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Table (2.31) becomes

1—w? 0
andsince 7 (—w )= o7 < 1 (recall that ¢ >> 1) we conclude that a is stable.

If & is a subfield of € valuated by (2.25), the crucial role plays the computation
of m*. The following algorithm is proposed in [47; 31]; there are many others [58].
Given a polynomial m & [z '] of degree n = 0, compute

mTm =52 ok Fyz by bz 2 P,y # 0

and set

9= 702" + 9,z D 4y
Perform the recurrent division

g=fiqx+ 71, O, <0fy, k=0,1,...

by fi, where
Jo=127%,
fe = dp_q, k=1,2,...
Then
limg, =¢q
ko

and if g € [z '], we have m* = q modulo a unit of Fz~']. If F is not topologically
complete it may happen that g does not belong to §[z~*] and, therefore, it cannot be
equal to m*.

Having computed ¢ via the above iterative technique, we can use the definition
of m* to take

_ - ~ m
m” =z (m,g"), m*=—
m

and thus avoid the computation of roots of polynomials at any stage of the synthesis
procedure.

Example 2.13. Consider
m=z"t—2z"2eq[z"1]

and use the iterative technique to compute m ™, m*, and m*.
We have
m m= -2z +5—2z"1



and hence
g=>52"1-2:"2,
Initializing with

we obtain after scaling
2
go=1-32"",

— 10_~1
g =1-357z"",
42_-1

g, =1—-3g52"",
170_-1

. g3 =1—355;72"",
etc. and, evidently *
q=1-05z"1.
It follows that
m~ =z"Yz7t - 05), m*=-2
modulo a unit of R{z~ '] and hence
m* = —2(1 - 052" =z"" -2,

When only the m* is required, we can compute

(1 —052)""m=m(l — 0:5z71) =4 =(-2)(-2)
and obtain

m* = ~2(1 — 05z )=zt -2,

Given a polynomial matrix over &, ,, the matrix factorizations can be reduced
to factorizations of invariant polynomials and the above procedure is still applicable.
Nevertheless, the following original algorithm for direct computation of M7 and
M3 is useful; there are many others [59; 60; 64].

Given a polynomial matrix M e §,,[z7!] of degree n = 0 and rank M = m,
compute

M=M=z + . +Tz+To+Tz7  + . 4+ T277, T,#0
and set

G=Toz™? + T z" "D ¢+ [,z7%,7

Perform the recurrent left division
(2.32) G=F 40, +Ry., OR ,<8F,, k=01,..,

by F, . where
Fio=1,2"",

Fip=00 -1, k=12,..
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Then
limQ, , =0,

k=
and if Q; € §,, .[z7], we have MY = E,Q,, whete E, is a unit of §,, .[z7'].
Similarly, given a polynomial matrix M e &,[z7"] of degree n =0 and
rank M = [, compute
MM'= = Az + ...+ Az + Ag + Ayz7" + .+ 4,270, A, 40
and set
L= Agz™? + Az @D 4 4+ Az7%,

Perform the recurrent right division

L= Qy4F2+ Ryys ORy < 0Fyy k=0,1,...

>

by F, ,, where
Fz,o =1;z77,

Fop = 0041, k=12,...
Then

lim QZ,k =0,
ko

and if Q, € §, [z~ 1], we have M} = Q,E,, where E, is a unit of & ,[z7*].
Unfortunately, no general proof of this algorithm is known at present. It is present-
ed here just as a conjecture backed by computational experience.

Example 2.14. Given

M= [z“ 271 — zz*)]

0 i1 —227Y)

over f[z™ 1], use the iterative technique to compute M¥ and M¥.

We have

M~™M=|1 1-2z71 =

1 -2z 2(1 —2z2)(1 —2z7%)
= 0 0lz+[1 17+]0 ~27]z""

-2 —4 110 0 -4

G=[1 17z +[0 —2]z"2%.

110 0 —4

Fl.0=[

and hence

Initializing with
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we obtain after scaling

Qo = [1 07+ [0 Jgi‘]z“,
2
01] fo-%
0., = [1 01+T0 —%‘]:’1,
o1] o -2
Q.= [1 07+Jo —fgg]z“l,
01] [o -2
- i 02 -
Q1,3:|:1 o]+[0 "16'8’14:|Z 1’
338
0 1] 10 —&3

etc. and evidently,

Q, =[107+[0 =15z =1 —1:5z71
01 0 —05 0 1-0-5z71].

The matrix E; can be computed as follows. Since

1 0 TMEME — 152717 =
—1:5z 1 —-05z 0 1 —05z""%
=[11}=71 0]t 1
15 1 =210 =21,

M¥=T1 1 I_I — 15z =J11-2z71¢
0 —-2110 I — 05271 0zt -2 |.

Similarly, we have

we obtain

MM'=

—2z7 46 -2z (1 - 22‘1)(] — 2:) B
[(1 — 2270 (1 = 2z) (1-2"Y)(1 - 22)]

-2 —2Tz+[651+[-2 -2zt

-2 =2 55 -2 =2

L=[65]z"t+[-2 —-27z"2.
55 -2 =2

i

and hence
Initializing with

we obtain after scaling

Qr0=[101+[0 -F]z"1,
01 0 -2
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0,y =[10]+]0 —ﬂz‘l,
LO 1_ I_0 _%%
Q=L 0T+T0 —%]z’l,
lo1f o -
Qs=[107+]0 —%] 27t

lo1] [0 -1

etc. and, evidently,

0,=T107+[0 —05]z"' =1 - 05zt
01 0 —05 01—05z1

The matrix E, can be computed as follows. Since

] .

1 =05z MM 0 =
01—05z"1 —05z 1 - 05z

g e

we obtain
ME=T1 =051 =27=T[1
01—05z"2]]0 =2 0
Example 2.15. Given

M = l:l 1 - 2‘2]632,2[2“

1 1

use the iterative technique to compute M}

Since

z7l -2

z7t 2

1],

M=M=[2 2272 =
2—z22 -2 43-z2

= 0 0]z2+[22]-[0
-1 -1 23 0
G=[227z"2+]0 -1z
23 0 -1
Fio=[10]z7%,
01

we get

Initializing with

—17z"
-1

-4

]

2
3
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we obtain after scaling

Q1,0= 10]-[0 —% Ziz,
1] [2 7]
O =1 0)-J0 —4]z"*
1) Lo 7o)
0, =[101+]0 —47z"2=[1 1-14%z"7],
[O ]] [0 0] [0 1 :I

an element of Q, ,[z7'1.

Observe that Qy , converges to Q; in a finite number of steps. This is due to the fact that
mp M’~M =1, a unit of Q{z~ 1.

Since
1 01 ' M~"M[11~1727"1 =
1—-13z221 01
=Mn0]= L1 =41,
o] L-r4llt 3
My=T1 =311 ~3z"2]=[13%-4z"2].
1 %]l01 14—14z72
To evaluate the performance of a least squares control for systems defined over

a subfield of € valuated by (2.25), we have to compute the quadratic norm || E||* of
the error sequence.

etc., that is,

we obtain

There is an algorithm [2, 3; 46] to compute the quadratic norm

Jel = <e=e> = (2} (2))

of a single real error. We state here without proof its generalization to errors defined
over an arbitrary subfield § of € valuated by (2.25).
Given polynomials a, be §[z], 0b < da = n,n 2 0, a being stable. Introduce
polynomials
Q=0 + Gz + .o+, 2" F,

b = Bo + BiaZ + oo + Buniz

which are defined recursively by

(2.33) 2y, =y — 20 g k=0,1,..,n—1,

Xy n—k

a,=a
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Therefore, the quadratic norm of a multivariable system error is the sum of the
quadratic norms of its single error components.

Example 2.16. Given the error sequence

z71 -2 1 -2z
E= —22'17—2 _ -2 -2z

over R, compute [|E %

We denote
e — 1 -2z —2 —}Z
YT T -2z
Table (2.31) becomes
-2 1
1 -2 -05
-15 0
Then table (2.35) for e, yields
-2 1
1 -2 =05
-15 0
-5 0
and
2 _1.5)2
e = (5 + 5T -1
Table (2.35) for e, yields
-2 =2
i -2 1
-3 0
-5 0
and
92 _2\2
et = (2 + 50) =4,
Therefore

JE2=1+4=5.
Example 2.17. Given the error
g 2= 051
z + 051

over ¥, the field of algebraic numbers, compute [|[E|%.
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Find a stable control sequence Ue &, ;{z7!} such that the error sequence E
vanishes in a minimum time k,;, and thereafter.

(3.2) Finite time optimal control problem.

Given a system S which is a (not necessarily minimal) realization of
B
S==eF.iz"'}, B+0
a

and a reference sequence
W= %s%}m{z‘l}, 0=+0.

Find a finite control equence Ue §,, [z "] such that the error sequence
E vanishes in a minimum time k_;, and thereafter.

(3.3) Least squares control problem.

Given a system S which is a (not necessarily minimal) realization of
S = ge’&,,m{z”}, B+0
and a reference sequence
W= %e Sole ), 040,

Find a stable control sequence Uei},:,l{z”} such that the quadratic norm
| E||* of the error sequence E is minimized.

It is to be noted that the control sequence is required to be stable in all control
problems. This is rather a strict assumption motivated by physical realizability of
the optimal control. However, an optimal control which is bounded instead of
stable may be well acceptable in the engineering practice. This is to be born in mind
when applying the synthesis procedures.

Even if these problems can be considered classical the author is not aware of any
solution of the open-loop optimal control problems in the literature. The only
exception is [60], where a restricted version of problem (3-3) is considered. The
open-loop optimal control problems for single-variable systems have been syste-
matically formulated and solved for the first time in [30; 31; 32; 33; 34; 35].
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3.2. Stable time optimal control problem

Let & be an arbitrary field with valuation ¥~ and write

B -
S===B,4;", rank B, =r,
a

(3.4) B, = By B} .
By the definition of By, see (2.19) and (2.30), we get
By = [Bi; 0],

where BT, € §;,[z7*], 0€ & m-,[z7"] and rank B}, = r.
Then we have the following result.

Theorem 3.1. Problem (3.1) has a solution if and only if the linear Diophantine
equation

(3.5) B, X +Yp=20Q
has a solution X°, Y° such that Y° = min subject to

(3.6) U = A4,(BY)"'[U,
23
belongs to ,, ,{z™'}, where
]
U1 = X_ s
14

U, € Fnraf{z'}

The optimal control is not unigue, in general, and all optimal controls are given
by (3.6). Moreover,
E=Y°
and
Kin = 0, Y°=0,

14+4dY°, Y°%0.
Proof. Write

E-w-su=2_Ba;v=2_[s; 0]Bf4;'U = 2 _ U,
P P p

Bf 47U = [U,
U,

where
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and
U e g’r,l{z_l} , Uye K’m—r,x{z_l} .

