nonzero polynomials cltc2,... 
..., cse 3f[z_1]> where (ck, z _ 1 ) = 1 for k = 1, 2 , . . . , s, c t | c t + 1 for k = 

= 1, 2 , . . . , s - l a n d s = f 5c t. 
* = i 

Since the dimension of the closed-loop system must be equal to the number of 

given invariant polynomials and dck gj dc^, we obtain s ^ ~~ 3ck. 
k = l 

Theorem 4.4. Problem (4.47) has a solution if and only if either the linear Dio-
phantine equation 

(4.48) X,A2 + Y2B1 = Cj 

has a solution X\, Y2° satisfying 

(4.49) (detX?, z"1) = 1 , 

X? ana" Y2° Ze/f coprime 

or the linear Diophantine equation 

(4.50) A,X2 + B2Yl=C2 

has a solution X°2, Yj° satisfying 

(4.51) (de tX5 ,z - 1 ) = 1 , 

Z 2 and Y° riaht coprime , 

where Ct e 5m ,m[z _ 1] t2"^ e2 e S . , . [ z _ 1 ] a r e matrices having their nonunit in­
variant polynomials equal to the nonunit polynomials among c1; c 2 , . . . , cs. 
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The controller is not unique, in general, and all controllers are obtained as 
minimal realizations of 

R=X°-1Y° 

for all C! or as minimal realizations of 

R = Y°Z0-1 

for all C2. 

Proof . The proof is trivial in view of the fact that the nonunit invariant polyno­
mials of the matrices Cx and C2 are equal to the nonunit pseudoinvariant polynomials 
of the closed-loop system. It just remains to check whether Sk is a system according 
to our definition. Indeed, the first condition in (4.49) and (4.51) makes R physically 
realizable while the second condition in (4.49) and (4.51) guarantees that Sft, be a 
minimal realization of R. • 

Since Ct belongs to ~fm,m[z_1]> C2 belongs to 5 I , I [ Z _ 1 ] > and their nonunit in­
variant polynomials equal, it is seen that the number of given nonunit pseudo-
invariant polynomials must not exceed min (I, m). 

Again, the matrices Ct and C2 are given uniquely by ck, k = 1, 2 , . . . , s up to their 
associates. 

Corollary 4.2. Problem (4.46) has a solution if and only if either equation (4.48) 
has a solution X°, Y2 satisfying 

(4.52) (detX°, z - 1 ) = 1 , 

X\ and Y° right coprime, 

or equation (4.50) has a solution X2, Y° satisfying 

(4.53) (detX^, z - 1 ) = 1 , 

X2 and Y° right coprime , 

•where Cx e 5m,m[z_1] a m ! e2 6 3 / , i [ z _ 1 ] are matrices such that 

c = det Ct = det C2 

up to units of ~f[z - 1 ] . 
The controller is not unique, in general, and all controlers are obtained as minima 

realizations of 
R = X 0 - 1 Y ° 

for all Cx or as minimal realizations of 

R = Y?*0-1 

for all C2. 
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Proof. Since the pseudocharacteristic polynomial is the product of all pseudo-
invariant polynomials, problem (4.46) is a special case of problem (4.47). The matrices 
Ct and C2 just will not be given by their invariant polynomials but only by the 
characteristic polynomial irrespective of their structure. • 

The degree of the pseudocharacteristic polynomial is not equal to the dimension 
of the system and hence no counterpart of the very restrictive first condition in 
(4.36) or (4.37) is necessary. Moreover, the pseudocharacteristic polynomial deter­
mines the characteristic polynomial uniquely up to a power of the indeterminate z. 
Therefore, if a desired characteristic polynomial happens not to be assignable, we 
may try to assign the corresponding pseudocharacteristic polynomial c = z~dcc 
at the expense of increasing the characteristic polynomial c by an appropriate power 
of z. In fact, equations (4.48) and (4.50) have always a solution because the matrices 
A2 and Bt are right coprime and the matrices At and B2 are left coprime. It just be­
comes a matter of satisfying conditions (4.52) or (4.53). 

Example 4.9. Consider again the system from Example 4.7. Inasmuch as the characteristic 
polynomial e = z3(z —0-5) cannot be assigned, we will try to solve problem (4.46) for 

c = z"4[z3(z - 0.5)] = 1 - 0.5z_1 . 

s = 
1 - z - 1 

and hence equations (4.48) and (4.50) become 

(1 - z-')X + z'3Y= 1 - 0-5Z"1 , 

where X= Xx = X2, Y = Yt = Y2. The general solution is evidently 

X = 1 +0-5Z" 1 + 0 - 5 z " 2 + z~3t, 

Y = 0-5 - ( 1 - z " 1 ) * 

for any teSRlz'1]. 
This solution satisfies (X, z~ J) = 1, for all t. We just have to avoid certain t's, e.g. 

(4.54) t * -0-5 , 

t + T0 + 2(1 -x0)z~1 , T 0 e 9 . , 

to guarantee that (X, Y) — 1. Thus the controller is a minimal realization of 

R 0-5 - f t - - - 1 ) * 
1 + 0-5Z"1 + 0 - 5 z " 2 + z~3t 

for any / meeting (4.54). 
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The characteristic polynomial of the closed-loop system then becomes 

t0 = z\z - 0-5) if t = 0 , 

= zn + 5(z - 0-5) if dt = n ^ 0 . 

Thus the choice t = 0, i.e. 

R _ 0-5 

1-+ 0 - 5 z - 1 + 0 -5z~ 2 

gives the best assignable approximation of c = z (z — 0-5). 

4.4. Stability conditions 

As mentioned at the beginning of the chapter the closed-loop system need not be 
a minimal realization even if both £f and 3% are. Then the impulse response matrices 
Kw/Y, Kw/E, Kw/U or Kv/Y, Kv/D, Kv/U do not fully describe the closed-loop system any 
more. Specifically, this impulse response matrices may not reveal the actual system 
dynamics or, even worse, they may conceal the system instability. Otherwise speaking, 
stability of this impulse response matrices does not generally imply stability of the 
closed-loop system [33]. 

To illustrate the difficulties arising in the closed-loop system stability analysis, we 
consider 

Example 4.10. Given the configuration shown in Fig. 7, where £f is a minimal realization of 

z(z - 1) 

and 38. is a minimal realization of 

..ĽÏ 
both over the field 9i valuated by (2.25). 

Let the external input W be applied. Then all impulse responses of the closed-loop system, viz. 

Kw/Y = SR(1X + SÄ)- 1 = [ 0 ] , 

Kw/E = (ll + SR)~l = [ 1 ] , 

r , -n 
Kw/v = R(ll + SR)->=^ J 
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are stable and one might get the impression that the closed-loop system is stable. This is false, 
however. The characteristic polynomial of the system is given by Theorem 4.1 as 

£ = det \z(z - 1) z + 0] = z2(z - 1) 

and it is not stable. 
What has happened? A minimal realization of 5 is 

A = 

and that of R becomes 

["0 01 , B = T1 01 

C = [1 - 1 ] , D = [0 0] 

F = [0] , G - [1] , 

н-[-.т J = 

Then using (4.20), (4.24) and (4.21) we can check that the closed-loop system is not a minimal 
realization of any impulse response matrix considered above. Hence the closed-loop system 
contains certain parts which cannot be determined from the impulse response matrices, and 
they caused instability. 

Our next task is, therefore, to find additional conditions for the impulse response 
matrices of the closed-loop system that would guarantee the system stability. To do 
so, we shall denote 

(4.55) Kv = KWIY - SR(I< + SR)~« e ^{z'1} . 

K2= - KVID = RS(lm + RS)-1 6 gra,m{z-1} . 

Theorem 4.5. Given the closed-loop system shown in Fig. 5, where Sf is a minimal 
realization of 

S = BtA;x = A7l

JB2e5,,m{z"1} 

and 01 is a minimal realization of 

R=StR2

l =R;1S2e%m<l{z-.1}, • 

where g is an arbitrary field with valuation "V. Then the characteristic polynomial 
of the closed-loop system is stable (with respect to "T) if and only if the impulse 
response matrices Kt and K2 have the form 

(4.56) iTi = BiMt , K2 = M2B2 , 

/ , - # ! = NiAx, Im- K2 = A2N2. ' 
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where M, e fr^z"1}, At, e S ^ z " 1 } <™<l M 2 e SCil-""1}, !V2 e ^ { z " 1 } sa<is/> 
the equations 

(4.57) BjM! + AtjA! = / , , 

A2N2 + M2B2 = Im . 

Proof . The stability of the characteristic polynomial of the closed-loop system 
is equivalent to stability of the pseudocharacteristic polynomial 

c = det C, = det C2 . 

Necessity: Let c be stable. Using (4.19) and (4.55) we have 

•"1 = Kw/Y = " l c l ~2 , 

It — JSTj = Kw/E = R2C2 Ai , 

K2 = —Kv/D = SiC2 B2 , 

Im — K2 = Ky/V = A2Cy R, . 

Denoting 

(4.58) M , = C;'S2 , M2 = S,C2
 J , 

At, = R2CJ1 , At2 = cr'R,, 

the A-! and iT2 have indeed the form (4.56). By the assumption that c is stable the 
Mt, Att and M2 , At2 are stable, i.e. they respectively belong to -fm,;{z_1}> 5 u { z _ 1 } 
and ^ . ( { z - 1 } , " / ^ { z - 1 } , and since 

K, + ( / . - # , ) = / , , 

(Im - K2) +K2=Im, 

they satisfy equations (4.57). 
Sufficiency: Let 

-T, = B^MX , K2 = M2B2 , 

l t - JT, = At,A, , lm - K2 = A2N2 , 

where 

M, = Cr1S2e5:,,{z-1}, M2 = S1CJ1
eg: i i{z-1}, 

At! . R.C,1 € ^{Z-1} , At2 = Cr'R! € "Cfz-1} , 

and suppose to the contrary of what is to be proved that c has an unstable factor e, 
c = c0e. Then matrices £j e -fm,m[z-1] a r )d E2 e 5 i , ( [z _ 1 ] exist such that 

Cl = I~lclO ' c2 = e20~"2 

and 
e = det £ , = det £ 2 . 

139 



Due to the stability of M t and N2 the E{ must be cancelled in both M, and N2, 
i.e. the Rt and S2 must have the form 

R! = EjRjo , S2 = E1S20 • 

Similarly, due to the stability of Nt and M2 the E2 must be cancelled in both Nt and 
M2 i.e. the Sr and R2 must have the form 

Si = S10E2 > i^2 = ^20^2 • 

By definition, Rt and S2 are left coprime and St and R2 are right coprime. Hence 
E] is a unit of 5ra,ra[z_1] a n d ^2 is a u n i t °f 5 i , i [ z _ 1 ] - It follows that e is a unit of 
5 [ z _ 1 ] and as such it is stable with respect to arbitrary valuation, contradicting 
our hypothesis. In turn, the c is stable. • 

The above theorem specifies just all possible impulse response matrices Kt and 
K2 that yield a stable closed-loop system. Note that conditions (4.56) involve matrices 
over ~f[ z _ 1] rather than "?["]• This is highly purposeful and enables to state that 
Mu M2 and At., N2 are arbitrary matrices over ~f+{z -1} satisfying (4.57). If the 
conditions (4.56) were stated in terms of matrices over ~f[z~j, the Mu Nt and M2, N2, 
apart from being stable, would have to make the Ku I, - Kx and K2,Im — K2 

physically realizable. The synthesis procedure would then be unnecessary involved. 

It should also be stressed that both Att and N2 are invertible. Indeed, by the 
assumption on including the delay into .9", we have z _ 1 | B and hence z _ 1 | Bu 

z~1 | R 2 - T r i e n I ! - •K'tand^ - ^ a f e units of~f(
f;,{z"",}and~fm;m{z"1} respectively, 

and as such they are invertible. Since At and A2 are invertible, the claim follows by 
(4.56). 

Corollary 4.3. The matrices Mu M2 and Nt, N2 defined in (4.58) satisfy the fol­
lowing mutual relations 

(4.59) A2M, = M2AV , 

BlN2 = NtB2 . 
Proof . The identities 

R(/, + SR)~' = (/m + RS)~' R , 

(It+SR)-1 S = S(I„, + RS)~l 

can be directly verified. Then 

Kw/U = sle2 Ay = A2^l ^2 . 

KyjY ~ ByCy Ry = R2C 2 B2 . 

Taking the definitions in (4.58) into account, relations (4.59) follow. • 
If the system y is stable, the statement of Theorem 4.5 greatly simplifies. 
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Corollary 4.4. Given the closed-loop system shown in Fig. 5, where Sf and 8ft. have 
the same properties as in Theorem 4.5 but, in addition, the £P is stable. Then the 
characteristic polynomial of the closed-loop system is stable if and only if the 
matrix Kt has the form 

Kt = BtMt , 

where Ml is an arbitrary element of " C ^ z - 1 } . 

Proof . The condition is evidently necessary. To prove sufficiency, observe that Sf 
stable implies that det At = det A2 6 5 [ z - 1 ] is a stable polynomial. Hence A-1 is 
a unit of (5^;{z_1} and A2

 1 is a unit of $m,m{z_1}-
By Corollary 4.3, A2Mt = M2At and, therefore, Mt and M2 are associates in 

5m,/{z_1}- Otherwise speaking, Mt arbitrary implies that M2 is also arbitrary to 
within its associates. 

Further set 
Nl0 = NtAt , N20 = A2N2 . 

Then N10 and iVx are associates in g ^ z " 1 } and 7V20 and N2 are associates in 
5m,m{z_1}- With this notation, equations (4.57) become 

BtMt + Nt0 = / , , 

At20 + M2B2 = Im 

and it is seen that 

Nl0 = / , - : BtMt, N20 =Im- M2B2 

are stable for any My and M2. Hence also Nt and N2 are stable and the hypotheses 
of Theorem 4.5 are satisfied. It follows that the closed-loop system is stable. • 

In other words, for a stable system Sf the condition Kv = BXMV alone already 
implies all the remaining conditions. This is a striking illustration of how the stability 
assumption is restrictive. 

Example 4.11. Given the system Sf which is a minimal realization of 

p-1 o i 
Lo z-'(i-2z-1)2J_rz-1 o i r i - 2 - - 1 o r 1 

1 -2z-> Lo z_1(l ~2z-1)JLo lj 
over the field 31 valuated by (2.25), find all possible impulse response matrices Ky and K2 that 
yield a stable closed-loop system. 

We are to solve the equations 

pr1 o lAf! + JV. n - 2z-J ol = [ i ol, 
Lo z - ( i -2z - i ) j Lo l j L01J 
r i - 2z-J oiyv2 + M2 p-1 o i = n ol. 
Lo u Lo z- i(i-2z- i)J Lo l j 
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The general solutions become 

Mt = f 2 0l + r(l -2z~i)tli ti2l, ГlOl + Пí-lz-^tn ti2l 
Lo Oj L '21 '22J 

'. = гi 01 - Гz-Чti z-чi2 1 
L01J lz-ч2i z-ҷi-гz- r j 

лr, = 

and 

!V, = p Ol-Vz-'vu z-'vt2 1, 
LoiJ L^Si z-\\-2z-i)v22\ 

M2 = r 2 o i + r ( i - 2 z - 1 ) t > 1 1 P l 2 i 

L0 Oj L "21 »22J 

for arbitrary elements ttj and t y of SR + {z- J }. 

In order that iTt and K2 may be properly generated, these solutions must satisfy mutual 
conditions (4.59). It follows that 

m - 2 Z - 1 ) 2 t t i (1 - 2 Z - 1 ) t i 2 i = T( l - 2 Z - 1 ) 2 v l t v i 2 l 

L '21 '22J L(l - 2 2 - 1 ) » 2 i »22J 

and 

p--,,.. z-2vi2 1 = rz- 2*^ z - 2 ( i - 2Z-1) ti2i 
Lz"2(l - 2Z-1) v2i z~2(l - 2Z-1)2 v22\ lz-2t2t z" 2(l - 2Z"1)2 t22\ 

that is, 

Thus 

»11 = '11 , »12 = (1 - 2z l ) t i 2 , 

(1 - 2 z " 1 ) i ) 2 1 = t 2 i , v22 = t 2 2 . 

Mt = r2oi + ni-2z-l)tii ti2i, 
L00J l(í-2z-i)v2t v22\ 

Nt = TI 01 _ Vz-%, z~Ht2 1, 
LoiJ L ^ 1 ( l - 2 Z - 1 ) « 2 i 2 - 1 ( l - 2 z :

1 ) » 2 J 

r i O l - T z - ^ n z " 1 ( l - 2 z - 1 ) ř l 2 1 , 
LoiJ L-- 1 "2iZ- 1 ( l-2z- 1 ) t- 2 J 

r 2 o i + r ( i - 2 z - l ) r 1 1 (\-2z^)ti2l, 
L00J L »2i v22\ 

N, = 

м, = 

for arbitrary t i i , t i 2 and u 2 1 , u 2 2 belonging to SR"1"^*"1}. 
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All admissible Kl have the form 

«T1=r2z-1 +z-1(l-2z-1)t11 z-%2 1 

L z - 1 ( l - 2 z - 1 ) 2 . 2 1 z - 1 ( l - 2 z - 1 ) , ) 2 J 

and all admissible K2 have the form 

K2 = pz" 1 + z"»(l - 2z"1)r11 z-](l - 2Z-1)2 t12l 
L z"v2t z"1(l-2z-1)«2 2J 

on using (4.56). 