Since the error is to vanish in a finite time and thereafter, E must be a polynomial
matrix in §,,;[z7"], say Y. Therefore
- — pBL, U,
(3.7) v=2 _pru = 2Bl
r P
and since (p, @) = 1 up to a unit in F[z7 ], we must take

(3.8) - X Uy =—,

where X € §, ,[z7'] is a polynomial matrix to be specified.

In fact, the X and Y satisfy cquation (3.5) by virtue of (3.7) and (3.8). Among all
solutions of equation (3.5) we have to take only those which make the U stable and
within this class further those which minimize the degree of E. Therefore

U= AZ(B;')“[Ul],

U,

where

v, =X,

p
U, € §por1{z 7'} arbitrary but such that A,(BY) [ 0 Te F,, {z7'}
U,

and

E=7Y°,

the X°, Y° being a solution of equation (3.5) such that 8Y° = min among all solutions
yielding a stable U. Then

=0 if Y°=0,

‘min

1 4+ 0Y° otherwise.

The stability of U cannot be inferred until the general solution of equation (5) is
found. . . O

Example 3.1. Consider the system over the field 3 valuated by (2.25) which is a realization of

SJ_(Z’;(ZEXL_}CI]:[Z"O ][L—Zﬂ o]ﬂ’

1~z 0 z“l(l —Z‘l) 0 1
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the reference sequence

and solve problem (3.1).
We carry out factorization (3.4)

R ERR

By, = z ' o 5
0 z7'(1-—-z77)
equation (3.5) becomes

(3.9) [g'l 2—1(1 ) :-1)]){ Y-z = [1]

It is to be noted that the matrix

and since

By, 0 =[z""0 0
0 p 0 zY(t-z"YHo
0 0 11—zt

has the invariant polynomials 1, z7%(1 — z™ 1), z71(1 — z~ !) while the matrix

B, Q 2710 1
0 p 7 (t-z"H1
0

1—2z7t

O O n

has the invariant polynomials 1, z7*, z71(1 — z~1)2, Since they are not equal, the above matrices
are not associates and equation (3.9) has no solution by Theorem 1.1. Hence our problem has no
solution.

Example 3.2. Consider the system over the field R valuated by (2.25) which is a realization of

z z

5= L: i)“(1 ji‘)] _ [z:: 0] [(1) -z ?]1

the reference sequence

W B(l;:zz__:)]

and solve problem (3.1).
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Equation (3.5) now reads

(3.10) [i:; (;I:IX +Y(1 -2 = B(l ) 271)]

and it has a solution. We find

z7' 0 =t ol[z"'o
272 7! 27t o 27!

and, by Theorem 1.1, equation (3.10) is converted into the set of polynomial equations

7%+ (-2 =1,

z71%, + )72(1 - z_l) =2-—3z"1

X=T%7, Y=1 Ool[7%].
%2 1]l 7

Fi=1+(1 -2z, Jr=1-2z""1,

and

We obtain

T=—-1+(1=-zY1, §F=2-z2""1,

for arbitrary ¢, 2, € Rz '] and

S O R | 1

by (1.19).
All tentative controls have the form
1
-1 t
U, = il B B
1 -z t,

that is,

1

1

1 1—-z71 071,
[ L
1—-z! 0 111t

and no one is stable. We conclude that problem (3.1) has no solution in the sense of our definition.
However, the solution may be well acceptable in the enginnering practice because it is bounded.
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Example 3.3. Solve problem (3.1) for a realization of

IR N IR o

over the field R valuated by (2.25) and for the reference sequence

|
V2
-1
7t -2

We are to solve the equation

[f/_;\ - Z_l)]x + Yz - 2) 1

J2

-1

[T N TR ()

- equation (3.11) reduces to the set of polynomial equations

Since

1
275, 4 Pz —2) = —
1 .1( ) \/2

Faz7t = 2)'= z7t -2

and
X=[x], Y= [1 0]{71]-
NATUEERD R 1)
We obtain
1 .
5i=—+(z"' =21, = — —— —z ',
N ( Yo i 2/2 !
Ja=1
for arbitrary #(,1, € EY\‘[Z-'] and
i .
= + t(z7" —2),
CARGRRE
1 z7!
Y= —— | — td-
el I I |3
1+z7t

2
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The solution X°, Y° satisfying 8Y° = min reads

X° = e Yo=| - —

22 2V/2

1 +z7!

2
on setting t; = 0.
The control
- L1
2\/2 z7t -2

is optimal since it is stable. The associated error becomes

-
2,2

-1
3+ 4z

E =

and kg, = 2.

‘min
Example 3.4. Consider problem (3.1) for a realization of

s— [27'(z'~2) (-2 -2)] [-'=2 0] I:I —z7' 1 —2z7?

1—-2z1 1—z! —z71

over the field £ valuated by (2.25) and the reference sequence

We make decomposition (3.4)

Since rank B, = 1, we find

Thus equation (3.5) becomes

and its general solution obtains as
X=1+(1-2z"Yt,
Y=0-—1t
where 7 € [z~ '] arbitrary. The particular solution X°, ¥° satisfying 8¥° = min becomes

X°=1, Y°=0

72



and hence

All optimal controls are then

1 1
l—z 'l =z [z =2 0] |1 — ;-1 [1 1 -zt
U= 1 -1 -1 1 =557 -1 U,
—z -z 0 U, z7h =2 -z
for an arbitrary U, e 0¥ {z™'}; the control is not unique. The resulting error is unique and

E=0, kpy=0.

This nonuniqueness of the optimal control is due to the fact that / < m.

Example 3.5. Consider a system given by

z7t 27! A
S— I:O 21— 2270 — z'z)-l _

1—zt

) [(Z)*1 2**(1 — 27t z'z)]

1—-z
0
the reference sequence
1]
W= _
51

1 —

-z

1 _1)}

and solve problem (3.1).
We shall demonstrate the importance of the ground field §. First consider § = £ with valuation
(2.25); then factorization (3.4) yields

B =[z10 10
0 z7'(1-22"'-z"%)}j01

and equation (3.5) reads

I N

Evidently,
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and the optimal control

S 1[:211 .

0 1—-2z7! z

E=T[1 s kg = 3.
1+3z7" + 4272

Now consider § = R, again with valuation (2.25); then factorization (3.4) becomes

"l s vmen)lo - yme)

and equation (3.5) reads

[T L H

X° = 1

yields the error

Evidently,

and the optimal control

o T e ]

1—\/2 _
12V -2yt
\/2
_ b
- V2
1= (1= g2zt
E=1 , k
1 }__{'_\/‘2 z-t
J2

Therefore, a larger field gives more opportunity to improve the optimal control.

yields the error

min —

Example 3.6. This example illustrates that dY° is to be minimal among all solutions of (3.5)
yielding a stable U, not among all existing solutions.
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Let the system over the field R valuated by

. [01 2-1(1 — [z

1 -zt 0

the reference sequence by

(2.25) be given by

() 1—-z7t oYt
271 - z“):l [0 1] ’

, W= [(}‘ i',’)f]

and solve problem (3.1).
‘We have to solve the equation

IR

i.e. the set of polynomial equations

2R 4T

1-zt
Yl — 271 = [(11 i 71)2],
(1-z1=1

1= 2 E 4 Pl -z ) = (1 —z7Y,

where

7]

The general solution can be written as

, Y= [}71}
V2

CLPRE
QEREEON AR b

by (1.19). The solution X9, ¥© satisfying 8Y°

Xo=7 1
-1

on setting ; = 0, 7, = 0 but the control

-t
U= 1—-z'0
0 1

is not stable.

= min without any respect to U becomes

I

1 —z! 1 —-z7!
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However, all possible controls are given as

1+(1—z‘1)t1] L+ 1=z

U=[1wz*10:||:~1+r2 |_|=1+1

0 1 1 -z 1-z1

and they will be stable if and only if 7, = 1 a1 - zfl) t for any r € R[z~ h Therefore, the
solution X°, ¥ such that 2¥° = min subject to U stable becomes

X0 =T(1 + 1) — 1oz ], Y°=[1—r4z""
0 1 -zt

on setting t; = g, #; = 1 where 7, € R arbitraty. Then the optimal control is
(1 + 1) — roz"l:l

U- [1 -z! 0] [0 1 [(é + 7o) — zoz“l:]

0 1 1 -z

E=[1—-1z""], kyn=2.
1—-z*

Example 3.7. Given a system

and the resulting error

o [gl iﬁf(‘ — 2z ("t - 2)] _

1—z71

J ERRSTET Y PR s |

over the field ;R valuated by (2.25) and the reference sequence

JEE

B

solve problem (3.1). R
We find factorization (3.4)

By =[z"10 10 .
0 zM1-2"Y][0z70 =2

Then we are to solve the equation

R s

76




the solution being

LR
. - B] ) [gil (z)‘,l(l - 22‘1)] [11]

1)
for any ty, t, e Rz~ ). The solution X°, Y becomes

L L

on setting #; = 0,7, = 0.
The control

-1y -1 -1 l:l]
S P | S U B

is optimal since it is stable, and it yields the error

E=T17, kyn=1.
1

Note that the control sequence js finite, not only stable, even though Bf’ is not a unit.
Example 3.8. Given a realization of
s_ 27l 4 72
1 +z7t 4272
over the field 3, (with valuation (2.24), of course), solve problem (3.1) for the reference sequence
' W=1+2z"2%,
As no polynomial of 3,[z "1 is stable save the units in 32[27‘], we have
By =zt 4272,
Equation (3.5) then becomes

(F '+ X +Y=1+272

and its general solution is

X=0+1,

Y=1+4+z2~(z"" +2z"%1t
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for any ¢ 632[2”1]. Remember that all calculations have to be carried out in the modulo
2 arithmetics.
The solution X°, Y° satisfying 8Y° = min is, evidently,

X'=1, Y'=1+:z"!

on setting + = 1. Therefore, .
is the optimal control and
is the resulting error.

3.3, Finite time optimal control problem
Let & be an arbitrary field with valuation ¥ and write
S ===B,A;', rank B, =r.

By the definition of B, in (2.19) we get
B, =[B,, 0]

where By; € §,,[z7'], 0€ &, ,—,[z7"] and rank B, = r.
Then we have the following result.

Theorem 3.2. Problem (3.2) has a solution if and only if the linear Diophantine
equation

(312) B,X +Yp=2¢Q
has a solution X°, Y° such that 3Y°® = min subject to

(3.13) U=4,[U,
U,
belongs to ,, [z~ 1], where

" -
Uzle igvn—r,l{z 1} .
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The optimal control is not unique, in general, and all optimal controls are given
by (3.13). Moreover,

E=Y°
and
koin =0, Y® =0,
=1+9Y°, Y°%0.
Proof. Write
E= W—SU=4—2—.BIA2'1U=2—-[Blx 0]A2'1U=—Q-—B“U1,
14 p p
where
AU =TU,
H
and

U, e 8‘;—,1{2_1} , Uye %m—r,l{z_l} .
Since the error is to vanish in a finite time and thereafter, E must be a polynomial
matrix in &; ,[z71], say Y. Therefore
- pB
(3.14) y=2_p,u = 2=28ul
p p

and since (p, Q) = 1 up to a unit in F[z~*], we must take
(3.15) U ==,

where X e &, ;[z7*] is an unspecified polynomial matrix as yet.

In fact, the X and Y satisfy equation (3.12) by virtue of (3.14) and (3.15). Among
all solutions of equation (3.12) we have to take only those which make the U polyno-
mial and within the class only those which minimize the degree of E. Therefore

U= 4, U],
U,

where

0

v, =%,
p
U, € Fu—r1{z™'} arbitrary but such that 4,[0 e &, [z71]
U,
and
E=7Y°,
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where X°, Y s a solution of equation (3.12) such that 8Y® = min among all solutions
yielding a polynomial U. Then
K = O if YO =0,
=1+9Y° otherwise.

The finiteness of U cannot be inferred until the general solution of equation (3.12)
is found. [}

Example 3.9. Consider the system which is a realization of

- [Z:: 0_5] [(1) — _(i - (- 2-2)}—1

over the field R valuated by (2.25), the reference sequence

y. Lo

1—-2z72

and solve problem (3.2).
Equation (12) reads

(3.16) [z: (3_5];( +Y(1 =z = [(1)]

Write
z71 0 =1 0][zto :
z73 775 z72 1|0 z7°
then equation (3.16) reduces to the set of polynomial equations
2%+ (1 -z ) =1,
2% + Pl -z )= —272

B L)

The general solution obtains as

and

*i

F= 1+ -z, F=1-z"1,

fp=—1+(l=z2Yt,, Fp=—2z2=2z3~z7%- 275,
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where ¢, 1, € R[z" 1] arbitrary; hence

X=[ 17+[]0~2z7Y),
-1 t;
-1
Y= 1 -1z7" 0 t].
—z73 — 274 z73 270 |t
The particular solution XO, y° satisfying 2Y° = min is given as

X0=[ z7%], Y'=[1l+z!+z72
~1 0

on setting #; = —1 — z~1, 7, = 0. Then

and

0 1—z‘

- [1 —z (1= Y (- z~2)][ iz]l _ [_:]

is the unique optimal control, and it yields the error

E=[1 +z7t +z'2], Kpin = 3.
0

Example 3.10. Consider the Galois field § = 3,[z),24,4+, an algebraic extension of 3,
consisting of the elements {0, 1, ¢, ez}, where &3 = 1. The addition and multiplication tables are
given below.

b l 0 1 & ¢ [ 01 & £
0 0 1 & & 0] 00 0 0
1 1 0 & e 1| 01 ¢ ¢
£ a 2 0 1 € 0 e & 1
& £ ¢ 1 0 &2 — 2 1 e

The only valuation is the trivial one, see (2.24).

Given the system

z71 0
5= ezt ] [0 z7'][0 14 z71!
142zt ez [t +2z7t0
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and the reference sequence

v o]

14271
over the above defined field §, solve problem (3.2).
Equation (3.12) becomes

(3.17) [0 z“]X + Y1 +:z7Y) = [82]

2 -1 P

e? ez
0 z'7=J0 1710 ;
g2 ezt g2 ¢|]l0z7!

then equation (3.17) reduces to the set of polynomial equations

We write

L+t +z =0,

' + Pl +27 ) =

R N )

The general solution can be written as

and

xl=0+(1—2_1)t1, Ji=0-1,

B=e+(l—z"Vt, Fo=e~z"1

for arbitrary ¢, 2, € Flz~ 'Jand

X=[07+Tt (1 +271),
e t,
Y=[e7l-[0 z"7[¢7.
&% e? ez71 ||ty
The solution X°, ¥° satisfying 2¥° = min is obtained on setting ty =179, 1, =0, where 75 € §

arbitrary, and .
X% =[19 + 102717, Y°=T¢ .
e (1 - 7o)

The optimal control is not unique,

b P )

1+z710 14zt To + 1,27
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and it yields the error

E=T¢ , k= 1.
&*(1 — 7o)

Example 3.11. Consider once more the system given by

[z‘l 0
s=L 2 V=7

and the reference sequence

of Example 3.2 and solve problem (3.2).
All tentative controls have the form

-1 -

—z1
S DR S B B T i
1—zt 0 1]t

and it is easy to see that U is not a polynomial matrix regardless of #; and 7,. Therefore, problem
(3.2) has no solution at all.

Example 3.12. The method of the paper is general enough to effectively treat systems whose
transfer function matrix is singular. For example, let a system over the field it valuated by (2.24)
be given by

@19) L OV ) (et 2) 1
ol e

and solve problem (3.2) for the reference sequence

Since

we are to solve the equation
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We can write

and, hence, we obtain

where

The general solution is

=1+t =-2)t, F=-1-z"4

and
X=1+4z"1-2)),

Y=[~1]-[z"17¢
0 z71
for arbitrary r € R[z~ . Evidently,

X0=1, Y°=[-1
0

when one sets 7 = 0. Then

1
U1_271—2
and
L
o [A=29E" =2 -1z = 2| _ l—z“—UZ]
0 ito, U,

is the optimal control for any U, € R[z~ 1. The resulting error becomes
E=]~1
0

kmin =1.

and

Because of the singularity of By, the admissible reference sequences W for which the problem
has a solution given the system (3.18) are quite restricted. It can be shown using Theorem 1.1 that

o

p

>
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where a, b, p e X[z~ ! 1, the relation
plb—a

must hold.

Example 3.13. There is another sort of nonuniqueness of the optimal controls due to the internal
structure of the system.

Let the system over the field R valuated by (2.25) be given by
z7 M z7'=2) 0
S= —z‘l(l - z_l) z72 _
(1 -z Y=z -2)
=[ 7Yz - 2) z”] [(1 -z (' =2) (1 - z’l)]’1

__Z—l(l _ Z—J) Z—Z 0 _(1 _ Z_l)

T1-t

and the reference sequence by

find a solution to problem (3.2).
Equation (3.12) becomes

[l ey

Lo L

the above equation reduces to the set of polynomial equations

Writing

2% + 5,1 -z ) =05,

2725, + 5,1 —2z7Y) =205z

SR L

The general solution reads

F=05+(1-2zY1, §=05-2""1,

L=154+(1-z"t, Fo=2+157"=-z72

[
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forty,t, € ER[z“j arbitrary and
X =057+ [67(1 - 271,
15| |4
Y=T1 +2:""]-T z7'z"'=2) z72[+]-
1-5 +2z71 -z Y (1-z7Y) z7]|s
It can be seen that the solution X°, ¥° satisfying 2Y® = min is obtained by setting 1, =
= —1, = 1, 79 € N arbitrary, and

X° =T(0-5 + 1) — 10215
(15 — 1) + 10271

YOo[14(2+2):1 ],
15+@2+1)z!

Then neither the optimal control
(0*5 + 1) — 1oz !
U= L=zY(E1'-2) zz'(1- z'l)] |:(1~5 — 1) + TOZ_I] _
0 -—(1 - z"l) 1—-zt
=[—(t +2t9) + (2 + 274) 27 ¢
[—(1'5 - 10) — 1zt ]
nor the error
E=[1 +(2 + 215) 271
[1~5 +(2 + 1) z_‘]

is unique. All the errors give &.,;, = 2, however.

There are two typical solutions:
T, = —1 gives E=[1
15 +z71

and
1, = —2 gives E= [1 - 22“‘].

1-5

3.4. Least squares control problem

Let § be a subfield of the field € of complex numbers valuated by (2.25) and write

S=E=B1AZ_‘, rank B, =r,

a
(3.19) B, = B{B} .
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By the definition of By, see (2.19) and (2.30), we have

By =[B;, 0],
where B, € §,,[z7'], 0 & [z "] and rank By, = r.
Further let
(3‘20) BBy, = (fo)*:, (Bl—l)*
and denote
(3.21) d = 0B]; ~ d(Br)*-

For convenience, we shall use the notation
(Bl-l)* =g H .

Then we have the following result.

Theorem 3.3. Let § be a subfield of € valuated by (2.25). Then problem (3.3)
has a solution if and only if the linear Diophantine equation
(3.22) z79H~'X + Yp = B;;'0
has a solution X°, Y° such that 8Y° < 0z7*H"" and
(3.23) U= A,(B{)'[U,T,

U,
(3.24) E =W - B,U,
belong to F {z7'} and §;"\{z~'} respectively, where
H—IXO

U, ==
P

U, e %m-m{z_l} .

The optimal control is not unique, in general, and all optimal controls are given
by (3.23). Moreover, E is given by (3.24) and satisfies

3

(3.25) B E=Y";

also

1B = (™) YO ()Y + W (1 = BLH M) BT W
Proof. In order to minimize | E||? we shall assume that E is stable whereby

|E]? = <EZE).
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Then we will manipulate the expression {(E~'E) so as to make the minimizing choice
of U obvious.

Write
E=W~SU=W—[Bj,0] Bf4;'U = W — B,,U,,
where
B AU =[U,
o]
and
Ue %r,l{z_l} , Uye %m—m{z_l} .
Then

(326) ETE=W~'W - W= BL,U, — U’ Bi' W+ Ur' By BU, =
= ((H™')"* B{,”'W — HU,)™ (H*")"* B{,"'W — HU,) +
+W=W— W>B H Y(H™") *B;,'W.
Since the last two terms in (3.26) are independent of U, (and hence U), the expres-
sion (E~'E) attains its minimum for the same control sequence U as the expression
(ET'E,) does, where
E, =(H™')"'B{{'W — HU, .

Using (2.28) and (3.21) we have
) B

(327) (H:,)_l Bl_lsl **’?
and, therefore,
B ~n—1 —~r
(3.28) E, = M — HU, .
z”'p

Now take the partial fraction expansion
(B B X (H7)Y
2% ? 24

of the first term on the right-hand side of (3.28). It follows that the X and Y are
coupled by equation (3.22).
Collecting the terms gives us

H>) 'y
(3.29) E = (—z%— + A,
where
(3.30) A= X_ HU, .
) p
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Hence, by virtue of (3.29)

- (] ()
Y 4y e (D) aon

Any solution of equation (3.22) can be written in the form

(3.32) : X =X°+ D 'Ip,
(3.33) Y = Y° — 2 H™'DIT

by (1.19), where Te §, ,[z7"] is arbitrary and D e §, [z7'] is defined in (1.20),
and where

(3.34) BY° < 8zl

Substituting (3.33) into (3.31) we nbtain

= (R () - (5 -
(o (S v (5 )

=D 4> + <A=' (~—(Hw):: Y0)> —<ATDTIT) + <47 4> .