In particular, note that only the first (or the second) equation (4.57) alone is not sufficient to 
guarantee stability, even though the system Sf is diagonal! Indeed, the matrices 

M, = 

ut they yield the controller 

p ( l - 2Z"1) (Tip - 2Z"1 OH"1 = TO - (1 - 2Z-1)-]-1 p 0] 

L - l oJLo l j L- 2( l -2z- 1 )J LooJ 

locharacteristic polynomial 

z ' 1 - (1 - 2Z'1)! = d e t p - 2Z-1 01 
L1-2Z-1 2 ( l -2z" 1 J \_-z-1(\-2z-1)\\ 

satisfy the first equation (4.57) but they yield the controller 

R = p ( l - 2z_1) 01 p - 2z_1 0-]-1 = [0 - (1 - 2Z"1) 

L - i 0JL0 

and the pseudocharacteristic polynomial 

c = detr z_1 - (1 - 2z_1)l = detTl - 2z_1 01 = 1 - 2z 

which is not stable. 

An interesting interpretation of the above results is as follows. 

Theorem 4.6. Given the closed-loop system shown in Fig. 5, where if is a minimal 
realization of 

S=B1A2
1 =i - 1

J9 2Eg, ,m{Z - '} 

and 0t is a minimal realization of 

« = s1R2-i = Rr1s26Sm,,{z-1}. 
Write 

Mi = ci-1S2 = M-X?M12 , M2 = S.cJ1 = M^M^1 , 

At, = R2C2
1 = N^N;1 , N2 = Cr'R, = N;*N„ 

where matrices Mlt and M12 as well as M21 andN22 are left coprime while matrices 
M21 and M22 as well asNlt andN12 are right coprime. 
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Let 

(4.60) Dtt = greatest common left divisor ofSt and A2 , 

Dt2 = greatest common right divisor of Rt and B2 , 

D2t = greatest common left divisor of Bt and R2 , 

D22 = greatest common right divisor of At and S2 . 

Then 

(4.61) c = det £>u . det M u = detNt2 . det Dt2 = 

= det D21 . detiV21 = det M 2 2 . det D22 

up to units 0 j E [ z - 1 ] . 

Proof . We shall prove the first two identities in (4.61), the remaining ones can be 
proved analogously. 

By definition, 
Si — DtiS10 , 

A2 = DttA20 . 
Note that 

(4.62) A2
istR2

i = Ar'Rr^,. 

Since Dtt is cancelled on the left-hand side of (4.62), a matrix Eu e 5m .m[ z _ 1] s u c h 
that d e t E u = det Dit must be cancelled on the right-hand side of (4.62). Hence 
Eu is a greatest common right divisor of RiA2 and S2, and 

(4.63) Ct = R!A2 + S2Bt 

implies that Eu is also a greatest common left divisor of Ct and S2. 

Then 

Mt = C^S2 = Mt{Mt2 

yields 
c = det Ct = det Eu det M u = det Dtt det M u 

up to units of g[z l ] . 
Similarly, 

I^i — ^ioI^iг > 

B2 = B20Dt 

by definition. Note that 

(4.64) B2Rt

lS2 = B2StR2l • 

Since Dt2 is cancelled on the lef-hand side of (4.64), a matrix G 1 2 e E ^ ^ z - 1 ] such 
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that det G12 = det D12 must be cancelled on the right-hand side of (4.64). Hence 
G12 is a greatest common right divisor of B2S t and R2, and 

(4.65) C2 = A,R2 + B2S, 

implies that G12 is also a greatest common right divisor of C, and R2. 
Then 

/v, = R 2 C 2 " 1 =NUN;2
1 

yields 

c = det C2 = de tN 1 2 de t G12 = det/V i2 det Dl2 . 

up to units of 5 [ z - 1 ] . D 

We recall that if / = m = 1 (single-input single-output system) then 

SR = RS=b-S-
a r 

and the polynomials D n = D22 = (a, s) and Dl2 = D2l = (b, r) can be inter­
preted [33] as the "zero-pole" cancellations, i.e. as factors cancelled from the nume­
rator and denominator polynomials in the cascade ¥3)1 = 3t£f'. 

In the multivariate case, we have 

SR = B1A2
1StR2

1 = Ai\B2RilS2 , 

RS = S .KJ 'JMJ 1 = R;1S2A;1B2 

and, therefore, matrices D u , D1 2 , D2i and D22 in (4.60) can be interpreted as the 
matrix "zero-pole" cancellations between the numerator and denominator matrices 
in the cascades ¥01 and StEf. Whenever any of these calcellations occurs the 
closed-loop system is not a minimal realization of the respective impulse response 
matrix. 

In view of this interpretation we can say that the closed-loop system is stable if 
and only if both Kt and K2 are stable and no unstable "zero-pole" matrix cancella­
tions occur. In fact, Theorem 4.5 guarantees the closed-loop stability just by pro­
hibiting such cancellations. 

We have to make distinction between the "zero-pole" calcellations defined above, 
which are cancellations between polynomial matrices, and the cancellations of 
rational matrices in the cascades £f& or 0t£f. Example: 

[ z - 1 - - - ( - - » - 2 ) ] _ 
s r^rpr 

= [1 - z " 1 ] - ' [ z - 1 -z-^z'1 - 2)] = [ z - ' 0] f l - z"1 z - 1 - 2 rT-2p 
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z" 1 - 2 

We can write 

-Ч=[;-z1^-^=D:-::ГИ-

•[•--т^] 

R = 

that is, the rational matrix 

1 - z" 

0 

1 " 1 n 

4 1 - z - 1 

0 z - ^ - 2 

0 
- i Г ł 1 0 
- i 

z - 1 - 2 ' 
1 _ - 2_ 1 

1 - Z " 1 

0 z- 1 - 2. 

cancels in the cascade Sf0t, yet no "zero-pole" cancellations occur! 

Example 4.12. Consider the systems !? and 31 over the field 31 that are minimal realizations of 

_ _ _ * - ' ( ! - 2 - * ) - z - 1 ( z - 1 - 2 ) ] _ 
( l - z " 1 ) ( z - 1 - 2 ) 

= [(- - z - 1 ) ^ " 1 " 2 ) ] " 1 [ z - J ( l - z " 1 ) - z - ^ z - 1 - 2)] = 

= [ z - 1 0 ] r - ( l - z - 1 ) ( z - 1 - 2 ) -(z" 1 -2)- | - 1 

L (l-z- 1)(z" 1-2) -(l-z-^J 
and 

R = L - ___] _. r-o - z _ 1 ) -a - z-1)T1 p i _, r--1 - 2] [i - z-1]-1 

i-z-1 L-(----*) ^ x - 2 J LoJ L i--- 1 ! 
respectively and analyze the "zero-pole" cancellations. 

We have 
Л 2 - Г - ( l - z - 1 ) ( z - 1 - 2 ) - ( z - 1 - 2 Л -

L (г-z- ^ - г ) -(i-z- j 
-Гz-»--2 0 ] [ - ( ! " z"1) - Л , 

Lo 1 - z - L z"1 - 2 - l j 

'iг::-r[ s, = 
- я - г Г- 2 î - ґ .ы-
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B2 = [z-Ҷl - z"1) -z-Ҷz-1 - 2)] = [z-1 -z-Ҷz" 1 - 2)] П - z"1 01. 

R, ^ [ - ( l - z - 1 ) -(1 - Z - Ҷ 1 = Г-1 - ( 1 - z - -IГl-z- 1 0-J, 

') z " 1 -- 2 _ 1 L-i 
Bx •• -Þ-" o ] , 

R2 = [i -z~ll, 

лt = [(i 
— z~ 

52 = 

Ж 1 - • - ) ] . 

•_•„ ^ Г z - 1 - 2 0 -|, DX2 = Г 1 - z - 1 0 1 , 

Lo i - z - ^ J Lo l j 

l>21 = [1] , l>22 = [1] 

are the "zero-pole" matrix cancellations. 

Indeed, 

c . ^ Г z - 1 - ( i - O l 
L - Í A - z - H z - 1 - ^ 0 J 

C 2 - [ ( l - z - » ) Ҷ z - i - 2 ) ] 
c - . ( l - z " 1 ) a ( z - 1 - 2 ) , 

ľl 
^ŕ^' ^ ì^^) ' 

M 2 = [г::-îl 
( l - z - T í - " 1 - - ) ' 

[ ( I - - " 1 ) 2 _ ( i _ z - 1 ) ( z - 1 - 2 ) 1 

«V - L-(l - - -^ t - - 2 - _£_! + 2) (____ ~ 2)(1 - 'z"1 + z"2)] 
( 1 - z - ^ í z - 1 - 2) 

„. = [0], / ( - J T _ _ [ l ] , 

r z - 1 ( l - z - 1 ) ( z " 1 -2 ) - z - ť z - 1 - ^ "I 
_ |__--(1 - z"')» - z - 1 ( l - z - 1 ) ( z - 1 - 2 ) J 

( l - z - ^ í z - 1 - ^ 
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I- ( l - z - 1 ) ( z - 1 - 2 ) ( l - 2 z - 1 ) z - 1 ( z - 1 - 2 ) 2 "I 

- K _ L - z - ' ( l - z - 7 ( l - z - 1 ) ( z - 1 - 2 ) J 
K - * > - — ( l - z - 7 ( Z - l - 2 ) 

and the closed-loop system is a nonminimal realization of both K\ and /, — Kt while it is a mini­
mal realization of K2 and /„, — K2. Note that 

d e t D n = ( l - z - > ) ( z - 1 - 2 ) , 

d e t D . , = 1 - z " 1 

d e t M n = = 1 - z" 1 

det Dn 

detNi2 = j r V = ( 1 - z " ! ( z " 1 - 2 ) -
det D1 2 

4.5. The existence of a stabilizing feedback 

We have seen that given a system Sf it is not always possible to make the closed-loop 
characteristic polynomial equal to an arbitrary polynomial. The question now is 
whether or not the characteristic polynomial can be made stable. The affirmative 
answer is plausible but the author is not aware of any direct proof. 

Theorem 4.7. Given the system Sf as a minimal realization of 

_ = B 1 A J 1 = Ar1B2G5;>m{z-1} 

where $ is an arbitrary field with valuation"^, then a controller M which is a mini­
mal realization of some 

Re^tiz-1} 

always exists such that the closed-loop system shown in Fig. 5 is stable (with respect 
to IT). 

Proof . We recall (2.4) that 

Bx = £ 1 diag{&. ,6 2 , ..., _r, 0, . . . , 0 } , 

A2 = E2-1 diag {<?!, a2, ..., ar, 1, ..., 1} , 

Ax — diag {a1; a 2 , . . . , aP, 1 , . . , , 1} Et
x, 

B2 = diag {bu b2,..., br, 0, ..., 0} £ 2 . 
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Hence equations (4.57) are equivalent to the set of polynomial equations 

fojifty + n}jaj = 8tJ , i, j = 1 ,2 , . . . , / , 

apn
2
pq + m2

pqbq = dpq , p, q = 1, 2, . . . , m , 

where bk = 0, ak = 1 for k > r and 

dk„ = I for k = n , 

= 0 for k # n . 

These equations have a solution if and only if (ak, b„) \ 5kn for all k, n and this condi­
tion is always satisfied since (ak, bk) = 1 by definition. 

Further, mutual conditions (4.59) are equivalent to the polynomial equations 

attk}j = m2jaj, i = 1, 2, ..., m , 

j = 1 ,2 , . . . , / , 

bpn
2

pq = m2
pqbq, p = 1,2, . . . , / , 

q = 1, 2, ..., m , 

which can always be satisfied. 

Therefore, elements Ml e ^ { z - 1 } , At. e g ^ z " 1 } and Af2 6 ^ { z " 1 } , At2 e 
e 5m,m{z_1} always exist that satisfy equations (4.57) and (4.59). Then the impulse 
response matrices 

Kx = B .M, , A, = M2tf2 

satisfy the hypothesis of Theorem 4.5 and hence the closed-loop system is stable. • 

All stabilizing controllers 3% are given as minimal realizations of 

(4.66) R = M2N;' = iVj-JIf. . 

Indeed, using (4-19) and (4.56), 

B.Af. - ^ = sR(/, + SR)1 = SR(I, - Ki) = BiA-2'RNiAi 

and hence 

R = AiMiAi1!^1 = M-.yl.i4r'AT1 = M . A 7 1 

by (4.59). Similarly, using (4.19) and (4.56), 

M2B2 = K2= (Im + RS)-1 RS = (Im = K2) RS = A2N2RA~1B2 

and hence 

R = N21AllM2Ai = N^AlxA2Mx = N2
lMx 

by (4.59). 
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Example 4.13. Given the system Sf as a minimal realization of 

s = Г z - I Г I - 2 Z - 1 0Ţ-1 

Lo z-Ҷl-2z-)JLo lj 
over the field 9. valuated by (2.25), find all stabilizing controllers. 

The system has been considered in Example 4.11. All stabilizing controllers are given by 
(4.66) as minimal realizations of 

where 

ЛГ, = Г l -

and 

ЛГ, = Г l -

R = M2/V— = ,/V—M: , 

Af. = p + (l - 2 z - 1 ) ^ 1 1 tl2l, 

L (1-2Z-1)»21 v22\ 

n -z-hu -z~ui2 i 
- z - ( l - 2 z - ) i - 2 1 l - z - 1 ( l - 2 z - 1 ) « 2 2 J 

T l - z - ^ u . - z - 1 ( l - 2 z - 1 ) f 1 2 l , 

L - z - » 2 1 1 - z - ( l - 2 z - ) t*22J 

M 2 = p + ( l - 2 z - 1 ) r 1 1 (l-2z-)f12-| 

L "21 »2 2 J 

for arbitrary i l t , t l 2 and v2l, v22 belonging to 9{ + {z-1}. 

5. CLOSED-LOOP CONTROL 

5.1. Problem formulation 

This chapter is devoted to the synthesis of optimal closed-loop control systems. 
The configuration of the closed-loop system considered here is shown in Fig. 10. 
The ^ denotes the system to be controlled, M is the controller, and W is a given 

Fig.10. The closed-loop control 
configuration. 

reference sequence. The fundamental properties of the closed-loop system have been 
discussed in Chapter 4, now we concentrate on solving the optimal control problems. 

Roughly speaking, the closed-loop optimal control consists in the following. 
Given a system y, find a controller 01 such that the closed-loop system is stable 
and an optimality criterion is minimized. The same optimality criteria as for the 
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open-lopp control will be considered here, viz. the stable time optimal control, the 
finite time optimal control, and the least squares control. 

The basic and most important condition is that the closed-loop system be stable. 
It makes it possible to counteract disturbances appearing anywhere in the control 
loop simply by making them decay exponentially. 

It is appropriate to make the following remark at this early stage of development. 
The controller 01 couples the E and U as 

(5.1) U=RE. 

One might think of closing the loop by simply feeding back the error of the optimal 
open-loop control to get the closed-loop system, i.e. finding any transfer function 
matrix R satisfying (5.1) with (/and E obtained via the methods discussed in Chapter 
3. This is not acceptable, however. The resulting controller need not exist or need not 
be physically realizable. To make the matters worse, if such a physically realizable 
controller does exist, it may not yield a stable closed-loop system. By (4.66), only the 
controllers given as minimal realizations of 

R = M2N~i = N2 ' M , , 

where M 1 ; M2 and N1} N2, satisfy the hypothesis of Theorem 4.5, will create a stable 
closed-loop system. Thus special synthesis procedures have to be developed to 
produce the closed-loop optimal control systems. 

Theorem 4.5 itself suggests that first all possible closed-loop transfer function 
matrices yielding a stable system should be determined and then the remaining 
degrees of freedom should be used to minimize some criterion. 

The exact formulation of the optimal control problems is given below. 

(5.2) Stable time optimal control problem: 

Given a system £f which is a minimal realization of 

s=~eg(>m{z-1}, B+Q, 

and a reference sequence 

W ^ є g ^ z - 1 } , ß ф O . 
P 

Find a controller 3# which is a minimal realization of some 

such that the closed-loop system is stable, the control sequence U is stable, and the 

error sequence E vanishes in a minimum time kmin and thereafter. 
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(5.3) Finite time optimal control problem: 

Given a system if which is a minimal realization of 

s^-єg^-"1}. ß * 0 > 

and a reference sequence 

p 

Find a controller .3? which is a minimal realization of some 

such that the closed-loop system is stable, the control sequence U is finite, and the 
error sequence E vanishes in a minimum time kmin and thereafter. 

(5.4) Least squares control problem: 

Given a system £f which is a minimal realization of 

5 = - e g , , m { z - 1 } , £ + 0 , 
a 

and a reference sequence 

W — e U z - 1 ) , Q + O. 
P 

Find a controller &t which is a minimal realization of some 

such that the closed-loop system is stable, the control sequence U is stable, and the 
quadratic norm ||Zs||2 of the error sequence £ i s minimized. 