The key observation is that

((HN')_IX-(_):’ = (e~ =AYy~ 1 yO~

z—d

is divisible by z™* due to (3.34) and hence

(v

~r)=1 YOy =/
(=) 0=
z
Therefore,

CET'ED =((H)Y YO (H) YD + (4 - D'T)™ (4 — D™'T)>.

and
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The first term on the right-hand side above cannot be affected by any choice of U,.
The best we can do to minimize (E;’E,) is to set A — D™!T = 0. By virtue of
(3.30) we obtain

X _hu, -piT=0,
14
ie.
X — D 'Tp = pHU, .
But
(332) X ~ D7 1Tp = X°

by (3:32) and hence the <E['E, ) is minimized by setting
H™'x°
S

(3.35) U, =

It means that HE”2 = (E7'E) is minimized b); the same U, provided the E is stable.
Thus

U = 4,(B7)! [U]

Uf

is the optimal control provided it is stable. It follows that U, can be taken as an
arbitrary element of &, ,{z" '} but such that

AB) T 0 Tegm fz71 .
U,
We also have
JE G = <((H™) " YO) ™ (H™) 7 YO) + KW' (I = BRHTN(HT) ™ BiT) W)
by taking (3.26) into account.
Further
E = W—SU=-Q———BI]U1
p
and the error sequence F satisfies the relation
o~ B’ gy
B, 'E = LQ - BB U, =
P
B R
= '_IL_Q - Bll Bll -
p p p p
on using (3.35), (3.20), and (3.22).

H'X° B0 - z'HTX° YO

=Y°
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Since decomposition (3.20) is unique modulo a unitary element in §, ,, see [55; 64],
we have to show that the optimal control is independent of a particular choice of this
element. Indeed, let

H, = QH

also satisfies (3.20), where Q € §, , satisfies @Q = Q~'Q =1I,. Then H} ' = H™'Q™"
and we are to solve the equation

TUHTX, +Y,p = B[O
instead of (3.22). Since Q is a unit in &, ,[z7 1], we get

X,=(@)'Xx, v,=
where X, Y is a solution of (3.22). Therefore Y, = Y° and

_ HI'X° 3 H”Q“(Q”)'IXO
p p

U, =U. O

Example 3.14. Given the system which is a realization of

o [;(1 —227Y 2-1(1 - 22_1)] _

1—z!

=[z"1 0 1-zt 0 ot
z7M 1 - 2z71) 7M1 —2z71) |0 1—z1

over the field R, solve problem (3.3) for the reference sequence

We first find the decomposition (3.19)

i ST | P

By, =[z"} 0 , B =[zt 2t —27,
271 —227Y) 7M1 - 2277 0 z'-

H=[1 0 , HV =Tzt 1-2z7'], d=1.
z7l—2 z71-2 0 1 —2z71

and
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Then equation (3.22) reads

(3-36) [2‘2 z7I(1 - 22")]X +Y(1 -zt = [22*1 - 2].

0 2711 —2z71) z7t =2
We write
l:z'2 z 1 — 2z‘1)j| = [l 0] |:z"1 0 ] |:z‘1 1- 22"]
0 z7'(1-2z7Y) 1—2z"11]]10 2z (1—2z"Y][-12
and hence equation (3.36) is equivalent to the set of polynomial equations
2%+ F(l-z7 ) =227 -2,
271 = 2271 X, + Pl —z27Y) = =527 44272
by Theorem 1.1 and
X = l:z“‘ 1 - 22‘1:"1 [f,] Y= [1 0] [yl].
-12 X, 1 =221 1] |7,
The general solution can be written as
£,=0+(1—-2zYt, j=-2-2z"1,

=1+ —zY1,, Jo=-52"1 =222~z (1 -2z"") 1y

X=[-1+22""]+[2 -1+22"[1, 71U =277,
z7! 1 z7! t
Y=[-2 —~[z"* 0 t
-2 —z71 . 2z772 271 = 2271 2731 - 227 ] [ 1,

by (1.19). The particular solution X°, Y° for which oY% < 2is evidently obtained as

X°=717, Y°=[~2- z!
1 —2 —2z71

and

on setting £, = 1, 1, = 0.
Now we compute
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Hence

z7t -2

(-]
_ .1 _ -1
U= [1 z 0 ] v, 3 -z
1
and, by (3.25),
[ 23]
-1 -1 _ 911 [r_9 _ -1 9,1 _
E— z z 2 2—-z - »77”21.____W )
0 z7t -2 -2 =2zt z7t -2
Since both U and E are stable, the U qualifies as the optimal control and
|E|Zn=1+4=5.

For effective computation of HEH,Z“;,, see Example 2.16.

Example 3.15. Consider again the system

I ST i NS

over R, the reference sequence

and solve problem (3.3).
We compute factorization (3.19)

" Lo

Bi = [\/2\ z::(l ) 7_1)], B =[z7" VAT - 1)l

H=z1'-2, H"=1-2z"', d=1.

and

Then we are to solve the equation
1
z7 (1 =227 NX +¥Y(z1-2)=/2 -z,
(=227 X 4 Y6 =9 =2 - o

obtaining
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foranyte Eﬁ[z'l]. The particular solution Xx°, ¥O satisfying 8Y° < 2is obtained for # = 0 as

1

X°=0, Y°=——.
J2
‘Then the optimal control
U=0
yields the error
N 1
J2
-1
E =
z7t -2
and
lEf =t +3 =14

It is to be noted that problem (3.1) and problem (3.3) may have different solutions,
even if the system enjoys the “minimum-phase” property. Compare the above result
with Example 3.3.

Example 3.16. Given a realization of

S=[1—z’1 1—271]=[1—~z“1 q z7l—2 —17?
0 1

z7t -2

over the field R, solve problem (3.3) for the reference sequence

1
W=

‘We compute decomposition (3.19)
Bl=[1—z’1 0] 10
01
and hence
By =1—2z7%, Bf{":z“1 -1,
H =1—-z', H” =z'—~1, d=0.
The equation '
EE'-DX+YE*-2)=2z""-1
has the general solution
X=1+(z"1-2)1,
Y=0—(z"1——1)t
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for arbitrary ¢t € R[z™ 1] and the solution XO, y° satisfying 8Y° < 1 becomes

X°=1, Y°=0
on setting 7 = 0.
Thus

I S
== E" -2

U=[z1-2 -17[0]= ,,1_7_02,
0 110U, 1-z

U,

U,

and

where U, € $+{z_1} arbitrary, is the only candidate for optimal control. It yields the best
possible error
E=0, |EJ% =0,

min

but it is not stable. Therefore, the problem has no solution in the sense of our definition.

Example 3.17. Consider a realization of the transfer function

s = [f\_i;_j - [ﬁ\z“(}; z*l)] [1-z1]t

over R and solve problem (3.3) for the reference sequence

[\/2\ =1

Since

- B, = [«/2\2*;(}1— )] .

Bh =[y2\ (1 — =), B =[2G -1) =1,
21
H=z1'-2, H'"=1-2z"Y, d=1
and the equation
271 = 22X +Y(1 —z7Y) = —z 31— 2271)
is to be solved.
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Its general solution reads

X

L+ (1 =z,
Y= 0- 2”1(1 - ZZ'l)t
for any ¢ € Rz~ !] and the solution X°, ¥° with 8Y° < 2 becomes
X°= -1, Y°=0
when setting r = 0.
Then
-1 1

T ey

Even though the U is stable, it does not represent the optimal control because the resulting

error
[ en)
_ — -1
E-w-pu, = L2220

-z HE7 -2
is not stable. Hence, there is no solution.

This example has illustrated that it is not rigorous to end up when computing U.
We have to check the error, too. If the resulting error is not stable, its quadratic
norm will not be finite contradicting our hypothesis.

Example 3.18. Given again a realization of

S E:: Z_lzlz_:I _ [z'l 0_5] [1 -zt —(1-zY(1 - z‘z)]‘1

z7% 2 0 1—z1

over R and the reference sequence

solve problem (3.3).
We first compute

By =[z*0 7, B =[z"*z"],
z73 275 0 1

m =[y2 L.z, B

J2

1

) NN

I
g
N

N
!
™
<
QU

1
w
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Then equation (3.22) can be written as

(3.37) J2\z7 o TX+Y1l-z7Y = [z“].

LIUPR 0
\/2 \/2“
Since
\/'2\2”5 0 =[2z"21 ~1_2_3 0 1z72
11 ol b of|y2 01
N/'2 \/2 0 - \,r"Z\l z77

equation (3.37) reduces to the set of potynomial equations

and

The general solution is

1
% =0+(1 -z, Fi=0——z"%,
\’/2
1 - - - - - -7
562:—‘-77’/2+(1~z Ny, Fo=z %4 z7% 275~ 2\ 277y,
N

and, by (1.19),

1 —z7?
R T
J2 o 1 o
_ L
V2
Y=|i'“4+" 4z 5]—- J2z7%0 [1 —z’z] [tljl
0 L 1| lo f
V2 V2

X% = 1 , Y% = z74
V2 [—i‘z‘s - %274]
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when setting

t = J + ll—r—z", t, =0.
V22
Then
| -t 1
2 — 72 —
Y

J2 J2
R _L
1—-z' —(1=-zH(1=-2z"2 J2 V2

]

1—-z7t

=[ }

is the optimal control and it yields the error

1-5 — 0-5z72
~1

E=Tz*% 227t P -
[0 1 :I [--%rz*3 . %z“‘] l:
Apparently,
[E|2 =15 +05 =

Example 3.19. Consider the system

1405271 +05z72
—0:5z7% — 0-527%

2.

L5 )

over R, the reference sequence

1
W= 1 —05z71
1—-05z71

and find a solution to problem (3.3).
It is easy to see that

By, = z71 0 5 B1_1~’
0 z7i(1 -2z

H =[1 0 , H™ =[z1
0 z7t -2 0

and hence the equation

0

2720 X +Y(1-05z71
0 z7'(1-2:z7%)

98
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yields the general solution

X

[g-s] + [rl] (1 -05z7Y,
153
[ I FT |1}

for any 1, t, € R[z™ 1. The solution X°, ¥° with 6¥° < 2 is

X°=J05], YO =[z""
0 -2
on setting t; = 0, ¢, = 0.
1 0 “iros
U= 0 z7'-27¢ 0 _

1—0527t 12

E- [(z) o, 2]7' [1 )7L

B[ =1+1=2.