It is to be noted that the control sequence U is required to be stable in all control 
problems. This is rather a strict assumption motivated by physical realizability of 
the optimal control. However, an optimal control which is bounded instead of stable 
may be well acceptable in the engineering practice. This it to be born in mind when 
applying the synthesis procedure. 

It is also essential that both Zf and 3/1 be minimal realizations of s and R, respec­
tively. Otherwise the actual closed-loop system characteristic polynomial would be 
different from t = det Ct = det C2 and the method of synthesis could not guarantee 
a stable closed-loop system. 

152 



It is easy and transparent to find a minimal realization of S when Sf is a single-input 
single-output system. However, the problem becomes quite difficult for multivariable 
systems. For instance, realizing each element stJ of s or rti of R separately almost 
always leads to a nonminimal realization and the general procedure described in 
Chapter 2 is recommended. 

An interesting feature of the closed-loop control is the inherent nonuniquenes 
of the optimal controller. More specifically, the optimal control and error sequences 
are, as a rule, unique but they are generated by many and many controllers. Hence 
the closed-loop system transfer function K1 and the characteristic polynomial are 
not unique, either. This phenomenon makes the synthesis depend upon somewhat 
arbitrary choices and, therefore, more complicated and less suited for machine 
processing. On the other hand, it leaves more room for the engineer to realize the 
synthesized system according to additional requirements. The author is not aware 
of any systematic description of this effect in the literature. In fact the closed-loop 
optimal control problems (5.2), (5.3), and (5.4) have never been solved in general. 
The only exception is the solution for single-variable systems in [30, 31, 32, 34] and 
a very restricted solution of multivariable problems (5.2), (5.3) in [55] and (5.4) in 
[60]. 

5.2. Stable time optimal control problem 

Let g be an arbitrary field with valuation •f" and write 

S = - = BvA2
l = AilB2, 

a 

rank _}t = rank B2 = r 

and 

Bt = B^Bl . 

By the definition of Bj" in (2.30) we have 

BT = [B_i 0] 

where 

£?r. e 8fr,r[z-1] , 0 e 55 />m_r[z_1] and rank B^ = r . 

We also write 

where 
Є = Є + Є " 

QГ = 

[П 
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with 

- " e S i . t . - ^ . O e J3v-_.il>"*1] 
and denote 

For convenience, let 

e+ = e+ T" 
_0_ 

= __ß 

л 6 I7 

Ai - = — , 
_> ŕo 

where (p 0, F) = 1 and write 
ғ = ғ+F~ , 

where 
Ғ " 1 П 

w i t h / - є E I Д [ z - 1 ] , O є g г _ 
Lu J 

i , i [ z _ 1 ]> a n < i denote 

/ " =fõq- • 

Then we have the following result. 

Theorem 5.1. Problem (5.2) has a solution if and only if the linear Diophantine 

equation 

(5.5) B;,X + Ypfo = e + 

has a solution X°, Y° st/ch .haJ _ Y° = min subject to matrices M_, _V_ and M2 , _V2 

exis. in %^i{z"]}, gj+^z"1} a m / g ^ z - 1 } , ^ . - { z - 1 } respectively and satisfy the 

following equations 

(5.6) B J M J + Лt_A_ = 

A27V2 + M 2 ß 2 = 

Ii, 

Im, 

(5.7) A2M_ = M2A_ 

ß_Лt2 = лt_в2 

' 

(5.8) Mu = X°, B\MXQ
+ = ~Mu 

м2i 

м 2 л , • 
M22J 

lVц = Y°po , л t 1 E + - [Л__ л_2] 

and also subject to 

(5.9) U = м 2 — , 
_"o 

belongs tO Ђm,\{Z~ '}• 
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The optimal controller is not unique, in general, and all optimal controllers are 
given as minimal realizations of 

R = M2N;1 = N^Mt . 

Moreover, U is given by (5.9) and 

E = Y°r, 

/cmin = 1 + 5Y° + df- • 

Proof . The error is given as 

E=KWIEW = {ll-Kl)W. 

To guarantee a stable closed-loop system we have to set 

It = Kt => IV.JI, , 

where Nt e g,+,{z_1}. It follows that 

4. » „ ] Ш £ . i V ^ i? = At, - = [Atu /V12] L ° J -. Atlf L., 
P Po Po Po 

where 

A7!-7 + = [!VU !V12] 

and 

A n e g / t i l z - 1 } , A r x 2 e g i
+

I . 1 { z - 1 } . 

Since the error sequence is to vanish in a finite time and thereafter, E must be a matrix 

polynomial in 5 / , i [ z _ 1 ] - Therefore, 

(5A0) lVii = y p 0 , 

where Ye Sf/.ifz -1] is a matrix polynomial to be specified later. This choice yields 
the error 

(5.11) E = Yf~ . 

The error is also given as 

E= W - KtW 

and, in order to guarantee a stable system, we have to set 

Kt = B J M J , 
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where Af, e ^ { z " 1 } . Then 

(5.12) pE = Q - B.M.Q = Q - [Bu 0] B+Af,Q+ [q~l = Q - B^M^q' , 

where 

?+Af,Q+ = rAfii Af, 2 l 

LM21 M22\ 

and 

Afn e a f * , ^ - 1 } , M12 e 5 r
+ . - i { z _ 1 } , Af2, e g ^ . J z " 1 } , M 2 2 e g ^ ^ . ^ z " 1 } . 

The £"is a matrix polynomial whenever p £ i s so. It follows, that B~tMnq~ must 
be a matrix polynomial, too. This is effected by the choice 

(5.13) Mlt=X, 

where X e 3v , i [ z _ 1 ] is a n unspecified matrix polynomial as yet. 
In fact, substituting (5.11) into (5.12) we end up with equation (5.5) coupling the 

X and Y 
To guarantee the closed-loop stability, the Af, and At, must satisfy the equation 

5,Af, + AtiA, = J, 

in addition to (5.10) and (5.13), see Theorem 4.5. However, we must also solve the 
equation 

A2At2 + Af2B2 = Im 

for Af2 e 5Xi{ z _ 1 } a n c l -l̂ 2 e 3^,m{z-1} a n d in order that the four matrices may be 
properly related they must further satisfy the mutual relations 

A2MX = M2AX , 

B,N2 =N,B2. 

We must take, therefore, only those solutions of equation (5.5) that make the 
above specified Af,, At, and Af2, At2 exist. Further, we must take only those solutions 
which make the control sequence 

U = KWIVW = A2M1 Q = M2AX Q = M2 — 
P P Po 

stable, as required. And within this class we must further confine ourselves to those 
solutions which minimize the degree of E. Therefore, in view of (5.11), equation (5.5) 
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is to be solved for a solution X°, Y° such that dY° = min subject to all stability 
requirements. 

All optimal controllers are then obtained by (4.66) as minimal realizations of 

R = -fef.-V-1 = N^1M1 , 

where Mt, Nx and M2, N2 satisfy (5.6), (5.7) and (5.8). 

The optima] performance measure becomes 

/cmin = 1 + dE = 1 + BY0 + df~ 

in view of (5.H). Since it is assumed that z " l \ B, we always have Y° + 0. • 

Example 5.1. Given the system <f over the field K valuated by (2.25) as a minimal realization of 

5 = 

solve problem (5.2) for the reference sequence 

í-z-1 z " 1 ! 

= U " 1 Z~'J = f2"1 o"|p - z-1 - n - 1 

i - z - 1 [z-1 oJLo IJ 

[':f T-TT]' 
:nce 

Ji] 
1 - z ' 

We compute 

s,v "TìrTãą'=UQ;T' 
fT-П- / - = 1, / - = 1 

and hence equation (5.5) becomes 

(5.14) f z - H X + Y(l - Z - J ) = 

Since the matrix 

Й 
pӣ o 1 
Ь p/o"J 

[-:]• 

<~z-1 0 

z - 1 0 

0 1 - z" 

157 



has the invariant polynomials 1, z J(l — z x) and the matrix 

r - - 1 1 p u QX 1 
LO pfô\ z - 1 - 1 

0 1 - z" 1 

s = 

has the invariant polynomials 1, z , equation (5.14) has no solution. Therefore, our problem has 
no solution. 

Example S.2. Consider a minimal realization of 

_ | _0 z - 1 ( l - 2 z - ' ) ( z - 1 - 2 ) J _ 

1 - z " 1 

= p-»o IT1-2"' - ( 1 - z " ) l -
LO z - 1 ( l - 2 z - 1 ) ( z " 1 - 2 ) J L 0 l - z - ' J 

r i - z - o -p-iv- z-1 -I 
Lo 1 - z " 1 ] Lo z_ 1(l - 2 z - 1 ) ( z - 1 - 2 ) J 

over 5, valuated by (2.25) and solve problem (5.2) for the reference sequence 

1 - z - 1 

We shall first find all matrices Mx and 7VX that satisfy the equation 

BlMi + At!A! = J , . 

It is equivalent to the set of equations 

z - 1 " . ! , ! ! + n 1 > u ( l - z" 1) = 1 , 

Z_1».l,1.2 +«1,12(1 - Z _ 1 ) = 0 , 

z-\l - 2 z " 1 ) ( z - 1 - 2) m1>21 + n1 ; 2 1(l - z" 1) = 0 , 

z - ] ( l - 2 z - 1 ) ( z - 1 - 2 ) m 1 ; 2 2 + / i l j 2 2 ( l - z - 1 ) . = 1 

and 

Ml = [»*1,11 » I l i l 2 " | , Ni = p l 1 ; 1 1 ll1>12"|. 

L/Wl,21 m l ,22 j L"l,21 "1,22] 

The general solution becomes 

Mx = T 1 + ( l - z - 1 ) f 1 1 ( l - z - l ) r 1 2 T 

L ( 1 - z " 1 ) ^ , l + l A - z " 1 ) ^ . ] 
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Лti = 

r i - z - 1 ^ , -z~'t12 

L _ z - 1 ( l - 2 z - 1 ) ( z - 1 - 2 ) r 2 1 1 + 3Z"1 

for arbitrary t u e ?R +{z~x}. 

Further we shall solve the equation 

гz-^-z-Ҷi-гz- ' )^- 1 -2) J 

A2iV2 + M2B2 = Im , 

which is equivalent to the set of equations 

(1 " z _ 1 ) " 2 , i i + nt2illz~1 = 1 , 

(1 - z - > 2 , 1 2 + m 2 , 1 2 z - ' ( l - 2 z - 1 ) ( z " 1 - 2) = 0 , 

(1 - z-')n2r21 + m2,21z~i = 0 , 

(1 - z - 1 ) ^ , , , + i f i 2 , 2 2 z - ( l - 2 z " 1 ) ( z - 1 - 2) = 1 

ЛГ, = [и2,ц n2Л2l Гl П , Лfг = Гl -ГjГ/и 2 Д 1 m2Л2~ì. 

Lи2,2i и2,2 2JLo l j , L° XJ Ľ"2.2i иtг.ггj 

The general solution becomes 

iV2 = n +z~ivil 1 +z-lvxl + z - 1 ( l - 2 z - 1 ) ( z - 1 -2)v12 1 

L z~lv21 1 + Sz-1 - 2z-2 + z~xv21 + z~\\ - 2z- 1 )(z" 1 - 2) „2 2J 

M2 = H - (1 - z - 1 ) ^ . - v21) - 1 - (1 - z->){v12 - v22)l 

L - ( l - Z - 1 ) ^ ! l ~ ( l - Z - > 2 2 J 
for arbitrary v{j £ W. +{z x}. 

In order that the mutual conditions 

A2M1 = M 2 A , , 

B.Af, = N,B2 

may be satisfied, we must take 

vtJ = -tij, i = 1, 2 , 

i.e. the matrices N2 and M2 become 

N2 = n - z - 1 f 1 1 l - z - 1 ^ 1 1 - z - 1 ( l - 2 z - 1 ) ( z - 1 -2)t12 1 

L - z-^ 2 1 1 + 3Z"1 - 2z-2 - z~H21 - z-\\ - 2z-1)(z"1 - 2)r2 2J, 

M 2 = f l + (1 - z - 1 ) ^ , - t2l) - 1 + (1 - z-x)(t12 - t22)l. p + a - z - o 
L ( I -* - 1 ) ' l + ( l - z - ' ) ř 2 
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Computing 

ö = 

ғ = q = / = p 0 = l ; 

[:.,-.]• ełi:-г-м]'й=C-г-ľ 
C-.-0—E--Я-

Г i ^ p - 1 o 1 , B+ = Г 1 0 1 , 

Lo Z-Ҷ1-2Z-1)] Loz-^-2] 
equation (5.5) becomes 

Lo Z-Ҷ1-2Z-J 
X + Y(l - z " 1 ) = Гl 

C-,.] 
and its general solution obtains as 

X = 

Y = 

c r a ( i ~ ^ 
iJLo z-1(l-2z-1)JLtJ-

for arbitrary tx, t2 € 3.[z - 1 ] . 

Now we have to confine ourselves to those solutions M x , N1 and M2> iV2 only that satisfy 
(5.8). Computing the B1M1Q

+ and N2F
 +, equations (5.8) become 

i + (i - z - 1 ) tu + (i - z - ; ) 2 * 1 2 = I + (i - z - 1 ) u . 

(1 - z - 1 ) ( z - 1 - 2) + (1 - z->){z-i - 2)f21 + (z" 1 - 2)(1 - z - 1 ) 2 * 2 2 = 

= ( l - z " > ) t 2 . 

l - z - 1 r 1 1 - z - 1 ( l - z - 1 ) r 1 2 = l - z - 1 t 1 , 

(1 - z" 1) (1 + 3Z-1 - 2z- 2 ) - z - ] ( l - 2 z - ] ) . 

.(z"> - 2)t21 - z - ' ( l - 2 z " 1 ) ( z - 1 - 2)(1 - z - 1 ) ^ = 

= l - z - ' ( l - 2 z - 1 ) t 2 

and yield 

(5.16) r n + ( l ~ z - 1 ) f 1 2 = t 1 , 

( z - ' - 2 ) [ i + *2 ] + ( i - z - 1 ) ^ 2 2 ] = ( 2 . 

We have to further choose only such solutions X°, Y° of (5.15) that minimize 8 Y° while satisfying 
(5.16). It follows that tx = 0, t2 = 0 and, in turn, 

tu = - ( 1 - z " 1 ) ^ , 

'21 = - l - a - z - 1 ) ^ . 
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Hence 

x° = гп, Y° = гп 
Ы Ш 

and, eventually, 

(5.17) Mt = r - 1 - (1 

Лt, = 

Г_ l _ (1 - ,--)-,„ ( 1 - z - 1 ) ^ -I, 

L-a-o-a---1)2-.? i + ( i - o U 
1 + z - i ( i _ z - i ) ř l 2 - z - 1 * , 

I z - J ( l - 2 Z - 1 ) ( z " 1 - 2) + 1 + 3 Z " 1 - 2 z " 2 - -

L + z-J(l - 2z-1)(z"1 - 2)(1 - z - 1 ) ^ -z-^1 - 2z-1)(z"1 - 2)í 2 J 

!V2 = [ 1 + z - 1 ( l - z - 1 ) ř 1 2 

L z - i + z - i ( l _ z - i ) ř 2 2 

1 + z~\\ - z~")tX2 - z~\\ - 2 z - 1 ) ( z - 1 - 2) 

M, = 

Since the control 

1 + z-Ҷl - Z- ř l 2 - z-Ҷl - 2Z- ÍZ-1 - 2)řt2 1 
1 + 4Z"1 - 2z~2 + z-Ҷl - z~x)t22 - z-Ҷl - 2z~^){z-x - 2)ř 2 2 J 

Г 2 - z - 1 - ( l - z - 1 ) 2 ( Г 1 2 - f 2 2 ) - l + ^ l - z - 1 ) ^ , - ^ ) ] . 
L _ ( l _ z - l ) _ ( l _ 2 - l ) 2 ř 2 2 l + í l - Z " 1 ) ^ J 

°-«i-«Ъ-Л'\S\ 
is stable, all optimal controllers are given as minimal realizations of 

(5.18) R = M2N~X = A t r 'Af j 

where M t , Nt and M 2 , N 2 are given by (5.17). 
The resulting error becomes 

E = , kmin = 1 • 

We recall that the same system has been considered in Example 3.7 for the open-loop control. 

We have obtained exactly the same U and E. One might get the idea to bypass the above computa­

tions and find an optimal controller St simply as 

that is, 

H-DЗ-
R - Гř3 1 - t3l 

\_U - t J 
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where t3, tA are arbitrary elements of 9,{z 1). This is impossible, however, since not all controllers 
created in this way will yield a stable closed-loop system. For example, t3 = 1, tt =- 0 gives 

and 

Ä = Г1 01 = Г1 OlГl Ol"1 

LooJ LooJLoiJ 

c = detC! = detfl -(1 -

is not stable. Only the controllers having form (5.18) are acceptable. 

Example 5.3. Consider a minimal realization of 

Lv2\oi-oJ Lv2\-_i(--oJ 

L-V-U--0-J Lo J 
over the field 3. valuated by (2.25) and solve problem (5.2) for the reference sequence 

1_" 

y2 
- i 

W = -fc-
z" 1 - 2 

We first find a stabilizing feedback. 