~
I

The optimal control

generates the error

and

Note that this optimal control is also the optimal control for problem (3.1), even though the
system does not have the “minimum-phase’ property.

Example 3.20. This example illustrates that the condition oY° < x4~ may not yield
a unique solution to (3.22) in which case the stability considerations for U are important.
Given a realization of

z7! 0
5= [0 N1 - 2z"j)jj = 0 1 —2z7t o7t
1 -2zt 0 z7Y1-2=7Y) 0 1

over the filed %, solve problem (3.3) for the reference sequence

v [o - ;)]

1-2z71

Lo , B =[z'0 ,

0 z (1 -2z71) 0 z7t-2

H =[10 , H”" =[z"* 0 , d=1
0z 1 -2 0 1 —2z71

We compute

11
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and solve the equation

] T ]

Evidently, the general solution becomes

R i L
[_;Al} — [giz 271(1 - 227')] l:(l) (1) - 2:-1]—1 [ij

for arbitrary ¢y, ¢, € :’R[z'l].

X

~t
i

Now the particular solution XU, ¥° such that 8¥°® < 2 obtains as

X0 — 5 Loy 21
5+ 1) — 2271 —2 — g4zt
o

on setting ¢, = 0, t, = 7, € R arbitrary. Computing

- [1 —2z71 0] [(1) z-lo— 2}71 [(5 + 1:0;1—— 2z‘1] _

0 1 1 -2zt

2

=| (5+ 10;— 2z71 |,
(z7'=2)(1 — 2271

it is seen that the U will be stable if and only if 7y = —4. Then
[2(2‘1 - 2):|
1
U=—" 4
z7l -2
is the optimal control and
E = 1
1~2z71
-2
z7t =2

is the corresponding error. It follows that
[E|2e =1 +4=5.

min
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Example 3.21. This example illustrates the importance of the ground field §. Consider the

system given by
o i)
o1 — 2=l _ .2
P I (e =)

1 -2zt

1=zt (1 -2z"Y71,
0 1 -2zt

the reference sequence

[ )
N

1]
W= LtLd
1—2z?

.
and solve problem (3.3).
If the system is viewed over the field Q, we compute

Bf =[1 07,
01
B, =[z'0 , B =Tz"% 0 ,
0 =z (1 -2z7"1~z7%) 0 —1-2z"1 4272

H={f1L 0 , H” =[z"20 , d=1
0 —~1—2z"1 4272 0 1 —-2z"1—z2

and equation (3.22) reads

2730 X+Y1l-zY=[ 2 .
0 il —227t —z7Y) -1 =271 4272

Evidently,

R
(RPN oL )

and
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The only candidate for optimal control is

I

U= [1 -zt (1 - z"):| [(1) —(1) —-2z71 + "Z]ﬂ [

0 1 -zt

—2-2z7t 4772
1

—1—=2z74 4272

1—:z

and it is not stable. Hence problem (3.3) has no solution.
Now view the system over the field . Then

Bf =10 , B,=[z"'0
[o 1—(1— \/2)2-1] [o 271 = (1 »/2)z7Y)

H =[10 , B =Tz"t0
01—(1—y2)z! 0 U= (1 +2)

and equation (3.22) reads

],

[g_z 3-*(1 - \/z)z-l)]x e [ —(1+ \/”] |

Evidently,

U

- [~E1_1+ J2) - (1 + \/2)2"1:’ ) [gz 2~*(1 — (142!

and the solution

X°=T17, Y°= z71
1 (L +2) = (1L +2)z*
satisfies 8Y° < 2.
Then the optimal control

(3.38) U= [1 -zt (1 - 2"1)].

0 1 -zt

]

1

R I e

1—z7*
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[_(2 +2) —1(1 -2 z*l]

(1= (=) ) E" = (1 +42)

yields the error

el L g med”

27— (1 +42)
- [—(1 +y2) = (1 \/2)2”‘]
B 27— (1 +2) '

and
342 13482
T+ 2P 2+y2) 10+72°

(3.39) 1|2 =1+

min

Therefore, a larger field may guarantee the existence of the optimal control. Since the reals
are the topological closure of the rationals, optimal control (3.38) is the limit of all rational
approximations and norm (3.39) is the infimum of the corresponding rational norms.

To illustrate advantages of the present approach over the classical method of
Wiener, we shall demonstrate that the latter does not work for unstable systems.
Recall [60] the classical formula for the optimal control

U= (9 [(s*) " s WL,
where §* is the minimum-phase spectral factor of the system transfer function
matrix S, i.e. $*='S* = §7'S, and [(S*~")"! $™'W], represents the partial fraction

expansion of the (§*=')"1 §='W with unstable fractions deleted.

Example 3.22. Consider

z71 1
S=]———0 , W=
1—2z71 z7t -2
0 z7! 1
z7t -2
over the field R. Then
1
z7t 2 0
S* =" -
0 1
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and

r — %) _ 9.1
[(S*=r)—l S:rw]+ - (Z 2_)4 - -] —22 _
(1—-22)(z7* ~2) z7Mz7t = 2)?
z 1
| z7l -2 + 7} z7t = 2) ]
[olroaset 025) ¢ 14025
(z‘r _ 2)2 21 (z—l _ 2)2
05 05 N 05
N LT
Therefore,
U— 1 0 -1 1+ 025271 .__ B 1 +025z7¢
z7t -2 (z"‘—Z)Z z7t -2
0 1 0-5
27t -2
and
1 95, —2
1~2z71 4025z HE”Z—» o

—-05

but this is nor the optimal control.

The method presented in this paper gives us

0 =z 0 1 1.2

z7'0 (X 4+YEz -2 =1
0 z! 1
X =[057, Y°=[-057.
05 —-0-5
Thus the optimal control is

[0-5] [0-5 - z—l]
-1 . .
U= 1-2z710 0-5 - 0-5

0 1]z7!

-2 z7t -2

and the equation

has the solution
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and the resulting error

E= [—o-s], |E|2n =05.

-05

Note that the burdensome computations associated with the partial fractioning are elegantly
avoided by solving a Diophantine equation.

Up to now we have confined ourselves to systems defined over a field § which is
a subfield of € valuated by (2.25). If the system is defined over another field, the
quadratic norm of E cannot be written as |E|* = (E~'E) and Theorem 3.3 does
not apply. It is necessary to develop a special procedure depending upon the valuation
in §.

For example, let § be an arbitrary field with the trivial valuation (2.24). Then the
quadratic norm of an error sequence

E=|eo+e,2 '+ ... |eF.fz"}
€30 + 83271 + ...
o + ezt A+ ... )

is defined as
] 0
HEHZ =Z 27 e,
i=1k=0

see (2.27), and it can be interpreted as the number of nonzero elements &, in the error
sequence.

A careful examination shows that no polynomial in §[z~!] is stable with respect
to (2.14) save the units of F[z™*]. Thus a sequence in §; ;{z™'} is stable if and only
if it is finite. Therefore, the least squares control problem (3.3) reduces to solving
equation (3.12), whose general solution X, Y determines all finite control sequences
that yield a finite error sequence, and then finding a solution X', Y* minimizing the
number of nonzero elements in the error sequence.

Example 3.23. Consider a simple system over the field 3, (with valuation (2.24), of course)
given by
' 142zt 4272
1+4+z71

S =

and solve problem (3.3) for the reference sequence

W=z2.
Equation (3.12) becomes

l+z'+z)X +Y=2z"?

105



and it has the general solution
(3.40) X=1+1,

Y=1+z'+(1+z""+z"%1.
for arbitrary ¢ € 8,[z!].
Thus the controls
U=(1+:z"01+1)
yield the errors
E=1+z'+(1+z"+2z"%1.
Setting
t=1+ 1Tz  + ... F 127"
for some n, we obtain

E=(Q+1)+0+t+1)z "t +(to+7 +1)27% + ...
vt (Taez F Taeg F T 2" F (T + T) 2O g,z 0D
and it can be easily verified that the choice
To=1, 1, =1,=...=1,=0,

i.e. t = 1, minimizes the number of nonzero elements in E.

Hence

X' =0, Y'=22
and the optimal control
U=0
gives the error
-2 2
E=z?, |Ejn=1.

It is to be noted that problem (3.2) and problem (3.3) yield, in general, different optimal
controls. True, the same equation is solved, but it is solved for different solutions. In this example
the finite time optimal control is obtained as

U=1+4+z"', E=1+z""

on setting ¢ = 0 in (3.40).

4. CLOSED-LOOP STABILITY

4.1. The closed-loop system

In this part we shall consider the closed-loop system shown in Fig. 5, which con-
sists of a system & to be controlled and a controller £. It is to be noted that this is
not the most general feedback configuration, but it is reasonably general and widely
used in practice and, therefore, it will be taken here to solve various control problems.
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Throughout the chapter, the most important concept will be that of minimal
realization. An interesting point is that the closed-loop system may not be a minimal
realization of its impulse response even if the original components & and £ are. As
a matter of fact, we shall see later that the optimum system synthesis calls for certain
procedures, called the ,,zero-pole” cancellations, which produce a nonminimally
realized closed-loop system. As a result, we cannot infer dynamical properties and,
in particular, stability of such a closed-loop system from its impulse response descrip-
tion.

Fig. 5. The closed-loop systém.

We shall show that, besides stability, the impulse response of the closed-loop
system must satisfy certain additional conditions to yield a stable closed-loop system.
This fundamental result will be used in synthesizing optimal closed-loop control
systems.

4.2. The characteristic and invariant polynomials

Consider the closed-loop system shown in Fig. 5, where & is a system defined over
an arbitrary field § valuated by ¥~ that is described by the equations

(4.1 X, 41 = Ax, + By,
Y =Cx,+ Dy,

and Z is a system over & defined by the equations

(4.2) z.,, = Fz;, + Ge,,

w, = Hz + Je, .
Further, let
xed", zed”,
and

ued", yed, eeF.
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Since the closed-loop system must contain a delay of at least one time unit to be
physically realizable, we shall agree on including the delay into the system & to be
- controlled. Therefore, any of the following equivalent conditions

4.3) ) D=0,
0B < o4,
z~! [ B

is assumed to hold for any system &% considered henceforth.

Fig. 6. A detail representation of the
closed-loop.

A detail representation of the closed-loop system is given in Fig. 6. The state
equation of the system shown therein becomes

[Xk+ 1:' =K [xk] >

Zyi Zy

where

(4.4) K=[A—~BJC BH]eFipnip-
- GC F

The characteristic polynomial of the closed-loop system is defined as

¢ = det (z1,,, — K) e §[z]
and it has the degree

4.5) =n+p.

The invariant polynomials &; of the closed-loop system are defined as the monic
invariant polynomials of the matrix

2L, — Ke gn+p.n+p[z] .
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It is interesting that the invariant polynomials &; can be obtained from the transfer
function matrices of & and #. To do so, we have to assume that & is a minimal
realization of the impulse response matrix

(4.6) S =C(cl, — A) ' Be iz
and that £ is a minimal realization of the impulse response matrix
47 R=H(EI, - F)'G+ T+, {z7"}.
Using (2.4) we shall make the decompositions
4.8) S =B,4;" = 4{'B,,
where A, and B, are left coprime while B, and 4, are right coprime and
(4.9) det (z1, — A) = det A, = det 4,
modulo units of [ z]; also
(4.10) R=SR;'=R['S,,
where R; and ), are left coprime while §; and R; are right coprime and

(4.11) det (zI, —~ F) = det R, = det R,

modulo units of §[z].
Then we have the following result.

Theorem 4.1. Consider the closed-loop system shown in Fig. 5, where & and #
are minimal realizations of

8 =B A;' = A7'B, e §, {271}
and
R=SR;'=R{'S, e§,.{z" 1}

respectively. Further denote
(4.12) C, = R4, + $,B,€§nnlz],
€, = AR, + B,S, e %,[2].
Then the characteristic polynomial ¢ of the closed-loop system is given as
¢=detC, =detC,
modulo a unit of Fz].
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Proof. We apply the well-known [12] formula
(4.13) det[A B] =det D det(A — BD!C) =
cD =detA det(D — CA™'B),

where the indicated inverses are assumed to exist, to compute the characteristic
polynomial

¢ =det(zL,., — K) =
= det (zI, ~ F) det [z, — A + BJC + BH(I, — F)™' GC] =
= det (zI, — F) det (I, — A + BRC)

on using (4.13) and (4.7).
Now observe that

—RC 1,

m,

det [zl,, - A B:I = det I, det (zI, — A + BRC) =

= det (I, — A) det [, + RC(zI, — A)"' B]
ana
det[zl, — A ~BR] =det I,det (zI, — A + BRC) =
e

= det (zI, — A) det [1, + C(zL, — A)"' BR]
on using (4.13) and, hence,
det (zI, — A + BRC) = det (zI, — A) det (I, + SR) =

= det (zI, — A) det (I,, + RS)
by virtue of (4.6).

Thus
(4.14) ¢ = det (zI, — F) det (zI, — A) det (I, + SR) =
. = det (zI, — F) det (zI, — A) det (1,, + RS).
Now

(415)  det(l, + SR) = det (I, + 4;'B,S,R;") =
= det [ATY(AR, + B,S)) R;'] =
= (det 4,)7* (det R,)"* det (4,R, + B,S,)
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and
(4.16)  det (I, + RS) = det(I,, + R{'S,B8,4;") =
=det[R7 (R4, + $,B,) 47'] =
= (det R,)"* (det 4,)"! det (R, 4, + 5,B,)

by (4.8) and (4.10). Substituting (4.15) into (4.14) and taking (4.9) and (4.11) into
account we obtain

¢ = det (4,R, + B,S,)

modulo a unit of F[z]; substituting (4.16) into (4.14) and taking (4.9) and (4.11)
into account we obtain

¢ = det (R, 4, + $,B,)
modulo a unit of F[z]. 0

Note the importance of the assumption that both % and £ be minimal realizations
of S and R, respectively. Otherwise (4.9) and/or (4.11) would not be valid and the
final step in the proof above could not be taken.

We have created polynomial marices €, and C, whose determinants are essentially
equal to the characteristic polynomial of the closed-loop system. In fact, much more
is true. We shall prove below that the invariant polynomials of ; and C, are
essentially equal to the invariant polynomials of the closed-loop system.

Fig: 7. The closed-loop system with external inputs.

To this effect we apply external signals ¥ and W to the closed-loop system, see
Fig. 7. Then all possible closed-loop impulse response matrices are listed below.
Ky =(IL + SR)', K= (I, +RS),
Ky =R(I, + SR)™',  Kyy S(I, + RS)™*,
Ky;y = SR(I, + SR)™', Ky, = —RS(I, + RS)™".

Note the identities

i

(4.17) R(L, + SR)™* =(I, + RS)"'R,
(4.18) (I, + SR)™* S = S(I,, + RS)™*,

which can be directly verified. Then using the decompositions (4.8} and (4.10) we
can write
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(419) Ky = (I + 47'B,8,R5 )" =
= R,(4,R, + B,S,)" 1 4, =
= RZCZIAQ 5
Kyy = SR\, + A7'B,SR; )™ =
= Sﬂlézvlfﬂ
or by virtue of (4.17)
Kyy=(.+RS)'R=
= (o + R{'$,B,451) 1 R71S, =
= ARy A, + §,8))°1 S, =
= 4,678,
Ky;y = S(I, + RS)™'R =
= B,A;'(I,, + R{'S,B,45") ' R{'S, =
= By(R A4, + §,B,)7* S, =
= B,C1'S,;
Koy = (I, + RT'S$, B, 477) =
= A (R4, + $,B,) 'R, =
= A,C7'R, ;
K,y =B A;'UI,, + RSB, A1) =
) = B,C{'R,
or by virtue of (4.18)
Ky =(I + SR™Y)S =
=(I, + A7'B,S,R; ") 47'B,
= Ry(4,R, + B,S,) ' B, =
= kzé;iﬁz H
~R(I; + SR)"™'S =
~SR;W(I, + A7'B,S,R5Y) L A7'B, =
~8(4:R, + B,8))"' B, =
-8,C5'B,.

]

Kyp

I

18

i
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Theorem 4.2. Consider the closed-loop system shown in Fig. 5, where S and R
are minimal realizations of

S = Bl./iz_l = /Il_lﬁz € Tyl,m{z_l}
and
R =S8R =R{'S, € Fuafz ™"}
. respectively. Further denote
€y = R4, + $,B, € Gpulz] .
Cy = AR, + B,S, € Fulz] .

Then the nonunit invariant polynomials of C, are equal to the nonunit invariant
polynomials of C, up to units of §[z] and both are equal to the nonunit invariant
polynomials of the matrix zI,,, — K, again up to units of 8'[2]

Proof. First consider the following four impulse response matrices
KW/Y = Bié;lgz s
KW/u = AAz

o)
KV/Y = Ele;lﬁl s
C

and let &,; denote the nonunit invariant polynomials of C and let p;, q;, s;, t; denote
the nonunit invariant polynomials of Ky y, Ky,y, Ky y, Ky;y respectively.
Then
pi | S1i G I [PREH | Cin b I ey;
and write
¢1: = PiPoi >

= q0i >

= 5;50i

= lilo;
where po;s os Sois to; are polynomials of F[z] representing possible cancallations
in the Ky, Kyu» Kyy, Kyfu respectively. Since, by definition, the matrices R, and
S, are left coprime and the matrices B, and A, are right coprime, there can be
no factor cancelled simultaneously in all four impulse response matrices, that is

(Pos> o> Soi tos) = 1.
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Otherwise speaking, the least common multiple of p;, q;, 5; and ¢, is equal to &;; up
to a unit of §[z].

Now have a look at Fig. 8, where a detailed representation of the system shown
in Fig. 7 is given. It is seen that the system

(4.20) [XH,] = K[xk] + []ZI] W,
+yk = [C 0] [x,il + [0] w,

Z

Fig. 8. A detail reprezentation of
the closed-loop system with exter-
nal inputs.

realizes Ky,,y; the system
(4.21) X1 | = K[x.] + [BI]w,,
[ZIH»I] [Zk] [G]
o =[-ICH] xk] + [ W,

Zy
+[B]v,
0

+ [0] v,

realizes Ky y; the system
(4.22) e | = K[x¢]
[an] Z |
v, = [C 0] I:x,f
Zy |
realizes Ky,y; and the system
(4.23) i1 | = K[x ]+ [B] v,
: [Zu-x:l Z ] I:O:I
' u, = [-JC H] [xk:l +[L]v,

Z

realizes Ky 5, where K is given in (4.4).
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These realizations are not necessarily minimal but they all have the same state-
transition matrix K. Hence, denoting k; the invariant polynomials of 2l ~ K,
we obtain

Pi|/€i, quEh 5i|Eis ti|i‘:i-

It follows that also &;, the least common multiple of p; g;, s; and ¢; divides I?;.
However, by Theorem 4.1,

HI{» =det(zl,,, — K) = det €, = [lew

up to a unit of §[z] and hence &,; = k; for all i up to a unit of F[z].
Further consider the other impulse response matrices

Kyp = Rzézﬂfix B

and let ¢,; denote the nonunit invariant polynomials of C, and let ;, g;, 5;, u; denote
the nonunit invariant polynomials of Ky,z, Ky u, Ky vy, Ky,p respectively.
Then

Fy { S0 4 | Cais S; [ & 1y I Ca;

and since, by definition, the matrices 4, and B, are left coprime and the matrices
S, and R, are right coprime, and analogous reasoning gives us that the least common
multiple of r;, q;, s; and u, is equal to &,; up to a unit of §[z].

From Fig. 8 it is seen that the system

o G e

e, =[-C 0] [xk] + [L] we,

Zy

e
. u, ={-JC H] [xk] + [I] we.

Zy

realizes Kyy/p; the system

115



realizes KW/V’ the system
Zyyy
1 0 Vi»

realizes Ky,y, and the system

(4.25) [XH 1] = [xk:l [ :I
Zi+t
d, = [-IC H][x,] + [0] .,
Z
realizes Ky, where K is given in (4.4).

These realizations are not necessarily minimal but they all have the same state-
transition matrix K. Hence

71“2:" qilki’ SI!EH ui|12:-

It follows that also &,;, the least common multiple of r,, q;, s; and u; divides k.
However, by Theorem 4.1,

1k = det (e, , — K) = det &, = [[éni
i i

up to a unit of F[z] and hence

for all i up to a unit of F[z]. J
The pseudocharacteristic polynomial of the closed-loop system is defined as
c=det(l,., -z 'K)e ']
and it has a degree
dc S 0.
The pseudoinvariant polynomials of the closed-loop system are ‘then defined as the
invariant polynomials of the matrix L, , ~ 27 'K € s ps 527 ']-

To compute the pseudocharacteristic polynomial via the impulse response represen-
tations of § and R, we have to take the decompositions

S = BiA;' = A7'B, € §,.{z7}
and
R =S{R;* =R{'S, € §,.{z7'}.
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Then arguments completely analogous to those in the proof of Theorem 4.1 yield
(4.26) ¢ =detC; =detC,

modulo units of F[z~'], where

(4.27) Cy = R4, + S,B; € Fumlz '],
Cy = AR, + B,S e F[271].