The first equation (5.6) becomes 

p-1
 I M , + /Vi[" i oi = ri oi 

Lv-\0--oJ L-V-U--0-J Lo ij 
and it is equivalent to the set of equations 

z _ 1 » » i , i i + » i , u = 1 , z - 1 » i I i l 2 + j . l f i 2 = 0 , 

»1,21 - 0 , " l ,22 = 1 . 
where 

M i = [ « i . , i i »«i,12] [ 1 0 1 , 

L-v-\(--o-J 
!Vi = ri oir« 1 ( 1 1 « l i f 2 i . 

Lv2\ (1 - z " 1 ) iJL"i.2i »i,22J 
The general solution is 

My = [tu - V2\(l - z - 1 ) ^ , tl2] 

N, = n - z - 1 ^ -2-^12 "1 

LV2\ (1 - z"1) - V2\ z-\l - z"1) tu 1 - V2\ O - - z " > 1J 

for arbitrary ( „ , i ,

1 2 e ^ 4 " ^ - 1 } . 
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The other equation (5.6) becomes 

[i]N2 + M2Vz-n = [1] 

[Г] 
the general solution being 

Лt2 = 1 + z _ 1 - u , 

M2 = [ - » n - » i 2 ] , 

for arbitrary » 1 1 , c 1 2 e 5 R + {r *}. 

Mutual conditions (5.7) then necessitate 

c l l = — ' l l , "12 = ~ *"l2 , 

i.e. 

N2 = l - z"1*!,!, M2 = [*.. r 1 ; ] . 

Now we shall seek for optimality. We compute 

Q = ' 1 

V2 
- 1 

F = 

, Q+ = 

i 

V2 
1 - 2 

1 0 
V2 

. - 1 1. 

F+ = 

, Qî = "J_* 
V2 
- 1 

1 

V2 
o] 

z" 1 - 2 lj 

and equation (5.5) reads 

q~ = 1 , / " = 1, P o = z- 1 - 2 

X + Yťz"1 - 2) = Гz"1 - | Z + Y(z 

Lv^z-ҷi-z-1)] 

Consulting Example 3.3 we obtain the general solution as 

1 , . + , , ( , - - 2 ) , 

У = 1 1 
2V2 

1 + z-' 

. 2 J 

Lдz-Ҷl-z-1)] 

J_ 
V2 
- 1 

Þi] 

for any f l єЭÎ [z *] . 
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Conditions (5.8) can now be written as 

- i ( l I + ( z-._ 2 ) , 1 ! __l_ + ( . - . - 2 ) , 1 , 

J - - ± . - . , 1 1 - z - . ( z - - 2 ) „ 1 - i l - 2 ( z - . - 2 ) - z - . ( z - . - 2 ) , 1 , 

_1 _ 2 - ( 1 _ z - . ) , u _ V2\z-(1 - z-)(z". - 2)<12 -

- -1 -05z- ' +0-5Z"2 _ V2\z-"(1 -z-")(z-. -2)1, 

and they yield 

hi - 0-5 

' l 2 = tl • 

Now we can minimize the degree of F b y taking tt = 0. It follows that 

1 

and 

X0 = - І - , Y° = 
2V2 

M, = [0-5 0] , 

Nt = Ґl - 0-5z 

• 1 _ 

2V2 
1 + z" 1 

n - o-5z-x o i , 

Lv^a-z-^a-o-sz-^iJ 
N2 = 1 - 0-5Z"1 , 

M2 = [0-5 0] . 
The control sequence 

U = l 1_ 
2J2 z" 1 - 2 

is stable and the optimal controller is given as a minimal realization of 

R = [0-5 0]T1 - 0-5Z-1 0T 

Lv^a-z-^a-o-sz-^iJ 

= [1 - 0-5Z-1]-1 [0-5 0] = t " 1 °-

and it is unique. The resulting error becomes 

E = 1 
2^2 
0-5 + 0-5z" 

> fcmin - 2 . 
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Example 5.4. Given the system over 3t valuated by (2.25) that is a minimal realization of 

.--££.-[.- ol['T "3 = 
= [ l -z" 1 ] - 1 [ z - ^ - 1 ] , 

solve problem (5.2) for the reference sequence 

1 - 2z" 
W = 

1 - z " 1 

As usual, we shall solve first the equations 

[z-1 0]M. + i V 1 [ l - z - 1 ] = [ l ] , 

Гl - z" 1 - Л Л t 2 + M ^ z - 1 z" 1 ] = Гl 01 

and obtain 

M. = fl + (1 - z" 1) * n - i , /V. = [1 - z-1*.,) , 

лt2 = 

г - г - . ) ; ; ; ] 

Г1 + 2-4- 1 + г-^п! м = Г1 - (1 - 2"1) - и + е 2 11 

[ 2-хю21 1 + 2 - 1 » 2 1 ] ' 2 [ -ю21 \ 

for arbitrary fy, t»y e 9,+{z-1}. 
Mutual conditions (5.7) necessitate to set 

'11 = - " n > 

r 2 1 = - ( 1 - 2 - 1 ) i > 2 1 . 

Then 

_ r i - ( l - 2 - 1 ) r 1 1 l , At, = [1 + z - 1 » 1 1 ] . 
Mx ш

Г i - ( i - 0 - i Л . 

L -a-^ьJ 
Now we compute 

Bj- =[z'1 0 ] , flu--"1, r - l , 

g = l - 2 z - ' , F = l - 2 z _ 1 , 

Q+ _ g + = E+ = 1 , q~ _ / - = 1 - 22-1 , p 0 = 1 , 
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and equation (5.5) reads 

z~lX + Y(l - z - 1 ) = 1 . 

The general solution is 

X = 1 + (1 - z~l)t, Y= 1 - z _ 1 f 

for arbitrary / e 3,[z~*]. 
Equations (5.8) give 

1 - ( 1 - z - > u = 1 + ( 1 - z ~ l ) t , 

l + z " 1 ^ ! = l - Z - ! f 

and, hence 

»j l = ~t. 

To minimize the degree of Y we set t = 0. 

Then 

X° = 1 , Y° = 1 

and 

M , = i = [1 ] , /V. = 1, 
L - a - z-1) „21J 
[1 1 1, M 2 =p + v21l 
Lz _ 1» 2 1 1 + Z-1»2 1J L - P2lJ 

ri + »21i 
L - ^J 

Iv2 = 

and the control sequence 

V = f l + v2ll (1 - 2z _ 1 ) 

is stable, as required. 
Thus all optimal controllers are given as minimal realizations of 

l ? = p + «2I-|[l]-1 = p 1 - p p 1=-p+«2,"| 
L - "2iJ Lz-Si i + «2iJ L-(i-z_ l)"2ij L -»2lJ 

and they yield the error sequence 

E=\ - Iz'1 , kmm = 2 . 

It is worth examining how a particular choice of v2 r affects the pseudocharacteristic polynomial 
of the closed-loop system. 

Write 

b 
» 2 1 . = - > 
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where a, b e SR.z 1 ] , (a, 6) = 1, a stable. Then 

b 
R = 1 + "[ , +:]м-

c = det C, = det [(1 - z - 1 ) a + z " ' ( a + b) - z _ 1 h ] = a . 

5.3. Finite time optimal control problem 

Let g be an arbitrary field with valuation "V and write 

rank Bt = rank B2 = r . 

By the definition of Bx in (2.19) we have 

Bx = [Btx 0] 
where 

and rank Btl = r. 
We also write 

where 
ß= ß+ß", 

ß" = 
[Г] 

with q e g ^ J z 1 ] , 0 e $,-i, i[z *] and denote 

ß + = ßH 

[_0j q 

For convenience, let 

• P Po ' 

767 



where (pQ, F) = 1 and write 
F = F+F~ , 

where 

F- = 

[П 
with/ ' e S3flfi[z " ] , O e g , _ l f l [ z *] and denote 

/ " = / o « ~ . 

Then we have the following result. 

Theorem 5.2. Problem (5.3) has a solution if and only if the linear Diophantine 

equation 

(5.19) BtlX + Ypfo = Qt 

has a solution X", Y° such that dY° = min subject to matrices Mu Nt and M 2 , N2 

exist in ^ { z - 1 } , e5+,{z-1} and ^ { z - 1 } , gm,m{z - 1} respetively and satisfy the 
following equations 

(5.20) B.M. + NiAi = / , , 

A2N2 + M 2 B 2 = I m , 

(5.21) A2Mt = M 2 A ! , 

B,N2 - A t A , 

(5.22) M 1 1 = A : 0 , M . iQ+ = [ M n M 1 2-|, 

| _ M 2 1 M 2 2J 

!Vii = - " % . N,F+ =[Nn Ní2] 

and subject to 

(5.23) U = M 2 — 

Po 

belongs to 5m, i [ z _ 1 ] -

The optimal controller is not unique, in general, and all optimal controllers are 

given as minimal realizations of 

R = M.A tr1 = 7 V 7 1 M t . 
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Moreover, U is given by (5.23) and 

E = Y°f~ , 

fcmin = 1 + dY° + df~ . 

Proof. The error is given as 

E = KW/E = (I1-K1)W. 

To guarantee a stable closed-loop system we have to set 

/ , - _ ! = !VlAl , 

where TV. e ^ , { z - 1 } . If follows that 

II •'V12j E = N,At
 Q = N,- = [Nit N12] !_-J = Nlt

 f— , 
P Po Po Po 

where 
NtF

+ = [7VU. iV12] 
and 

iVu.6afi.il-~1}. Ar12_af,Vi{-'1}-

Since the error sequence is to vanish in a minimum time and thereafter, E must be 
a matrix polynomial in 3f.,i[z_1]- Therefore, 

(5.24) Nlt=Yp0, 

where Ye 3.,i[z -1] is a matrix polynomial to be specified later. This choice yields 
the error 

(5.25) E=Yf~ . 

The error is also given as 
E = W - KtW 

and, in order to guarantee a stable system, we have to set 

A"t = JJ.Afi 
where Mt e g+ .{z"1}. Then 

(5.26) PE=Q~ 5 l M l Q = 6 ~ t B l 1 °- M l 2 + ['"I = 2 ~ B " M » < " -
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where 

M<Q+ = T M M .M. 
M 9 

řiß+ = [ м и 

Lм2 1 

and M n e ^ { z J} , M 1 2 6 g + i - i { z X} - M 2 i e 5m-r,i{z J} , and M22 e 

e ^ - r . r - i ^ 1 } . 

The £• is a matrix polynomial whenever pE is so. It follows that B11M11q~ must 
be a matrix polynomial, too. This is effected by the choice 

(5.27) MX1=X, 

where X e 5 r , i [ z _ 1 ] is an unspecified matrix polynomial as yet. 

In fact, substituting (5.25) into (5.26) we end up with equation (5.19) coupling 
the X and Y 

To guarantee the closed-loop system stability the Mt and At. must satisfy the 
equation 

B1M1 + NtA, = J, 

in addition to (5.24) and (5.27), see Theorem 4.5. However, we must also solve the 
equation 

A2At2 + M2B2 = /,„ 

for M2 6 5m,i{z_1} and At2 e ' g f ^ l z - 1 } and in order that the four matrices may 
be properly related, they must further satisfy the mutual relations 

A2M1~M2Al, 

B,N2 -NXB2. 

We must take, therefore, only those solutions of equation (5.19) that make the 
above specified M 1 ; Nt and M2 , At2 exist. Further, we must take only those solutions 
which make the control sequence 

U = KWIVW = A2Mt 0- - M2AX 9L = M2^-
P P Po 

finite, as required. And within this class we must further confine ourselves to those 
solutions which minimize the degree of E. Therefore, in view of (5.25), equation 
(5.19) is to be solved for a solution X°, Y° such that 3Y° — min subject to all stability 
and finiteness requirements. 
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All optimal controllers are then obtained by (4.66) as minimal realization of 

R = M2Atr1 =N2

1M1, 

where Mu Nt and M2,N2 satisfy (5.20), (5.21), and (5.22). The optimal performance 
measure becomes 

femin = 1 + dY° + 8f~ 

in view of (5.25). Since it is assumed that z~1 |B1 we always have Y° =j= 0. 

Example 5.5 Let the system over the field K valuated by (2.25) be given as a minimal realiza­
tion of 

r,-- o -I 

5 _ L Q z--(i - z-1)2] _ rz-1 o i r i - z ' o r 
l - z - 1 Lo z- l̂-z-^JLo lj 

id solve problem (5.3) for the reference sequence 

y - E ' - ' - _ . 
l - z " 1 

Closed-loop stability is guaranteed by solving equations (5.20) and (5.21). They give 

Af. = n + ( i -z-')tlt t12-\, 
L - ( 1 - z - > 2 1 -v22\ 

Nt = p - z~Htl -z-H12 1, 

L z - ^ l - z - 1 ) ^ l + z - ^ l - z - 1 ) ^ 

n - z - 1 ^ -z-\i-z-i)tl2 l , 

L z-h2t l + z-\l~z-')v22\ 

r i + ( l - z - ' ) r n {l-z^)t12l 

L -"21 -v22j 

УV, = Г1 -

M , = 

for arbitrary tijt vtJ e 9t + {z x } , similarly to Example 4.11. 

We compute 

0 = 

F = 

n -i. e*-n oi, er = n i, 
L(i-z-)2J L(i-z-')2iJ L(i-z-)2J 

«- = 1 , Г = 1, p 0 = 1 
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and solve equation (5.19), which is 

[o Z-ҶI-Z-4J 
X + Y(l - z" 1) = Г 1 

L(i - z - 1 ) 2 ! 

The general solution is obtained as 

x = |- l + a-z- 1)^-], Y=ri-z-ir1i 
L-i + 'a J h-z-H2] 

for arbitrary tv t2 e SR[z-1], see Example 3.6. 
Now we have to satisfy equations (5.22), which are 

1 + (1 - z " 1 ) fn + (1 - z - 1 ) 2 f12 _ 1 + (1 - z - 1 ) f. , 

- ( l - z - 1 ) r 2 1 - ( l - z - 1 ) 2 » 2 2 = - l + t 2 , 

l _ z - l , 1 1 _ 2 - 1 ( l -Z~1)tl2 = l ~Z-Ht, 

1 _ z - l + 2 - l ( l _ z - l ) „ 2 1 + z - l ( l _ z - l ) 2 „ 2 2 _ 1 _ z - l , 2 . 

It follows that 

(5.28) fn + ( 1 - z - 1 ) ^ , = í l f 

1 _ ( i _ z - i ) „ 2 1 _ ( l _ z - i ) 2 „ 2 2 = ř 2 . 

At this stage we should take f., /2 so as to make 8Y== min. The choice t1 = Q,t2 = Q totally 
minimizes 8Y, but it does not satisfy the second equation (5.28). Hence S F = min subject to 
(5.28) is obtained when setting r. = T0, t2 = 1, r 0 e 9. arbitrary. Then 

x° =r(i + T0)-T0z-n, Y° = n - T p + т ^ - т ^ - п , Y° = п - т0z-л 

and 

yields 

-11 = т 0 - ( 1 - z x ) ř 1 2 , 

r 2 1 = - ( 1 - z _ 1 ) » 2 2 

[ 
(5.29) Af. = f (1 + т0) - тoz"1 - (1 - z" 1 ) 2 f12 f 1 2l , 

- « 2 2 J ( 1 - z - 1 ) ^ 

ЛГ, = f l - т o z - 1 + z - Ҷ l - z - 1 ) f 1 f 1 - T o Z - ^ + z - 1 

L-2-Ҷ1-Z-1)2,, 
-z-Hí2 - | , 

1 + z-Ҷl - z - ł ) i > 2 2 J 
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N2 = Г 1 - тoz-1 + z-Ҷl - z " 1 ) ^ -z-Ҷl - z->)tl2 1 , 
L-Z-Ҷl-Z- ł)« a a 1 + - - Ҷ - - - - > 2 . J 

M2 = Г (1 + т0) - тoz-1 - (1 - z-1)2 Г12 (1 - z-1) řŁ2-| . 
L (1 -z~г)v22 -v22 J 

Since the control sequence 

U=M2Г1 1 - Г(l + т0) - Toz-П 

is finite, as required, all optimal controllers are given as minimal realizations of 

R = M2N^1 = N2

lMv, 

where Mt, Nt and M2, N2 are given by (5.29). 
The resulting error is 

£•= r i - T n z - n , fcmin = 2 . 

Б-ÍT 
Example 5.6. Given a minimal realization of 

over 9. valuated by (2.25), solve problem (5.3) for the reference sequence 

To make the closed-loop system stable, we solve the equations 

Vz~l~\Mt + At, r i - z-1 o] r io"i , 

U- 2 J L - z - L i J LoiJ 
[ l - z - ^ ^ + M.rz-H-p], 

[1 - z~1~\M1 =M2T1 - z"1 01, 

L - z - 1 iJ 
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They yield the general solutions 

^ - . [ l + t l - z - 1 ) * . . - * - 1 * . . * „ ] , 

N, = rt = n -z~%t -z-%2 i , 

U " 1 - z- 2 r n 1 - z-2r1 2J 

N2 = 1 - z ' 1 ^ , 

M ^ t l + C l - z - 1 ) ^ (1-z-1)^,] 
for arbitrary r u , r 1 2 e SR + {z J } . 