Of course,
¢ =det(I,,, — z7'K) = z7""P det (zL,,, — K) = ¥ P¢.

Similarly, the nonunit invariant polynomials of the matrix C, are equal to the
nonunit invariant polynomials of C, up to units of 8-[2‘ '] and both are equal to the
nonunit invariant polynomials c; of the matrix I,., — z7!K, again up to units
of F[z~']. We also have

¢; = z %,

and

dc;

IIA

0¢; .

Example 4.1. Given a minimal realization of

S_E_—‘IL[z ][z<z —o _

B z(z — 2)
= 2(2—2) ——2(2—2) Sirt
—(z—-1) =z 0
and a minimal realization of

r=l=l gy o][‘z . 1)]”: -1 4]

over the field R, compute the invariant and pseudoinvariant polynomials of the closed-loop

system.
We have

z

Qe R L

=[ =223 4 422 + 1 2z - 5z% + 277,
222 ~ 2 —2z2 + 2z

Co=[z][z(z = 2)] + [z - 1 z][: ~ﬂ:z?‘—zz,
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and compute the canonical decompositions
¢ =[1[z° - 22][1],

C,=[-22+2z241 —z+27[0 0Jr—z2+2z4+1 22 -2z
z 1 0z -2z 1 1

and
det C, = 2% — 2z,
detC, = —2z° + 2z.

Thus the invariant polynomials of the closed-loop system, i.e. the monic invariant polynomials
of the matrix zI,,” — K, where n 4- p= 2+~ 1= 3, are

Gy=1,0,=1,8=2%-2z

and the characteristic polynomial is

t=2—2z.

To compute the pseudoinvariant polynomials, we write

s=[;_:(1——z")]=[ - l)][l—m“] -

1- 271
L= TR

R=[t-z1 1]=[10}[0 1 ]—lz[lyl[l_zl 1.

1 —(1-2z7Y

Then
C,=[]1 -2z""]+[1 -2z 1] I:z_1 =1-2z7?
z7 (1 —z7Y)
C, = 1-2z71 0][0 1 +[z*[1 0] =
—(l—z’l) 111 —(l—z")] 0 '
=[z"1 1-2z""=[z"*17[0 0 1 -2+ 2271
1 =2+2z71 1 0 [O i- 22'2] [0 1 :l
and
1 —-2272,

det C, =

detC, = —1+ 2272,
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Therefore, the pseudoinvariant polynomials of the closed-loop system are
eg=1,¢c,=1¢=1-2z"2
and the pseudocharacteristic polynomial is
c=1-2z"2

up to a unit of Rz~
Example 4.2. Consider the system & = {A, B, C, D} over R, where

A=[10], B=[10],
01 01

c=[10], p=[o00],

[10] _ z—1011
S=+—=[z~-1]"'"[10]=]10

el EERT RV TR ] B
and the controller # = {F, G, H, J} over R, where

F=[-1], ¢=]1],
[
R=_E)]_=|:Z+l0]71[1]=[1][z+1]‘1.

z+4+1 0 1 0 0

1t is to be noted that & is not a minimal realization of S.
Then

2, -K=[z-1 0 1
0 z-~1 0

-1 0 z+1

and, by definition, the invariant polynomials of the closed-loop system are 1, 1, z2(z — 1) while
the nonunit invariant polynomial of the matrices

c,=[(z)+1(1)][(z)— 1 ?]er[l 0] = [f,z (1)]

C=[z—1[z+ 1]+ [10][1]=2?
H
is evidently 22
The two polynomials do not coincide due to the nonminimal realization of S and there is no
way of computing the actual invariant polynomials via the impulse response representations,
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4.3. Assigning a characteristic and invariant polynomials by dynamical feedback

Having established an expression for the characteristic and invariant polynomials
of the closed-loop system shown in Fig. 5 we are interested in solving the problem
of assigning desired characteristic or invariant polynomials to this system. Such a
problem is sometimes referred to as the pole assignment problem since, in fact, we
are assigning desired eigenvalues (poles) to the closed-loop system matrix.

The pole assignement by state-variable feedback has been solved in [22; 43].
We recall that given a system (4.1) there exists a state feedback w, = ~Lx; such that
det (zI, — A + BL) is a preassigned monic polynomial of degree n belonging to
&[z] if and only if system (4.1) is completely reachable.

Using a constant output feddback u, = —Jy, we cannot make det (zI, — A + BJC)
equal to an arbitrary monic polynomial of degree n belonging to %[z] even under
the stronger assumption that system (4.1) be a minimal realization [11; 16].

Thus we are naturally led to use a dynamical output feedback [37] realized as
a controller (4.2), see Fig. 5. This problem is formally defined as follows.

(4.28) Given a system % which is a minimal realization of
S =584;"=A47'B, e §,.{z"'}.
Find a controller Z which is a minimal realization of some
Re Fnu{z7"}

such that the characteristic polynomial of the closed-loop system in Fig. 5 be
equal to a given nonzero monic polynomial ¢ € §[z].

The dynamical feedback, however, can do much more than to assign a characteristic
polynomial, This problem will be shown to be a special case of a more general
problem of assigning desired invariant polynomials to the closed-loop system.
By this way we assign not only a characteristic polynomial (it is the product of all
invariant polynomials) but we endow the closed-loop system with a desired structure.

The formal formulation is as follows.

(4.29) Given a system & which is a minimal realization of
S =B d;' = 47" B, e §,.{z7}
Find a controller Z which is a minimal realization of some*
Re Fni{z™"}

such that the invariant polynomials of the closed-loop system in Fig. 5 be
equal to a given set of nonzero monic polynomials &y, &,, ..., & € §[z], where
& | &+ k=1,2,..,5— 1 and

s=Y 08 .
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s
The dimension of the closed-loop system is Y, ¢, and it must be equal to the

k=1 s

number of given invariant polynomials; hence s = Y 02,.
k=1

Theorem 4.3. Problem (4.29) has a solution if'and only if either the linear
Diophantine equation
(4.30) X4, + V,B, = C,
has a solution X9, Yy satisfying
(.31) . ddet X9 = 5 — ddet 4, ,
2 (adj X°) YO < 0 det X9
XS and Y7 left coprime
or the linear Diophantine equation
(4.32) ) AX, + B,Y, = C,
has a solution XS, Y? satisfying
(4.33) Odet X5 =5 — ddet 4,
oYL adj X3 < 9 det X9
X3 and Y{ right coprime,
where C, € §,,.[z] and C, € §, [z] are matrices having their nonunit invariant
polynomials equal to the nonunit polynomials among &y, &, ..., &

The controller is not unique, in general, and all controllers are obtained as mini-
mal realizations of

0, y0
R =X{"Y,
for all C, or as minimal realizations of

= Y)Xx5!
for all C,.

Proof. The proof is trivial in view of Theorem 4.2. Tt just remains to check whether
A is a system according to our definition. Indeed, the second condition in (4.31)
makes

R = xo-1yo = (U X)Y
det X9
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physically realizable while the third condition in (4.31) guarantees that £ be a minimal
realization of R. Then ¢ det X} = SR and the first condition in (4.31) reads

e

8¢, = 58 + OR,

1
which is relation (4.5).
Conditions (4.33) play the same role for the solution X3, Y{ of equation (4.32). [

The requirement that % be a minimal realization of R certainly restricts the class
of all controllers yielding given invariant polynomials &, k = 1,2, ..., s but it is
an essential restriction because otherwise the ¢,’s would not be given by Theorem 4.2.

Since C; € &, .[2] and C, € §, ,[z] and their nonunit invariant polynomials equal,
it is’seen that the number of given nonunit invariant polynomials must not exceed
min (1, m).

Tt can also be seen that the matrices C, and C, are given uniquely by ¢, k = 1,2, ...
..., min (I, m) up to their associates.

Equations (4.30) and (4.32) can be put into the unified form (1.5) by writting

(4.34) Y[AZ] =C,,

where

(4.35) X = [Xz], Y=[X, Y.].

Y,

Then the results developed for (1.5) can be applied to solve equations (4.30) and
(4.32).

Corollary 4.1. Problem (4.28) has a solution if and only if either equation (4.30)
has a solution X3, Y? satisfying

(4.36) o det X = a0 — adet A, ,
2 (adj X9) Y2 < 0 det X9,
X% and Y left coprime ,

or equation (4.32) has a solution X3, Y satisfying

(4.37) 2 det X9 = 0¢ — o det 4, ,
0 YYadj X% < adet X9,

X9 and Y{ right coprime,
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where C, € §,, .[z] and C, € §, [z] are matrices such that

¢=detC, =detC,,

up to units of F[z].
The controller is not unique, in general, and all controllers are obtained as mini-
mal realizations of
R=X%'7]

for all Cy or as minimal realizations of

R=Yx3"'
for all C,.

Proof. Since the characteristic polynomial is the product of all invariant poly-
nomials, problem (4.28) is a special case of problem (4.29). The matrices C, and C,
just will not be given by their invariant polynomials but only by the characteristic
polynomial irrespective of their structure. ]

This looser condition admits a wider choice of the C; and C, not confined to
associated matrices and, therefore, one can expect that a solution will exist in more
cases.

Example 4.3. Given a minimal realization of

S=ES_+1]4[0;(:+1)]1[

z(z + 1) 1z

z+ 1]
[l T

over R, solve problem (4.29) for

—_ N
—_

e =1,
Cy=z+1,
& =z(z+1).