Equation (5.19) becomes 

and it has the general solution 

x = - l + f,, Y= n 

[::;]—[-::;] 

L z - ' + z - 2 - г - » ( , J 

for any tx e SK[z * ] . 

Now we are to satisfy equations (5.22), i.e. 

l _ z - l + ( l _ z - l ) 2 . u + z - 2 f i 2 = _ l + h 

and 

(1 _ z - l ) 2 _ z - l ( l _ 2 - l ) 2 ^ _ 2 - 3 , u _ ! _ z - l f i > 

z - l _ 2 - 2 + 2 - 3 _ z - 2 ( l _ z - l ) 2 ^ _ z-4fi2 _ z - l + z - 2 _ z - 2 h _ 

They necessitate the choice 

( 1 _ z - i ) 2 , l l + - - - , „ _ - - • - 2 + t.,' 

where fj is to be taken such that d y = min. 

It follows that fj = 1, and 

f n = - 1 - z " 1 + z~2t 

f12 = - 1 + z - i - ( 1 _ _ - - ) - , 
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for arbitrary te 5, + {z ^ .Therefore, 

X0 = 0 , У0 = "ľ~: : ; ] 
M. = [z-1 + z- 'tt - z^1) r -(1 - z" 1) - (1 - z" 1 ) 2 f] , 

AT. = p + z" 1 + z~2 - z~3t z" 1 - z" 2 + z~3(l - z-'ft 1 , 
[ 2 "1 + 2-2 + Z"3 _ z~4, l + z~2 _ z -3 + z -2( t _ z-l)2 J 

7V2 = 1 + z " 1 + z " 2 - z~ 3 f , 

M 2 = [ z " 2 + z ~ 2 ( l - z " ' ) f - ( 1 - z " 1 ) 2 - ( 1 - z " 1 ) 3 * ] . 

The optimal controllers are given by 

R = M2Nil = N^'M, , 

with the matrices Ml, Ni and M2, N2 given above. 
The optimal control is 

U=[l-z-1][0]=0 

and the error 

E = 

R = [0 0] . 

is not acceptable, since it does not stabilize the closed-loop system. 

Example 5.7. It is important that both Sf and ^ be minimal realizations of their transfer 
function matrices. This example is to illustrate what might happen if this assumption is violated. 

Consider again the problem solved in Example 5.6 and let the y be realized as {A, B, C, D}, 
where 

A = 

C = 

"0 1 0" , в = "0" 

0 1 0 1 
0 0 1 1 

["0 0 11, D 

Li o oj 

This is an elementwise realization of S, see Fig. 11. 
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Further choose t = 0 in (5.29). Then the controller is 

(5.30) J-Eil1 - 1 + 2~J 
V ' 1 + z ^ + z - 2 

Fig. 11. An elementwise realization of 5 
in Example 5.7. 

and let it be realized as {F, G, H, J}, where 

F = 
(5.31) [-.-!]'G -[-l-î] 

н = [1 0] , J = [0 - 1 ] . 

This is a minimal realization of R, see Fig. 12. 

Fig. 12. A minimal realization of R 
in Example 5.7. 

Then the characteristic polynomial of the closed-loop system becomes 

Є = det (zlп+p - K) = det 

= z 5 - z 4 - 4z 2 + 2 

" z - 1 0 0 0 

- 1 z - . l 0 - ľ 0 
- 1 0 z - 1 - 1 0 

2 0 1 z - 1 
- 1 0 - 1 1 z + 1 

and it is not stable. 
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The trouble is due to a nonminimal realization of S. A nonminimal realization of R can cause 
the same sort of trouble. Consider a minimal realization (A, B, C, D} of S, where 

(5.32) 
A = 

C = 
GГ 
[.;]•D 

Fig. 13. A minima! realization of 5 in Example 5.7. 

see Fig. 13, and let the St in (5.30) be realized as {F, G, H, F} with 

F = 

H = [0 1 1 2 ] , 

This is an element wise realization, see Fig. 14. 

0 1 0 0 , G = "0 0 
1 - 1 0 0 1 0 
0 0 0 1 0 0 
0 0 - 1 1 0 1 

J = [ 0 -1] 

Fig. 14. An elementwise realization of 
in Example 5.7. 

Then the characteristic polynomial of the closed-loop system becomes 

c = det (zln+p - K) = det Z - 1 0 0 0 0 
0 z 0 - 1 - 1 - 2 
0 0 z - 1 0 0 
1 0 1 z + 1 0 0 
0 0 0 0 z - 1 
0 1 0 0 1 Z + 1 

= z ( z 2 + z + 1) ( z 3 + z 2 + 3z + 2) 

and it is not stable, either. 
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On the other hand, taking the minimal realization (5.32) of Sf and the minimal realization 
(5.31) of dt, the characteristic polynomial becomes 3 = z* and it can be computed via Theorem 
4.1. Its stability is guaranteed by the method of synthesis. 

Example 5.8. Consider the system Sf described by the infinite set of equations 

x *+i . i = **,i-i + "*,., xk,-i — o> 

yk.i =**. i> K 1 = 0,1,2 

over the field 31 valuated by (2.24). This is an infinite dimensional system over 3t. 

To simplify its analysis, let us view it as a system over g = 3t{iv~1}, the field of rational 
functions over 31 in the indeterminate w>_1. Indeed, making the identifications 

xk = **.o + X/t.iW"1 + * M w ~ 2 + . . . e 5 , 

"* = "*.o + " * , i w _ 1 + ukiZw~2 + . . . e g , 

the system equations can be written as 

* * + ! = W~lxk + "*> 

yk = xk 

and the 5" has dimension 1 over 3,{w>-1}. 

The transfer function of Sf becomes 

(5.33) 
1 - w~xz-

by virtue of (2.1). The S is stable under the valuation (2.26), see Example 2.12, which is compatible 
with valuation (2.24). 

To illustrate how Theorem 5.2 works, consider problem (5.3) for a minimal realization of 
(5.33) and the reference sequence 

i 

W = 
1 - w-xz~x 

The stability equations (5.20) and (5.21) reduce to the equation 

z~1M+N(l-W-lZ-x) = l, 

which has a solution 

M e O f + { z - 1 } arbitrary, 

N . — \ - т - - ^ l — M . 
1 - w-xz~l 1 - w-xz~x 
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The optimality equation becomes 

z~xX + Y(l - w~1z~1) = 1 

and its general solution is 

X = w-1 + (1 - w-^-^t, 

Y = 1 - z'H 

for arbitrary t e g [ z - 1 ] . 

To minimize the degree of Y we set t = 0, i.e. 

X 0 = w- 1 , Y0 = 1 

and, by virtue of (5.22), we obtain 

M=w~1, N= 1 . 

Hence the optimal controller is given as a minimal realization of 

V? = — = w 
At 

and it yields 

U=W~1, E = l , fcmin=l. 

This control law over ^ { w - 1 } can be inplemented over 5R as shown in Fig. 15. 

n\K •«*> jrsiJu r~-{íP^HŽ}^^ 
\o %>J UW #> V 42 

Fig. 15. The optimal control system 
4,2 in Example 5.8. 

5.4. Least squares control problem 

Let 55 be a subfield of the field G of complex numbers valuated by (2.25) and write 

S= - = BiA2
1 = AlxB2, 

a 

rank Bt = rank B2 = r 
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and 
#1 = Bi Bx • 

By the definition of B~ in (2.30) we have 

B; = [B.H o], 

where B~t e S,,r[z_1], Oe g,;m_r[z_1] and rank B~v = r. 
We also write 

e = e + e _ , 
where 

Ô 

""[Г] 
with a є g l д [ z ł],oєg,_ L I Þ " 1 ] 

e* = 

and denote 

see Chapter 2. 
For convenience, let 

4 , Є __£. 
í> Po ' 

where (p0, F) = 1 . Write 
F = ғ+ғ~, 

where 
F " ti 

wiťhj~ єFltL\_z~ ^ O Є Ғ , . : мÞ" 1 ] ' 

j -

and denote 

= jo«" • 
Further, let 

вïi~'вu = rø*я'(вi *i)' 
and denote 

(5.34)"" ' d = dB-t - d(Blt)* . 

For notational convenience we shall denote 

(B^Y = H . 

Then we have the following result. 
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Theorem 5.3. Let % be a subfield of G valuated by (2.25). Then problem (5.4) 

has a solution if and only if the linear Diophantine equation 

(5.35) z-"H~'X + Ypfo = Brf'G*/o " 

has a solution X°, Y° such that dY° = min, matrices Mt, Nx and M2, N2 exist in 

^ . { z " 1 } , g + ,{z _ 1 } and ^ { z " 1 } , g ^ z - 1 } respectively and satisfy the equa­

tions 

(5.36) BXMX + ЛtiA! = / , , 

A2Лt2 + M2B2 = Im , 

(5.37) A2M, = M 2 A , , 

BXN2 =N,B2, 

(5.38) 
ям n j-~=x° , B+M1Ô

+=ГMI1 м12-j, 
|_M2 1 M 2 2 J 

5ľГ'!v„j-~ = YVo, л\ғ+ = [лt„. лt12], 
and 

(5.39) ғ 
u = м2 —, 

Po 

(5.40) E = Nx — 
Po 

belong to ^ . {z" " 1 } and 5^i{z _ 1 } respectively. 
The optimal controller is not unique, in general, and all optimal controllers 

are given as minimal realizations of 

R = M2NX

X = At2

_1Mj . 

Moreover, U is given by (5.39), E is given by (5.40) and also satisfies 

B\-1~'E=Y°^rz , ''" 

and "' '''"'" 

\\E\\?

min = <((H~ri Y°r'((H~')-i Y°)> + 

+ <PF='(/( - B^H-1^')-1 5",= ') W} . 
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Proof. In order to minimize \\E\\2 we shall assume that E is stable whereby 

\\E\\2 - <£='£> . 

Then we manipulate the expression (E='E} so as to make the minimizing choice of 
R obvious. 

Write 
E-iU-K^W. 

To guarantee a stable closed-loop system we have to set 

Kt = B^Mi , 
where Mt e g ^ z - 1 } . Then 

E-W- [Bu 0] B*Mt - l \ q ~ \ - W - B U M U -L , 
p L° J P 

where 

and 

Then 

ìtM,Q+ - ГMИ M 1 2 l 

Lм 2 1 M 2 2 J 

iVneař+ií-" 1 } . Af . jeS+i-t í-" 1 } . M ^ t r , . ^ ' } , 

M ^ e g ^ - ^ z - 1 } . 

(5.41) £•='£ = W='W- W='B^MSi -L _ 
P 

- V MZBtriT + ~ 1 A/r/Brr'BnMu i - = 
p P P 

= for')-1 Bfi"'^ ~ HMtI -L\ ' f'(H=')-1 Brr'W - M n
L + 

" + W='W - W='BslH-\H=')-1 BIC'W 

on completing the squares. Since the last two terms in (5.41) are independent of M u 

(and hence M t and, in turn, R) the expression (E='E} attains its minimum for the 
same controller R as the expression (E='E{) does, where 

Et = (H=')_1 BS='W - HMU $— . 
P 

*S2 



= 1 . 

Further observe that 

w-((*f)"'(*r 
because 

j - = ~j"~ = z-'-~f—f-~ = / - / - ~ 

f—f- zef~r~r r~r 

Therefore, 

*i T 1 = (II3')-1*rr ^ - M „ «: £ 
j p / p j 

-(fl-o-Brr'-iirn^i-H^ 
p l o J jo« 

= ( H = ' ) - 1 B 1 T ' ^ : - I I M 1 1 

Pjo P/< 

Using (2.28) and (5.34) we have 

(H--ri s-r = {H~r^B"', 

and hence 

ч fõ Q 
i 

p ľ ~<f 

£ľ 

(5.42) E f— _ (н~Гl вгГ'e*/o" ЯJ . J -
j z dPjo Pjo 

Now take the partial fraction expansion 

__\_Y_\i_____q_\ _ x_ + (H-')-1 Y 
z-"pjo" Pfo z-" 

of the first term on the right-hand side of (5.42). It follows that the X and Y are 
coupled by equation (5.35). 

Collecting the terms gives us 

(5.43) *C.ttL' + i , 
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where 

X HMtlf (5.44) A = 
Pf'o Pfo 

Hence, by virtue of (5.43), 

(-) ((*/-£)" («_£.. , 
(»-)-. n=Y(«-')-n, 

+ ,/!HZ£in-'A + ^. ,A___):_j: 
z " / / \ \ z 

Any solution of equation (5.35) can be written in the form 

(5.46) X = X° + D-'Tpfo , 

(5.47) > Y= Y° - z-dH~'D~1T 

by (1A9), where D e 3fr>I.[z
_1] is defined in (1.20) and Te gr?1[z_1] is arbitrary, and 

where 

(5.48) dY° < dz-dH~' . 

Substituting (5.47) into (5.45) we obtain 

. ^jr^ry fergyy + <(_-..)-' (_-.T)> _ 

- <(ű-ŁT)=' A> - ^ - ' ( D - ^ Г ) ) + <A = 'A> • 
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The key observation is that 

is divisible by z - 1 due to (5.48) and hence 

f^TV'r)) = o. 

ЄГГ'JЛ-^v.0. 

Therefore, 

( ^ T ^ f (£i7^-)) - <((H~ri naII-')-1 n> + 

+ <(A - D~xT)m'(A - D~xT)y. 

The first term on the right-hand side of the above equation cannot be affected by 
any choice of Af. j (and hence R). The best we can do to minimize 

(5.49) (KTTKr 

is to set A - D"1 T = 0. By virtue of (5.44) we obtain 

X HMuf~~ 
— V- -D~lT= 0 , 
No No 

i.e. 
X - D~xTpf~ =HMLJ-~ . 

But 
X - D~xTpfo = X ° 

by (5.46) and hence (5.49) is minimized by setting 

(5.50) HMuf-~=X°. 

It means that 

• IIEl2 = <£='£> 
is minimized by the same A / u . 
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The error becomes 

E~W-KxW=^-Ђ"M"ą~ 

_ (__ \i"\ _ _____il\ i l l _ l__ _ -»" ' ' 

by virtue of (5.50) and hence 

q-

(5.51) B-'E = 5 " £ I ° ~ z " ^ J_ _ yo 
Pj « jo 

on using (5.35). 
To guarantee stability of the closed-loop system, we have to set 

/. - jr. = /v._. 

for some iVj. e Sf^z - 1 } . The11 

(5.52) _V-? = BV'CI, - *i) W - _ „ " ' # . „ . - = 

iLoJ Bu'Nnrr^ = B;l~'Ni- = B;l~'[NlLNi2y 

Po Po Po J 

where 

AttE
+ = [.Vu W12] 

and !VU e g j ^ z - 1 } , JV12 e g/t.-i{z_1}- By comparison of (5.51) and (5.52) we 
get 

(5.53) B-'NLJ- = Y%. 

The matrices Ml and iVj. satisfy the equation 

BtM, + iV._. = I , . 

However, we must also solve the equation 

A2At2 + M2B2 = Im 
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for M 2 and N2, see Theorem 4.5, and satisfy the mutual relations 

A2Mj = M 2 A ! , 

B,N2 =NtB2. 

Since the M 1 ; Nt and M2 , At2 must be stable matrices, we must take only those 
solutions of equation (5.35) that, in addition to satisfying 3Y° < dz~dH~' and 
(5.50), (5.53), will make the Mu JV« and M2 , N2 stable. Further, both the resulting 
control sequence 

U = KW/UW = A2M, - i = M 2 A ! -? = M 2 — 
P P Po 

and the associated error sequence 

E = KW/BW = At.A. ̂  = At. — , 
P Po 

must also be stable. 

All optimal controllers are then obtained by (4.69) as minimal realizations of 

R = M2N~X = N2
iMl 

where M t , A\ and M2 , At2 satisfy (5.36), (5.37), and (5.38). 

The optimal performance measure becomes 

(5.54) \\E\\mm = <((//-')-' Y°)((H~rl Y°)> + 

+ (W-'iU - B^H-^H-')-1 B~C) W 

by taking (5.41) into account. Note that when r = / the B~t is invertible and, by 

definition, B^H-^H'r1 B~t" = -V T h e n (5-54) simplifies to 

WEW^^^H-TYr'^H-TY0)}-

Example 5.9. Consider a minimal realization of 

O = LQ ^ 1 J _ p " 1 Q i p - 2 - 1 0 V 
i - z-1 Lo z_lJ Lo i - -~l\ 
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over 5R and solve problem (5.4) for the reference sequence 

W 
_ П 

1 - z - 1 

To make the closed-loop system stable we solve equations (5.36) and (5.37), 

p r 1 o I Mi + 7v. p - z-1 o i = p 01 

Lo *--j Lo i - - - \ ] LoiJ 

r i - z-1 o i/v2 + M 2 r z - 1 o i = n oi 
Lo l l z - ' J lo z- 'J Lo i j 

r i - z _ 1 o " I M . = M 2 n - z _ 1 o i 
Lo i - Z -\J L° i - z _ i J 

TV2 = At, I V 1 0 1 . 

They give the general solutions 

M, = M 2 = Гl + 0 -z-1)^ {ì-z-')tt 

(1 - Z " 1 ) . , ! 1 + (1 - Z - ř 2 2J 

Лtt = Лt2 = Гl -П-z-Чц -z-Чl2~ 
L - Z " 1 ^ ! 1 - Z-Ч22_ 

for arbitrary ttJ e 5R + {z 1}. 

Now we compute 

B7, = Г-[ҐM-
B3! 

[Г? 

[Ґľ 

я = 

ß = 

ғ = 

ri oi, d = i, • 
LoiJ 

ira-
[fi]' 

H~' = 

ß + = 

ғ + = 

? • = ! , 

/ " - = ! , fo = 1 
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and solve the optimality equation (5.35) 

0 ~\X + Y(l - z" 1) = fz-1"] , 

which yields 

X = fl+(l-z- 1 ) ( l - |, Y=f - z - ' q 
Li + a - z - 1 ) ^ u - z - t j 

for arbitrary t v f2 e SK[z- J], The solution X°, Y° satisfying 8Y° < 1 is obtained when setting 
tt _ 0, f2 = 0. Then 

X0 = -и- Y0 = 

and equations (5.38) become 

z - 1 + z - 1 ( l - z - 1 ) r 1 I + ( l - z - 1 ) r 1 2 = l , 

1 + z - 1 ( l -z-i)t2l + ( 1 - z ' l ) t 2 2 = 1 

and 

They necessitate the choice 

z-' - z - 2 t 1 1 - z - % 2 = 0 . 

\-z-h2l -z-Utí = 1. 

til = »1 , tl.2 = 1 - Z"" '"! , 

*21 = »2» t22 = - Z _ 1 » 2 

for arbitrary vx, v2 e 9l + {z J } . 

Therefore, 

гi + a-z- 1 ) . , 
L (i-z-)«2 

Җ = M2 - fl + (1 - z"1) i>t 1 - z" 1 - z-Ҷl - z" 1) eЛ , 

1-z-Ҷl-z- vJ 

ІVX - ІV2 = f 1 - z~\\ - z " 1 -

- z " Ч 

1 - z-í-Л 
1 + z " 2 t j 

and all optimal controllers are given as minimal realizations of 

R = M2N~l = N2

lMt = 

1 + ( 1 _ z - i ) t , 1 + z - i t ) 2 i -

1 - z - y 

- °2 1 
1 - z - S 
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The resulting control is 

o=M, 
Po •13 

and the error 

_ = Лtt — = 

í>o Ш 
IlElliL = 0 + 1 = 1. 

Even if the system !? is a very simple diagonal system, the optimal strategy requires a controller 
that cannot be made diagonal for any choice of » t and v2. It follows that the optimal closed-loop 
system matrix Kl cannot be diagonalized, either. 

Example 5.10. Given a minimal realization of 

_ Ly_____j_____J _ p"1 ] ri _ r„.i _ 
5 - i-z-1 -_V-\--1<----1)JC 3 " 

"L->l2\(l-0 J Lo J 

over the field 9t, solve problem (5.4) for the reference sequence 

Z " 1 - 2 

The first equation (5.36) reads 

p-1 I M , +Atjri -z-1 o i ^ p °1 
Lv^z-^i-z-1)] L-v-\(----1) u Lo lj 

and it is equivalent to the set of polynomial equations 

z - 1 » » i , i i + » l , n ( l - z _ 1 ) = 1 > Z - 1 « 1 , 1 2 + "1,12 = 0 , 

» l , 2 l ( - - Z _ 1 ) = 0 , 1l,22 = 1 . 

M\ = [m1 ( 1 1 /Ml(l2]fl 

where 

L-V^O-z- iJ' 

1 = Г l ° 1 Г И 1 Д 1 "1 .12І • 

LV2U1-Z- 1 ) lJL«1.21 »1.22J 
лr, = 
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The solution is 

« i , n = 1 + (1 - Z _ 1 ) ^ u , m 1 1 2 = 0 + t12 

and 

« i , u = 1 - z~ltti , " i . i 2 = 0 - z _ 1 r 1 2 , 

" l ,21 = 0 > " l ,22 = 1 > 

that is, 

AT. = [1 + (1 - z-1) r.. - V2\ (l - z-1) r12 r I 2 ] , 

/V. = ri - z- ' r u -z-'r 1 2 "I 
L V 2 \ ( 1 - z - 1 ) - V - \ z - i ( l - z-i)txl 1 - V 2 \ z - ' ( 1 - z-i)tX2\ 

for any tlx, t12 e 9, + { z - 1 } . The second equation (5.36) becomes 

[ 1 - z - 1 ] ^ + M 2 r z - n = [i] ĽП 
and its solution is 

7V2 = 1 + z - l t u , 

M2 = [ l ~ ( l - z - 1 ) » 1 1 -»12] 

for any » 1 1, P 1 2 e 3f . + {z - 1 }. 

Mutual conditions (5.37) yield 

l-z^+{l-z-Jtlx-j2\{\-z-lftX2 

= 1 _ z - 1 _ ( 1 _ z - 1 ) 2 „ i i + v / 2 \ ( l - Z - 1 ) C l 2 

(1 - Z~1)t12 = - » 1 2 

and hence 

»U = - - l i , 

"12 = " ( I - Z " 1 ) ^ ^ . 

It follows that 

At2 = 1 - Z - ^ 1 1 ; 

M2 = [ l + ( l - z - 1 ) ^ 1 ( l - O ^ ] -
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Now compute 

Q = 

[U.j ð*=C-°] 
L(i-V2)( i - z- i)J' 

E = Г l - 2 

oп , ß* = гi i 
1_ Ь - z -

"1 01 

1 -V2 l j 

= 1 , 

j - = j o = l - z - 1 , p 0 = z - 1 - 2 , 

B n - p - 1 i , - j r r - i y 1 V2\(2~]-l)]. 

Lv^^a---1)-! 
H = z - 1 - 2 , H ~ ' = 1 - 2 Z - 1 , d = 1 

and solve equation (5.35), which is 

z - J ( l - 2 z " 1 ) X + Y(z-! - 2 ) ( 1 - z - 1 ) = 

= (-V2\ + ( l + 2 V 2 ) z - 1 - V 2 \ Z " 2 ) ( Z - 1 - l ) . 

We obtain 

X = 2 ^ 2 ( l - z - 1 ) + ( z - 1 - 2 ) ( l - z - 1 ) i l 

6 

Y= - — + 2 - ± - 2 V 2 - Z " 1 - z - ] ( l - 2z-1)f1 

V2 3 

for arbitrary ?j e SRfz"1]. The solution A-0, 7 ° with S 7 0 < 2 is 

X 0 = 2 ^ V - 2 ( l - z - 1 ) , Y o = _ ± +

 2 _ ^ l V 2 z - 1 

6 V ; ' V 2 3 

on setting tx = 0. 

Now we have to satisfy equations (5.38). Computing 

Mtl = [1 + ( 1 ~ z - l ) t l t + ( 1 - V 2 ) ( 1 -z-')ti2-\, 

Nn ^ n - z - 1 ^ - ( 1 - V-)-" 1 ' i2 ~ | , 

Ll - V2\ 2" 1 - V2\ - " ' ( I - z- 1) « u + (2 - V2\) z-^l - z- 1) *12J 
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we get 

(z-1 - 2 ) [1 + (1 - z'l)tLl + (1 - V2)( l - z~v)h2-\ (z"1 - 1) = 

^ ^ ^ ( 1 - z - 1 ) , 
6 v ' 

[ - V2\ + (3 + y/2) z - 1 - 2z - 2 + (2Z-1 - 5 z - 2 + 2z^3) tn + 

+ ((2 - 2 V 2 ) z " 1 - (5 - 5 , / 2 ) z - 2 + (2 - 2 J2) z"3) r l a ] = 

^ + ^ ± ^ 2 z - 1 V z - 1 - 2 ) . 
V'2 3 f 

It can be seen that these equations cannot be satisfied by any stable rational functions tl l and 
i22- Indeed, tn and/or tx2 would contain the factor 1 — z"1 . Therefore, our problem has no 
solution. 

Example 5.11. It is commonly asserted that when the system has poles on the stability boundary 
that are to be compensated in the least squares sence, the closed-loop system shown in Fig. 10 
cannot be stable but has itself the same poles. This example illustrates that it need not always 
be true. 

Consider a minimal realization of 

1 - z~> ' 

over SR and solve problem (5.4) for the reference sequence 

1 - 0-5Z"1 

w= 1 + 0-5z-J 

Solving the equation 

0 -5z" 2 M+ JV(1 - z'1) = 1 

we obtain 

M = 2 + (1 - z - 1 ) * , N = I + z'1 - 0-5z-2t 

for arbitrary te^lz'1}. 
Since 

Bn = z " 2 , B + = 0 - 5 , H = 1 , d = 2, 

Q* = 1 - 0-5Z-1 , F+ = 1 , Q+ = 1 - 0-5Z"1 , 

q- = 1 , / - = / " = 1 - z - i , p0 = 1 + 0-5Z-1 
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we have to solve the equation 

z~2X + 7(1 - z - 1 ) ^ + O-Sz-1) = (1 - 0-5z- 1 ) (z- 1 - l) 

and obtain 

X = -0-5(1 - z" 1) + (1 - z - 1 ) (1 + 0-5Z"1) v, 

7 = - ( 1 - z - ^ - z - 2 * ; 

for v e 9\[z-1]. The solution X°, Y° for which BY0 < 2 reads 

X° = -0-5(1 - z " 1 ) , 7 ° = - ( 1 - z - 1 ) 

and equations (5.38) become 

0-5[2 + (l - z'^tlil - 0 - 5 z - 1 ) ( z - 1 - 1 ) = -0-5(1 - z " 1 ) , 

[1 + z - 1 - 0-5Z"2.-] ( z - 1 - 1) = - ( 1 - z - 1 ) (1 + 0-5Z-1) . 

They yield 

1 - 0-5Z"1 

Then 

M = — J , 7 V = 1 + 0 ^ 
1 - 0-5Z"1 1 - 0-5Z"1 

and the optimal controller is unique and is given as a minimal realization of 

R= 1 

1 + 0-5Z-1 

The pseudocharacteristic polynomial of the closed-loop system then becomes 

C = (1 - z - x ) ( l + 0-5Z-1) + 0-5z-2 = 1 - 0-5Z-1 , 

which is stable. Further 

U= - l ~ Z - , £ = l - z - x , | |£| |2
in = 2 . 

1 +0 -5Z- 1 " " ' 

Example 5.12. Given a minimal realization of 

s = [z~2 z~3] = [z-
2 o]n -z -n- 1 

Б "П" 
194 



over 9?, solve problem (5.4) for the reference sequence 

2 + 2z-
W = 

2 - z ~ 2 

Equations (5.36) and (5.37) become 

[ z - 2 0 ] M t +Nt = 1, 

T - z - 1 " ] At2 + M 2 [ z ~ 2 z~ 3] = [ 1 0" 

and 

The solution is 

M, = 

Гl - z - П Лt2 + M 2 [ z - 2 z " 3 ] = Гl 01 

Гl - z - П M j = M 2 , 

Lo 1 J 

[ z - ^ O ^ У V . ^ І V ^ z - ^ z - 3 ] . 

1 = p - l ] ' !Vl = 1 - ^ ' l l , 

TI - z - 2 ř t l z " 1 - z - 3 ť l t l , M 2 p t l - z " 1 ^," ] 

L - Z~2Í2 1 1 - Z-2*2 1J L -2 J 

ЛГ, = 

for arbitrary fn. r 2 1 £ 5R + {z x}. 
The optimality equation (5.35) is 

the Solution being 

z~2X + Y(2 - z"2) = 2 + 2 z _ 1 , 

X = 1 + Z- 1 + ( 2 - z - 2 ) f , 

Y = 1 + Z " 1 - z~2t 

for any t e atrz-1]. To satisfy 3T° < 2 we have to set t = 0. Then 

X° = l + z - 1 , Y° = l + z - 1 

and relations (5.38) become 

r n ( 2 + 2Z"1) =- 1 + z - 1 , 

(1 - z - 4 t I ) ( 2 + 2z"1) = (l + z" 1 ) (2 - z - 2 ) . 
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They yield 

t n = 0 - 5 , 
that is, 

җ = Г0-5І, ЛГJL = 1 - 0-5z-2 , 

Г0-5 - z - 1 ŕ 2 1 l , Лt2 = Гl - 0-5z - 2 z - 1 - 0-5z - 3 l . 

L í2J L - - ^ i 1-z-Чi J 
M, = 

Therefore, the optimal controllers are given as minimal realizations of 

R = Г"":::] 
1 - 0-5z" 

y Г O - З - z ^ p + ̂ z-1
 E=í+Z-Íf 

L '2 J 2 - z - 2 £ L, = 2 . 

Note that the problem has a (stable) solution even though q = 2 + 2z . 

6. DECOUPLING A MULTIVARIABLE SYSTEM 

6.1. The inverse system 

Problems related to system invertibility are of basic importance in system theory. 
They have applications in system decoupling, decoding and signal recovering. 

We first recall several algebraic concepts. Given a field % and a matrix A e gm>m, 
the multiplicative inverse of A is defined as a matrix A-1 e g m m such that 

A-1A = AA-1 = / , „ . 

The inverse exists if and only if det A #= 0, or equivalently rank A = m, and it is 
unique. It can be computed as 

(6.i) -"-Trf 
det A 

where adj A is the adjoint of A. i.e. the matrix of g m m whose (i,j)-th element is the 
cofactor of the (j, i)-th element of A, see [12]. When A-1 exists, the A is said to be 
invertible in gm>m. 
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If A e (5,>m, we can define more general kind of inverses. A matrix fA e 5m,i s u c n 

that 
f AA = /,„ 

is called the left inverse of A, while a matrix Af e $mj such that 

AAt = / ; 

is the right inverse of A. 

The left inverse exists if and only if rank A = m and all left inverses are given as 

(6.2) fA = (CA)-1C, 

where C is a matrix in $ml such that the CA is invertible in gfm „• 

The right inverse exists if and only if rank A = / and all right inverses are given as 

(6.3) Af = 5 (AB)- 1 , 

where B is a matrix in ^ml such that the AB is invertible in g, r. 

When rank A = / = m, there is a unique inverse fA = Af = A-1. 

Given a matrix 

A = A0 + AiZ"1 + A2z"2 + ... e frnjz-1} , 

the multiplicative inverse of A is again a matrix A-1 e 5m ,m{z - 1} such that 

(6.4) A_1A = AA'1 =lm. 

By definition, the inverse exists if and only if A is a unit of 5,„,m{z -1}, that is, if and 
only if the A0 is invertible in gm>m. The inverse is unique and can be computed as 
shown in (6A). 

When A 6 5(,m{z-1}, the left inverse of A is a matrix fA e 3fmj{z-1} such that 

(6.5) fAA = /,„ , 

while the right inverse of A is a matrix Af e j5m;i{z -1} such that 

(6.6) AAf = I,. 

The left inverse exists if and only if the A0 is left invertible in gm>,. The left inverse 
is not unique and all left inverses are given by (6.2), where C e g m ,{z - 1} is such 
that the CA is invertible in 5m,m{z_1}- The right inverse exists if and only if the A0 

is right invertible in <$ml. The right inverse is not unique and all right inverses are 
given by (6.3), where B e g m , {z _ 1 } is such that the A J? is invertible in (5m,m{z -1}. 
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Of course, if rank A = I = m then | A = A\ = A~y and the inverse is unique. 
If I 4= m the existence of left inverse implies the nonexistence of right inverse, and 
vice versa. 

Somewhat limited interest is attached to this intuitive notion of inverse in the 
system theory, however, since in a great number of cases no such inversion exists. 
For instance, if the system contains a delay d > 0, its transfer function matrix has 
order d and the inverse in the above sense does not exist. In this case the inverse 
belongs to ~fm,i(z_1) rather that to Sm,i{z_1}> i-e- it i s not physically realizable. 
Greater generality is obtained by considering "delayed" inverses defined below. 

Given a system Sf over $f with impulse response matrix se ~fi,m{z1}- Then any 
system Sf\ over g whose impulse response matrix s: e ~fm,i{z1} satisfies 

(6.7) sis = diag {z~Ll, z~L\ ..., z-L™} 

for some nonnegative integers Lbi = 1, 2, ..., m, is called a delayed left inverse oiSf; 
any system Sf2 over $ whose impulse response matrix s2 e ~?m,({z_1} satisfies 

(6.8) ss2 = diag {z~Ri, z~R\ ..., z~R'} 

for some nonnegative integers Rj, j = 1, 2, ..., /, is called a delayed rihgt inverse 
oiSf. 

Clearly, then, the cascade Sf XS" acts as a pure delay of L ; time units in the i-th 
channel and the cascade ^ ^ 2 acts as a pure delay of Rj time units in the j- th channel. 
Otherwise speaking, the left inverse system is realized as a delayed left inverse system 
preceded by a bunch of L ; anticipators in the i-th channel, while the right inverse 
system is realized as a delayed right inverse system followed by a bunch of Rj anti­
cipators in the j-th channel. It follows that the original input or output can be reco­
vered by using the number of anticipators shown above. 

It becomes a question of practical importance and theoretical interest to find 
a delayed inverse system which minimizes the number of anticipators required. 
Such an inverse will be called the minimum-delay inverse. We shall see below that 
the smallest numbers Lx, L 2 , . . . , Lm, denoted lx, l2, ..., lm, are invariants of Sf with 
respect to left inversion and the smallest numbers Rx, R2, ..., Rx, denoted rlt r2,... 
..., rh are invariants of S? with respect to right inversion. They can be interpreted as 
the inherent delays associated with the system, i.e. as the number of delayors which 
no realizable left (right) inverse can remove from the i-th (j-th) channel. 

Write 

(6-9) s=Ar152egf1>m{z-1}, 

rank B2 = r . 
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Then, by the definition of B2 in (2.19), 

(6.10) B2 = ~B2i~\, 

where B 2 1 e i5,,B.[z~1], 0 e 5 i - r ,m[ z _ 1 ] . and rank B2 1 = r. 

If r = m, let 

(6.11) de tB 2 1 =z~ib20, 

where (z~d, b20) = 1 and let b2iJ, i, j = 1, 2 , . . . . m, be the elements of adj B 2 1 . 
Further let 

b2ttJ = z-dl-»b2,tJ, i,j = l , 2 , . . . , m , 

where (z-''2-''-', b2>y) = 1 and denote 

(6.12) z~d" = (z-"2"', _---•« ..., 2 - - - . - ) . 

That is, d2i is the greatest common delay of the i-th row of adj B2 1 . 

Write also 

(6.13) s = B 1 A 2 - 1 egf ( , m {z- 1 }, 

rank BY = r . 

Then, by the definition of B< in (2.19), 

(6.14) - i = [ - u 0 ] , 

where B n e j5 / > r [z _ 1 ] , 0 e gf />m_ r[z_1], and rank B n = r. 

If r = /.let 

(6.15) d e t B n = z~dbl0, 

where (z~d, b10) = 1 and let fr1>i;, .', 7 = 1, 2, ..., /, be the elements of adj B n . 
Further let 

-»i.« - -f"--'*-*_.« . W - 1 .2 , . . . , / , 

where (z~' l , w , b'1>u) = 1 and denote 

(6.16) z~d'J = (z~di-", z~'lM, ..., _--*•") . 

That is, c ĵ- is the greatest common delay of thej'-th column of adj B n . 
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Since det B u and det B21 are associates in g{z ' } , we have b10 = b20 up to units 
o f ^ z - 1 } . 

Theorem 6.1. Let ¥ be a (not necessarily minimal) realization of 

S=A-lB2e%,Jz~'}. 

Then a minimum-delay left inverse ¥t of ¥ exists if and only if 

(6.17) rankB2 = m . 

All minimum-delay left inverses are given as (not necessarily minimal) realiza­
tions of 

(6.18) 5 1 - . - L d i a g { _ L ^ , * -L. ]{^But]Alt 
D20 [Z Z ~ ) 

where T<= gm , . -m{z - 1} arbitrary. 

The inherent delays of ¥ with respect to left inversion are given as 

(6.19) l. = d-d2i, i = \,2,...,m. 

Proof . To prove (6.17), let ¥y be a minimum-delay left inverse of ¥, i.e. 

sis = d iag{z _ , 1 , z" ' 2 , ..., z~lm). 

Then rank s = m. Since rank s = rank Blt the necessity of (6.17) is apparent. 

The sufficiency of (6.17) will be proved by construction. Let 

rank B2(= rank B21) = m , 

then 

(ad jB 2 1 )B 2 1 = detfl2 1 

and 

v v d e t / j 2 i H;*o I • 1 l 

sis = — diag 1 —— , —— , . . . , —— 
b20 \z~d21 z~d22 z~i2-

on using (6.18) and (6.9), (6.10). Noting (6.11) we obtain 

s^diagj-^-, £^,...,±1-]; 
\z~d2' z~d22 z~d2-\ 

200 



hence y x is a delayed left inverse of $P for 

L; = d — d2i, i = 1, 2, ..., m . 

Actually, it is a minimum-delay left inverse by virtue of the definition of d2l and, 
therefore, 

li = d - d 2 i , i = 1, 2,..., m , 

are the inherent delays. • 

Theorem 6.2. Lef y be a (not necessarily minimal) realization of 

5 = B 1 A 2 - ' e ^ m { z - 1 } . 

Then a minimum-delay right inverse y2 of y exists if and only if 

(6.20) rank B, = /. 

A// minimum-delay right inverses are given as (not necessarily minimal) realiza­
tions of 

where Ve gm_,,{z"1} arbitrary. 

The inherent delays of y with respect to right inversion are given as 

(6.22) rj^d-du, 7 = L 2 , . . . , / . 

Proof . To prove (6.20), let y2 be a minimum-delay right inverse of y, i.e. 

ss2 = diag {z" r i, z" r 2 , ..., z" r '} . 

Then rank s = /. Since rank s = rank Bt, the necessity of (6.20) is apparent. 

The sufficiency of (6.20) will be proved by construction. Let 

rank Bj( = rank B u ) = /, 
then 

B u ( a d j B 1 I ) = - d e t B u 

and 
A- f - - 1 1 d e t B u 

s^2 - diag - — - , — - , . . . , - - I 
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on using (6.21) and (6.13), (6.14). Noting (6.15) we obtain 

ss2 = diag 

hence s2 is a delayed right inverse of s for 

Rj = d - du, j = 1,2, . . . , / . 

Actually, it is a minimum-delay right inverse by virtue of the definition of dtJ and, 
therefore, 

rj = d-d,J, j = 1 ,2 , . . . , / , 

are the inherent delays. • 
It is to be noted that if s is a square nonsingular matrix, the minimum-delay left 

inverse system exists if and only if the minimum-delay right inverse system exists and 
both inverse systems are unique; however, they may be different in general. If s is 
not a square matrix, the existence of minimum-delay left inverse implies the non­
existence of minimum-delay right inverse, and if either inverse system exists, it is not 
unique. 

Moreover, it is clear that lt = 0, i = 1, 2, ..., m, and r} = 0, j = 1, 1, ..., /, 
implies the existence of the "instantaneous" inverse defined in (6.4) or (6.5), (6.6). 

The following corollary may be useful. 

Corollary 6.1. Given an Se 5i,m{z_1}> where g is an arbitrary field with valua­
tion "V. Then the Sx, if it exists, is stable (with respect to f") if and only if b20 is stable 
and r e ^ , _ m { z " 1 } . Similarly, the S2, if it exists, is stable (with respect to f*) 
if and only if bl0 is stable and Ve S ^ - i ^ z - 1 } . 

/ / / = m, both s! and s2 are stable if and only if b10 (or b20) are stable. 

Proof . The proof is trivial in view of (6.18) and (6.21). If / = m, the matrices T 
in (6.18) and Vin (6.21) disappear. Note that b10 and b20 are associates in ^{z'1}. • 

It is of great importance in some applications to find a minimum-delay left or 
right inverse of minimal dimension. This may be a nontrivial problem when the 
inverse system is not unique. The explicit formulas (6.18) and (6.21) for the inverse 
systems are not convenient for systematic minimization of the system dimension. 
Instead, we shall employ the machinery of linear Diophantine equations. 

Theorem 6.3. Let S" be a realization of 

s = B1i2-1e3f ( jm{z-1}. 

Then a minimum-dimension minimum-delay left inverse S"x of £" is given as 
a minimal realization of 

s1=(^r1)^. 
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where X°, Y2 is a solution of the linear Diophantine equation 

(6.23) X, diag {z"2\ z"22, ..., zd2™} A2 - Y2z% = 0 

such that d d e t ^ = min subject to 

(6.24) d(adj X°) Y°2S8 det X° , 

X° and Y°2 left coprime . 

Proof. Write s = - M j 1 and 5, = Z r 1 ^ . Then 

s,s = X7 * Y2MJJ = diag ( 1 , 1 -1} -
(z z z "J 

= —diag{zdllzd22,...,zd2m} 

by (6.19) and hence Z l f Y2 is a solution of equation (6.23). This equation is to be 
solved for a solution X°, Y2 such that 

SSt = e det X? = min 

subject to physical realizability condition (6.24). • 

Theorem 6.4. Let Sf be a realization of 

s=i1-
152eg/;m{z-1}. 

Then a minimum-dimension minimum-delay right inverse Sp
2 of Sf is given as 

a minimal realization of 

S2=Y°(X°2)-
1, 

where X2, Y° is a solution of the linear Diophantine equation 

(6.25) Ax diag {zdl1, zd'2, ..., zdl'} X2 - zdB2Y^ = 0 

such that dde tX° — min subject to 

(6.26) eY°(adiX0
2)SddetX°2, 

X2 and Y° right coprime. 
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Proof . Write s = A\_1£2 and s2 = YxX2
l. Then 

S s 2 = Ai1B2YiX21 = diag f l 1 

= ~dmg{zdl\z'li\...,zdi<} 

by (6.22) and hence X2, Yt is a solution of equation (6.25). This equation is to be 
solved for a solution X2, Y° such that 

, dS2 = d det X°2 = min 

subject to physical realizability condition (6.26). D 

Equations (6.23) and (6.25) can be put to the unified form (1.5) by writing 

(6.27) Yfdiag {z"2i, zd2\ ..., z"2™} A2~] = 0 

L- î J 
and 

(6.28) [A \ diag {zdl\ zdl2, ..., zdu} - z d / i 2 ] X = 0 

respectively, where 

X = \X2-\, Y=[X1Y2]. m 
Then the results developed in Chapter 1 can be applied to solve these equations. 

It is to be noted that dimensions of &\ and 9'2 depend heavily on the numbers L ; 

and Rj. In Theorem 6.3 and Theorem 6.4 we assume that the inherent delays Z; and 
rj are used, i.e. only the minimum-delay inverses are desired. However, considering 
delayed inverses with L ; S: ?,- or Rj ^ r} may further reduce the inverse system 
dimension at the expense of increasing the delay. 

Moreover, the minimal-dimension inverse is not unique, in general. 

If we set 

Lx = L2 = ... = Lm= L 

or Rx = R2 = .. . = R", = R, 

we obtain the so called L-delay left inverse or R-delay right inverse. These special 
kinds of (nonminimum) delayed inverses have been extensively studied in [36; 52; 53]. 
The problem of minimal dimension of such inverses is solved in [36; 61]. 
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Example 6.1. Given a realization of 

s = 
[z -z - 2 J L-Z-3lJ [o _~2(l - z-2)J 

" [_-3 _"2(1 - z-)J [o \ J 
over 91, find minimum-delay left and right inverses. 

We shall first find the inherent delays of ST. Since 

Blt = ^ [ l z - 1 1, adjß21 = Гz-2(l-_--2) - z П , 
Lo z"2(l - z-2)J [o 1 J 

d e t ß 2 1 = z - 2 ( l - z - 2 ) , 

we have 
d = 2, 

«... = 1 , d22 = 0 

and hence the inherent delays of Sf with respect to left inversion are 

/, = i , r_ - 2 . 
Similarly, 

Bt1 ii = П 0 " ] , adjß21 = Г z " 2 ( 1 - z - 2 01, 

z-z- 2 ( l-z- 2 J L-z-3 ij 

d e t ß 2 1 = z ~ 2 ( l - z - 2 ) 

and 
d = 2 , 

_*„ = 2 , d12 = 0 

implies that the inherent delays of -^ with respect to right inversion are 

r, = 0 , r2 = 2 . 

Thus the the minimum-delay left inverse is a realization of 

s.= 
l _ 

1 - z 

Л 0 

0 1 
[f-^-ПU-î] 

_[_?____ 
1 - z 
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0 1 

by (6.18); the minimum-delay right inverse is a realization of 

*.=[;-f][-£(i-°!] 

1 - z - 2 

by (6.21) and both impulse responses are unique but different. 
If we choose L = L, = L2 = 2, .R = /Jt = R2 = 2, we would obtain 

1 - Z" 

5. = s2 = 

but this is nor a minimum-delay inverse. 

Example 6.2. Given a realization of 

' ( I - - " 1 ) " 

z —z 
- z " 3 1 

1 - Z" 

5 = L 
1 - z 

z - Ҷ l - z - 1 ) ' 
z- 2 

1 

" 0 0 1 - z" 1 

1 0 - z - Ҷ l - z " 1 ) 
0 1 - z~ 2 

[ 1 - z - 1 ] - 1 ^ 

over 3.. Find all minimum-delay left inverses and also a minimum-delay left inverse of minimal 
dimension. 

Since 
B21 = 1 , adj B 2 1 = 1 , det B 2 1 = 1 

we have 
d = 0, d2l=0, 1,=0. 

Thus all minimum-delay left inverses are given by 

S. = [1 г. т2] 0 0 1 - z - 1 

1 0 - z - Ҷ l - z - 1 ) 
0 1 - z - 2 

= [J, T2 ( l - « - - ) - * - - ( l - . , - « ) - , i - « " a - " J 

for arbitrary Tt, T2e ?ft{z~1}, and the inverses are instantaneous. 
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To minimize the degree of St we have to find appropriate Tx and T2. This can be done syste­
matically by using Theorem 6.3. Write 

s = 
N

 
ь-

- 
N

 1 
) 

"z - l l 
z 

Ў J 
z ( z - l ) 

"z - l l 
z 

Ў J 
Equation (6.23) becomes 

z(z- -1)1 
- ( z - - 1 ) 
- 1 
- z 2 

[ ф - i ) Г -

= 0, Y=[X, Y2], 

that is, 

and 

= 0 

Y = 

The general solution is 

0 0 - 1 0 
0 1 -(z - 1) 0 
1 0 z(z - 1) 0 
0 0 - z 2 1 

У = [ 0 f . t2 í 3 ] , 

Y. 

Y = \t2 tt - (z - 1) t, + z(z - 1) t2 - z% Z3] 

for arbitrary tt 6 9?[zi. 

It follows that 

Y2 . [/. -{z - 1) /. + z(z - 1) /2 - z2/3 /3] . 

The condition d det Xl = min calls for 

t2 = *2 * 0 , T2 6 9. . 
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Then the first condition (6.24) necessitates 

f. = T. 6 91 , t3 = T3 6 91 

and 

Therefore, 

-(z - 1) т. + z(z - 1) т2 - z 2 т 3 = т 4 . 

Tl = - T 2 , 

T 3 = T 2 , 

T 4 = T,. = - T 2 

and the minimum-dimension minimum-delay left inverse is given as a minimal realization of 

Sl = [ V r [ - T 2 - T 2 T 2 ] = [ - l - 1 1 ] . 

Note that the inverse is unique and 8St = 0. 

Of course, the existence of left inverse implies the nonexistence of right inverse of any kind. 

Example 6.3. Consider a system Sf over 3 2 given by 

= PQ] = м - ' S - Ľ J Ü » þ ] - i [ Ю ] 
z 

and find the minimum-dimension minimum-delay right inverse ^ 2 of Sf. 

Since 

s = [ Z " 1 o ] , 
we have 

B u = z _ 1 , adjJB u = l , det B u = z~l, 

d~\, du = 0 

and obtain 

r 1 = l . 

No realizable inverse can remove this inherent delay. 

To find a least dimension inverse, we solve equation (6.25). 

[z - z 0]X = 0, 

which is equivalent to 

[z 0 0] X = 0 
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and 

X = 1 1 0 
0 1 0 
0 0 1 

X . 

It follows that 

for any /,, t2e %2[z], and hence 

X = "0" , x = Һ 
tl Һ 
h_ Һ 

- * - - [ „!,, = [,]. 
To satisfy d det X2 = min, we set 

ti = T . e 3 2 , xx * 0 . 

Then physical realizability condition (6.26) necessitates dt2 g 5 ^ , i.e. t2 = x2 e 3 2 . As a result, 
the minimum-dimension minimum-delay right inverse is given as a minimal realization of 

s 9 = й[*'r13' Ss, = 0 

for arbitrary T S 3 2 - Note that the inverse of minimal dimension need not be unique. 

6.2. The decoupling problem 

A multivariable system is a collection of coupled subsystems. Thus a particular 
input component may influence all output components. It would certainly be con­

venient for control purposes if a particular input component effected just the corres­

ponding output component and all others left unaffected. This motivates the follow­

ing definition. 

(6.29) Stable decoupling problem 

Given a closed-loop system configuration shown in Fig. 16, where y is a minimal 

realization of Se ^hm{z"1} and g is an arbitrary field with valuation V. Consider 

the partition of the system output Y into I components 

У = 

Уi 
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and the corresponding partition of the reference input sequence 

W = 

Find a controller 01 which is a minimal realization of some 

such that the closed-loop system is stable (with respect to -f) and the j'-th reference 
input component w} does not affect the output components y{ for i 4= ;'. 

Fig. 16. Decoupled closed-loop system. 

Since 

Y= KXW, 

the stable decoupling problem calls for a diagonal matrix K1. In view of the ex­
pression 

Kx = SR(I, + SR)'1 

it is intuitively apparent that 01 must be a kind of right inverse of Sf so that Kt may 
be a diagonal matrix. This inverse will be more restricted, however, due to the require­
ment of closed-loop stability. 

Write 

s=B1A2-
1 = A r 1 B 2 6 g , > m { z - 1 } , 

where 

(6.30) 

and 

Si = [Bц 0] 

B ц Є ^ Д z " 1 ] , 

rank Bít = r. 

If r = I let fc, ( I / t ;",;' = 1,2,..., J, be the elements of adj B1V Further let 

bu = (bUij> bl,2j>---> bi,lj) 
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and denote 

(6.31) ^ l l l = b0j, j = 1 ,2 , . . . , / . 
bu 

That is, bu is a greatest common divisor of the 7-th column of adj B1V 

Similarly, let ai tJ, i,j = 1, 2, ..., /, be the elements of adj A,. Further let 

aU = (fll.H. « l , i2 , •••> fli.ii) 
and denote 

(6.32) ^Al = aoi< . = 1 , 2 , . . . , ' . 

That is, au is a greatest common divisor of the i-th row of adj At. 

Then we have the following result. 

Theorem 6.5. Problem (6.29) has a solution if and only i / rank Bt = I and the 
linear Diophantine equation 

(6.33) diag{&oi. •••, bol} Dx + Z>2diag{a01, ..., aol} = I, 

has a diagonal matrix solution D1e^i{z~1}, D2 e g^ ,{z - 1} such that matrices 
M i e ^ z " 1 } , lV.e^.fz-1} and M2 e g r ^ z - 1 } , At2 e g ^ z " 1 } exist and 
satisfy the equations 

(6.34) B1Ml + AtiAx = / , , 

A2At2 + M2B2 - /m , 

(6.35) A2Mt = M 2 A ! , 

BiiV- =A t xB 2 

and 

(6.36) M 1 1 = ( a d j B 1 1 ) d i a g { - l , — - U D . , 
t&n O12 bu) 

Nt = D 2 diag {— , - l , . . . , J - l ( a d j A 1 ) , 
t f l n a i2 flu) 

L*--J 
A- r

He8f , t ,{«- 1}, M a e t u l 2 " 1 } ' 

M, = 

where 
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The controller which stably decouples the closed-loop system is not unique and all 
such controllers are given as minimal realization of 

(6.37) R = M2N;1 = N2
1M1 . 

Moreover, 

(6.38) K, = d iag {b01, b02, ..., b0l} Z>! , 

/ , - K1 = D2 d iag {a01, a02, ..., a0l} . 

Proof . Necessity: Let the closed-loop system be decoupled and stable. Its stability 
implies, by Theorem 4.5, that matrices M1e%*il{z~1}, Nt e ^ { z - 1 } and M2 e 
£ 5m,i{z -1}, N2 e g + J z " 1 } exist and satisfy (6.34) and (6.35). It follows that 

J_i = B1M1 , 

h-Kt = NXA, . 

Write 

JT1 __ BlMt = [ B n 0] [ X r i = B n M n , Ш 
where fiueg,.[z x ] , rank B n = rank Bj = r and M n e 3v*,{z %}> M21e 
e I'm -r,i{z - 1}. Thus J_\ can be a diagonal matrix only if r = /, i.e. only if rank B x = J. 

Then B n e <3.,i[ z _ 1] is a nonsingular matrix and 

B n = d e t B 1 1 ( a d j B 1 1 ) - 1 . 

Hence the M. t must be of the form 

Mn = (adjBn)diag{~, -L,...,±lDl, 
It ' l l t>12 OllJ 

where J-^ 6 ^ { z - 1 } i s a diagonal matrix. It follows that Kt has the least possible 
predetermination 

J_"x = diag{b01,b02,...,b0l}D1 . 

The Kt being diagonal, the I, — Kt is also diagonal (and, of course, nonsingular). 

We can write 

A! = ( a d j A j J ^ d e t A i 
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and hence the Nt must be of the form 

N, = D2 diag i J - , J - , ..., —1 (adj A,) , 
l f l u a i2 «nj 

where D2 e $,*,{z_1} is a diagonal (and also nonsingular) matrix. It follows that 
/ , — Kx has the least possible predetermination 

J, - Jfj = D2 diag {a01, a02, ..., a0l} . 

We conclude that (6.33) and (6.36) hold. 

Sufficiency: Let rank flt = /. Further let matrices Mx e ^ , { z _ 1 } , At. 6 g ^ 2 ' 1 } 
and M 2 e g f + ( { z - 1 } , At2 e ^ . { z - 1 } and diagonal matrices J>x s g,+,{z -1}, Z>2 e 
e S(t!{z"1} exist and satisfy (6.33) through (6.36). 

By virtue of (6.34) and (6.35) the closed-loop system is stable and 

Kt = JJ.Af. , I,- Kx = NXAX . 

Now rank Bt = / implies that flu e 5 ,^ [z _ 1 ] is a nonsingular matrix and using 
(6.36) we obtain 

JST1 = B 1 1 M 1 1 = f l 1 1 ( a d j f l 1 1 ) d i a g j - i - , ~ , ..., ~] Z>. = 
O n ^12 M 

= diag{/301, b 0 2 , . . . , ft0,} Z>x , 

J, - Kt = NtAi = J>2 diag i—- , — , ..., — I (adj At) A% = 
l - H fl12 flllj 

= Z) 2 diag{a 0 1 , a 0 2 , . . . , a0,} . 

Thus the Jfj (and also J, — Kx) is a diagonal matrix, i.e. the closed-loop system is 
decoupled in addition to being stable. 

To find all controllers which stably decouple the closed-loop system, we shall 
apply (4.66) and write 

R = M2Atr1 = N2
1M, 

where M. , Nt and M2 , At2 are given by (6.33) through (6.36). • 

It is to be noted that diagonal matrices Dt e ^ { z - 1 } and D2 e ( ^ { z - 1 } exist 
and satisfy equation (6.33) if and only if 

(aoi, b0() = 1, / = 1 ,2 , . . . , / , 
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modulo units in 5 + {z 1}, that is, if and only if 

(a - , , 6o,) - 1 , i = l , 2 , . . . , Z , 

modulo units in t$f[z-1]. 

When I = m (the S is a square matrix) then _ t = B u , M. = M u and the first 
equation (6.34) is equivalent to equation (6.33) when relations (6.36) are taken into 
account. The decoupling controllers are then given simply as 

(6.39) R = MjAtr1 = A1MlAi1N;1 = 

= A2(adj _..) diag \ ~ , ..., - U diag j — , ..., —I _»t_»Jx . 
[pu -nJ ( a n OjJ 

When / 4= m we cannot avoid solving the first equation (6.34) because Dt specifies 
just the matrix M u , not the M 2 1 . The submatrix M 2 1 is determined solely by the 
stability considerations. 

Example 6.4. Given a minimal realization of 

[ z - 1 _--(! - z-1)2] 

c _ o __!___i£___j _ r-_i ^ - z_i)i r1 - z~l °T -
s- i-z-1 ~Lo ^ ( i - o J L o u " 

_ n - z - 1 - l + z - 1 l - 1 [ z - 1 o "I 

L° i J L° ^ ( i -OJ 
over the field 9, valuated by (2.25), find all decoupling controllers. 

We have 

r ank_ x = 2 , Blt = Bt, 

adj Bn = fz_1(l - z-1) - z - x ( l - z-1)] , det B u = z - 2 ( l - z"1) , 

L° z-1 J 
(6.40) bn = z'\i - z - 1 ) , b 1 2 = z - 1 , 

- 0 1 = Z _ 1 . *02 = Z _ 1 ( l - Z - 1 ) ' 

adj Ax = fl 1 - z _ 1 l , det A! = 1 - z _ 1 

and 

1JЛ.--Г1 1 - z - П , 

[ O l - z - j 

(6.41) a u = l , a 1 2 = l - z " 1 , 

a 0 1 = 1 - z" 1 , a 0 2 = 1 . 
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Equation (6.33) becomes 

[z" 1 0 l ^ + D . f l - z - 1 Ol = [l Ol 

Lo z - ^ l - z - 1 ) ] [O ij LH 
and its general solution for diagonal D^ and D2 is 

(6.42) Dt = 5.42) D. = [ 1 + ( 1 -z-%) 0 1 , D2 = [ 1 - z- 1 *, 0 1 

.0 f2J L° l - z - ^ l - z " 1 ) ^ ] 
for any tu f 2 e S + {z_ 1}. 

Since the S is a square matrix, the solution of the first equation (6.34) is obtained via (6.36) as 

M, = i - Г i + C i - z - Ч ř . - ( i - z - » ) * Л , 

x = Г l - z - ř l 1 - z - ^ - z - Ҷ l - z - ř Л . 
L0 1 - z - Ч l - z " 1 ) / , ] 

The second equation (6.34) becomes 

i !V2 + M 2 

and yields 

ГÌ - z - 1 0 l 7V2 + M 2 Г z " 1 o 1 = Гl o l 

L° -J L° --Ҷ--0J [o-J 

Гl + Z^Wц Z- 1 ! ) , , 1 , 

L Z - ^ 2 1 1 + Z-Ҷl - 2 - > 2 2 J 

Гl - ( 1 - z - гn - ť 1 2 l 
L - "гt -"гг j 

ЛГ, = 

м, = 

for arbitrary Vjj-e iR + {z J }. 

Mutual relations (6.35) then necessitate the choice 

»u = - t ! , «i2 = - ( l - z~1) + (1 - z - 1 ) 2 (t2 - r j , 

»21 = 0> «22 = " ' I . 

that is, 

M, = [J + (1 _ z - 1 ) ř l l - z - i . - í l - г - i ) - ^ - * , ) - ] . 

ІV, = Гl -n - z-- r. -z-^l - z-1) + z~\\ - z-J (t2 - r.)-|. 

Lo l - z - ^ l - z - 1 ) ^ J 

275 



Our problem has a solution and all decoupling controllers are given by (6.39) as minimal 
realizations of 

J? = [ I - z - 1 o][z~i(i _2-i) _--»(i ----)-irz--(i -z-1) o T 1 -
0 lJLo z-1 JLo z~l\ 

.n -z-1 oi-1 D&1 = p -(i - z-Tl-w1 . 

where Dj, and £>2 are given in (6.42) 
Then 

* . - - [ V - + z ' - - ( i - - - - ) . . 0 "I 

L° z ^ ( l - z - 1 ) r 2 J 
is indeed diagonal. 

Example 6.5. It should be noted that it may be impossible, in some cases, to make the de­
coupled system stable. To demonstrate this phenomenon, consider the system over SK valuated 
by (2.25) that is a minimal realization of 

[ z-1
 z

- i(i - z
- i n 

c - [z£l z - ^ l - z - 1 ) 2 ! _ [ z - 1 z-1(l - z-1)l [1 - z - 1 Ol-1 _ 

i - z - 1 - L- z _ 1 z_1(i - z_1)J L° u ~ 
_ [0-5(1 - z-1) -0-5(1 - z-1)"] -1 [ z - 1 0 I 

- [0-5 0-0 J Lo z-^l-z-^J-
We compute 

5 , i = n = [ z-1 z -^ l -z- 1 ) ! , ad jB^rz - 'H-z - 1 ) - z - ^ l - z - 1 ) ] , 

L---1--*(--oj k1 z_1 J 
rankB n = 2 , det B n = 2z~2(l - z - 1 ) , 

& n = Z - \ -«la-»-"" 1 , 

60 1 = 2 z - 1 ( l - z - 1 ) , b02 = 2 z - 1 ( l - z"1) 

and 

A! = [0-5(1 - z" 1) -0-5(1 - z - 1 ) ! , a d j A ! = [ 0-5 0-5(1 - z - 1 ) " ] , 

_0-5 0-5 L-0 ' 5 O'5!1 ~ Z_1)J 

d e t A ! = 0-5(1 - z " 1 ) , 

a u = 0-5, a12 = 0-5, 

a01 = 1 - z - 1 , a02 = 1 - z - 1 . 
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Since 

(a01, b01) - I - * - 1 , 

("02,^02) = 1 - z " 1 

are not units of 3t + { z - 1 } , equation (6.33) can have no solution. Therefore, the system cannot 
be stably decoupled. 

6.3. Decoupling and optimal control 

The ultimate purpose of decoupling a multivariable system is to simplify its control. 
It is often convenient in practice when an input component affects just the correspond­
ing output component and no others. Such a system, in fact, acts as the direct sum 
of single-input single-output subsystems. 

Given a system S? which is a minimal realization of 

S = B , A 2
1 = A r 1

J B 2 6 5 , > m {z- 1 } . 
Write 

Bx = [Bu 0] 
and let rank 5 X 1 = I. Denote 

bu = greatest common divisor of the j - th column of adj B l t , 

au = greatest common divisor of the i-th row of adj Ax 

and 
d e t B l t d e t A t 

b0j — —- , a0i . 
bu au 

Further let 
O , ^ , ^ " 1 } , D . e g ^ z " 1 } 

be diagonal matrices and 

A - i e & U - - 1 } . lV.eS.t.lz-1}, 

M.eZ^z-1}, i V k e K U . - 1 } 

be matrices satisfying the equations 

(6.43) BjM t +NtAi = J , , 

A27V2 + M2B2 = Im , 

A2MX = M2A2 , 

BXN2 =NtB2, 

(6.44) diag {bou ..., bol} Dt + D2 diag {a01. ..., a0,} = / , 
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and 

(6.45) M. = (adj B, .) diag J - L , ..., J_} ^ , 
(.bn t>uj 

At1 = Z) 2 diag{-L,. . . ,±}(adjA 1 )» 
l-ii -nJ 

where 

M, = i - [ м . Л . 

Lм 2 1 J 
All controllers 3ft, which stably decouple the closed-loop system are given by 

Theorem 6.5 as minimal realizations of 

(6.46) R = M2Nlr = N2 *M. . 

The degrees of freedom in the controllers 01 can be utilized for optimization. The 
problem is to find appropriate Dl and D2 so that an optimality criterion may be 
minimized. We denote 

(6.47) D . D J ^ d i a g J - i , - - , . . . , - - 1 , 
Ir* r2 ri\ 

where s( and ru i = 1, 2,..., /, are polynomials coprime in <5[z-1]. Then 

SR = B.A2 lM2Nil = BlA2

xAzMiA^)-N^ = J3. .M^A^iVr 1 = 

= diag I^ i - i , . . .>£<} 
l«oi t"i «oi r,J 

by (6.46), (6.43) and (6.45), (6.47). 

We have seen that the a0i and b0l need not be coprime polynomials. Thus denote 

-*- = - • , i = i , 2 , . . . , / , 
«0i «i 

after cancelling the common factors. In fact, only stable factors may cancel since 
otherwise the closed-loop system could not have been stably decoupled. Hence 

SR= diag {-!-- , . . . , - i - i 
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and 

K1 = sR(/; + sR)-1 = diag I b±S±-
[a.r, + I 

b,s, 

+ b^ѕ. atr, + b,st 

The above formulas can be interpreted as follows. The closed-loop system, as far 
as its input-output properties are concerned, acts as the direct sum of / single-input 
single-output closed-loop systems, each containing a virtual system S*\ to be controlled 
given by 

b, 
SІ = i = 1,2,....,/, 

and a virtual controller ^?; given by 

/г; = Î І , ì= 1,2, . . . , / . 

Therefore, the system Sf itself can be viewed as the direct sum of the virtual systems 
Sf i and the optimal control of the decoupled closed-loop system can be obtained by 
working separately on each 5^;. For this purpose the theory developed in [30; 31; 
32; 33; 34] can be used. 

It should be stressed that Sf can be viewed as the direct sum of the above virtual 
subsystems Sf\ only relative to the external properties of the closed-loop system. 
The internal behavior of the closed-loop system cannot be described by the virtual 
subsystems Sf't and the methods developed in Chapter 4 for general multivariable 
systems have to be applied. 

For example, the pseudocharacteristic polynomial c of the decoupled system is not 
equal to the product of the pseudocharacteristic polynomials ct of the individual 
virtual closed loops. Example: Given an $ valuated by "T and a minimal realization of 

s = [i - z-1 o " Г T Z _ 1 o o"| 

L° i - Z J L° z _ l ° J 
over %, then a minimal realization of 

R = t 0 
0 1 
1 t 

[ÍІГ 

stably decouples the closed-loop system for any stable (with respect to -f) polynomial 

i e g [ z - 1 ] . Indeed, 
Kt = Гz"1 0 1 

[0 z-J 
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and the decoupled system consists of two virtual systems with pseudocharacteristic 
polynomials ct = 1, c 2 = 1. 

The pseudocharacteristic polynomial c, however, is given by (4.26) as 

c = det 

[ І Î ] -
When synthesizing the optimal controls we need not know the pseudocharacteristic 

polynomial as such, it is sufficient to know that it is stable. 
The purpose of this section is to show that the decoupling imposes certain restric­

tions on the existence and attainable performance of the optimal controls and also 
to show how the optimal controller should be found. 

Given a reference input sequence 

W=^e%lA{z^}, 
V 

for the decoupling purposes we shall partition the Q as 

ß = 

9i 

and let 

Wtm
вJшîi, i = 1, 2, 

P Pi 

after cancelling the common factors, i.e. (pit qt) = I 

For convenience, let 

(a{,pi) = d,, i m 1,2,..., I, 

and write 
ai = al0di, 

Pi ~ diPiO • 

The error sequence E can be conformably partitioned as 

£ = 

s*s»w 

Єi 

Єl 

ýl_ 
/ / и \ 
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