3
Observe that ¢, | ¢, | ¢3, that ¥ @, = 3, and that min (/, m) = 2 as required. Consider
e.g. equation (4.32) and choose =1

(4.3k8) ¢, = [z +1 0 ]

0 z(z +1)
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i.e. equation (4.32) becomes

(4.39) [0 z(z + l)ilX2 + [; 7+ 1] Y, = [z +1

1z 1 1

We rewrite (4.39) into the form

0 z(z(:- 1)]

[(IJ i(z+1) T le]X=[z:)-lz(Z(ll):|

and since

[<1) z(:+1) i :41-1]=

017'Ttoo0]ft o -t 1 -1
10 0100f[0 0 O 1
0 -1 z4+1 —(z+1)
0 1 -z 0

equation (4.39) is equivalent to the set of polynomial equations

X1 =0, 56'12=z(z+1),
Ypu=z+1, %,=0
by Theorem 1.1,
The general solution of (4.39) is then
X=(1 .0-—1 1 0 z(z+
0 0 0 1 z 41 0
0 —1z+1~(z+1) 0 0
0 1 -z 0 0 0
+]1 0 -1 1 00
0O 0 O 1 0 0
0 —1 z+1 —(z+ 1|ty 1y,
0 1 —z 0

by (1.13) and (1.14), where 1€ MR[z] arbitrary. Hence by (4.35)

X, =[0z(z+ D)} +[ =1 1[tes tiz]>
0 0 0 1|1tz tas

0+

I Iz

Y, =[~(@+1)0]+[z+1 ~(z+ )]ty t:2]-
z+1 0 z 0 thy tya
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Now we have to take the polynomials #;; so as to obtain a solution satisfying (4.33). First of all,
ddetX, =5 —ddetd; =3 -2=1.
Thus all polynomials t; such that
det X, = —ti1tss + tyitys — Z(Z + 1) tay

is.a polynomial of degree 1 are acceptable. Let us choose for simplicity

(4.40) ty; =1, ty,arbitrary,
ty =0, tiz =1+ 17z, 171 %0;
then
det X, = —15 — 742
and
X,=[-1 2z(z + 1)+ 15+ 142 — t,,],
|: 0 T + 112 il
Y, =[]0 (z + l)t,Z - (Z + l)(To + 'rlz) .
I:l — 2ty ]
Computing

Y, adj X, =I: 0 —(z+ Vit + (z+ 1) (10 + 142) -
o+ 1z —z{z+ 1)~ 19— Tz 4+ (z + 1)1y,

the 7,, must be of the form

lia = Qg + 2
and

7y =1
in order that the second condition (4.33) may be satisfied. Hence

(4.41) X9 [—1 22 4z — (@p — ‘ro)],

I

0 z+ 1

I

Y? [0 (0o — o)z + (@0 — To)]

1 —z% ~ oz

and it remains to guarantee that the Xg and Y(f be right coprime. Since

(4.42)
X31=] 1000]|[~t 0 1 =22 =z 4+ (o — o)
a4 0100]|| © z4 1 0 i

0010{| 0 (po— 7o)z —(Po— 7o)
—1001]] 0 —(po—~1)z— (0o — 7o)
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we have to exclude
=1,
To = Po -

For these particular values the invariant polynomials of the matrix (4.42) would be different
from unity and hence the Xg and Y? would not be right coprime. For example, if 7, = 1, we have

X,=[-1 z|[1 ¢s~—-11,
0 1f]|0 z+1
Yy =1 —z—(po — )|[1 o, —17.
0 @o — 1 0 z+41
Therefore, the required controller is a minimal realization of

R=YX]",

where Xg and Y‘l) are given by (4.41) for any 74, 9o €R, v, + 1, 75 = ¢,. However, other
controllers exist because the choices (4.38) and (4.40) are not the most general ones.

Example 4.4. Given the system over £ which is a minimal realization of

s= [z: ] - [2 ][Z(Z -2

Tz -2 [z-1
R M

solve problem (4.29) for
o 3
We observe that ¢ | ¢, | €5, that 3 2¢; = 3, and min (/, m) = 1. Let us first choose
k=1

C, =1 o .
0 2% -2z
Then equation (4.32) becomes

Bl H A PR

126




or

R N

where
X=7X,].
Yy
Since
2z —2) —z(z-2)17=[1007[01 -2z -1
—(z-1) =z 0 010f|011~—z
102(2—2),
we have

X =1, X, =0,
F21 =0, %y =2°~—2z
and the general solution reads

X=]01 -2z 1 0 +|01 —z 0 0
011~z 023 ~2z 011~z 00
lOz(z~—2) 0 0 102(2—2) tyy typ

for arbitrary #;; € Q[z]. Hence
X,=f0z~221-[z [tu, tlz],
0232z z—1
Y, =[10] + z(z — 2) [tgy t15]
and the tif's should be chosen so that conditions (4.33) are met.

First,
ddetX,=3-2=1.

Since
det X, = —(23 - 22) ty1 s

it is seen that no such ¢, exists.
It does not mean, however, that the problem has no solution. We can choose e.g.

¢, =1 0
128 -2z
and start again. Equation (4.32) will have the general solution
X,=[12%~2]~[z [t11 142}
123-2z z—1
Y, =[1 0] + [z(z — 2)] [t15 ti2]

for any t;; € Q[z].



Again, 9 det X, = 1. Since

det X, = ty, — (2% — 2z) tyq,
we have to set

ty; arbitrary,
ty =(2% = 22)ty; + 1o + 11z, T, *0
to obtain
detX, =15 + 742 .
Computing
Yiadj X, =
=[l-t)2+(t —w)22+(to+7 —2z+1+ (1 —2)(°
—(1 =)z} = (vy —10) 2% = (to — 2) z + 2z(z® — 22) 1y,
we must take
t =0,
7y =1, =14,

to satisfy 97, adj X, < 8 det X, = 1.

Then
X9=[12"—-22-3z s
1235222241

Y = [1 2® ~ z* — 2z]
are right coprime and, therefore, a minimal realization of
1z

R=yxg =12

z+1

is a solution to our problem.
This solution is not the only one, however. For example, take

Ci=2%-2
and solve equation (4.30) which becomes

(4.43) Xi[z(z - 2] + Y, [z =2z~ 2z,
-]
or
Y[z(z — 2)] = z° — 2z.
z

z—1
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Write

z2(z - 2)| = 1 0 z—-1 |1
z 1 1 -z 0
z—1 z2—10 -z 42z 0

and hence equation (4.43) reduces to

V=22 —2z.
The general solution reads
Y=1[23 -2z t;y t,]{-1 0 z-1
1 1 -z
z—10 —2z% 42z
forany #;; € Q[z] and

Xy

=23 4 2z + [ty ty,] [1 ]

z -1

>

Y,

[0z~ 1)z =22)] + [ty tia]) [l -z ]
0 —z% +2z]. .
Again 2 det X; = 1, i.e. we have to take
ty=2"—-2z2—(z— 1)t + 10+ 71z, 14 %0,
ty, arbitrary
to obtain
X, =1 +17z.
Computing
(adjXx,) Y, =
=2+ —Dz+1—(z2-1)t, —2° — 12" — (10~ 2)z + zty,]
the condition @(adj X) ¥, = 1 will yield

1, =2"+z + o,

T, =1,
Then )
X)=1+2z2,
Y9 = [—0oz + (60 + o) (00 — To + 2) 2]

are left coprime if and only if

12 — (200 + 3) 75 — 0o + 0
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and other controllers that solve our problem can be taken as minimal realizations of

_[~00z + (00 +70) (00— 70 +2)2]
zZ+ 1

R=X}"'Y]

In particular, 1, = 0, o0y = —1 gives the controller considered in Example 4.1.

Example 4.5, Given the system which is a minimal realization of

s Lo po o

z? 01]{0 z

over the field 3,, show that there is no controller which assigns to the closed-loop system the
invariant polynomials

ey =1,
e, =1,
ey, = z%.

We start with equation (4.32). Let

Cz = |:¢11 Clz:l
€21 €22

be any matrix over 3,[z] whose invariant polynomials are 1, 2%, Then

(4.44) 22 01X, +[1 01Y, =[cyy €12
0 z 01 Cay Cas

and the general solution becomes
X, = [‘u ’szl,
B t22]
Y, = [Cu C12] - [Zz 0] [tu tzz]
Cry Caa 0 z ity lyy

ddetX, =s—0detd, =3-3=0,

for arbitrary ¢;; € 3,[z].
Since
we have to confine ourselves to those f; ; which gives

det X, = ty4t;5 — Ipty; = 1.
Further the requirement

0¥, adj X, < 9detX, = 0
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implies that

(4.45) det (Y adj X,) = 1.

; _ 2 2 -
YiadjX, = [511 —Z%yy €2 — 2 t1z][ t22 —tm] =
€1 = Zlp €33 — Zly; =t I
= 2
= [Cutzz = Cialzy — 27 Cpalyy = Cralys :l
z

C2tlay = Caalag Cazlyy — Catlin —

However,

and
det (Y; adj X,) =
=28+ (cartiz ~ Cat1) 22 + (Ciatyy — Ciatag) z + det G,
Since det E‘z = 7%, we obtain z | det (¥y adj X5), a contradiction to (4.45). Hence no solution

X9, Y9 exists regardless of C,.
Now consider equation (4.30). Since / = m, the C‘l may be taken as €5 without any lost of

generality. Then the equation
X, [z22 07+ Y,J10]= C’z
0 z (U

is the transposed equation (4.32) and it can have no solution either.

We conclude that there is no controller making the closed-loop invariant polynomials equal
0 =1,6=12¢=2z
ocy=1l,c=1,¢c3=12z".

Example 4.6. Consider again the system from Example 4.5. We will show here that the characte-
ristic polynomial ¢ = 23 can be assigned even though the invariant polynomials 1, 1, 23 cannot.
Let us choose (this is the crucial step)

C, =Tz 07.
0 z
Then we are to solve the equation

201X, +[107Y, =[2z*0

0 z 01 0 z
the general solution of which reads ‘
X, = [111 112],
1 122,

Y, =[2% 07 =22 01[t(, tis

0 z 0 z]}ty t2s

for arbitrary £;; € 3,[z].
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The ¢;; must be choosen so that
ddetX, =8¢ ~ddetd, =3 -3=0,

that is,
tialyy — tagtyp = 1.
Computing
Y,adjX, = [zztzz -z —Z%y, ],

Ztyy ztyy ~ Z
it is seen that the only choice satisfying Y, adj X, < 0 det X, = 0 is
typy=1, =0,

1 =0, t;=1.

X3=[107], Y =[00
01 00

and the minimal realization of

Then

R=YX9"=0
solves our problem.
Example 4.7. Given a minimal realization of
1

= 2%z — 1)

over R, try to solve problem (4.28) for ¢ = z3(z — 0-5).
We are to solve the equation

2z —1)X + Y=2%z — 05)
where X = X; = X,, Y= Y, = Y,. Its general solution is evidently
X =1,

Y =23z — 0:5) — z%(z - 1)¢

for any # € R[z].
Since dX = 8¢ — 8g = 4 — 3 = 1, we have to take = 1y + 7z, vy & 0. Then

X =1+ 142,
Y=(1=1)z*+ (1, — 59 — 0:5) 2% + 702%

and no choice of 7, 7; will give 2Y = dX. Hence no controiler exists for ¢ =23z — 05).
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Example 4.8. The requirement that Z be a minimal realization of R certainly restricts the
class of controllers yielding a given characteristic polynomial. It may happen that no such con-
troller exists whereas there are nonminimal realizations of R that solve the problem,

Consider a minimal realization of

1
S ==
z2
over R and solve problem (4.28) for
¢ =23,
Equations (4.30) and (4.32) read
22X + Y=23
and give the general solution
X=z+t,
Y = —z%,

for arbitrary ¢ € R[z].
Since 8X == 9c — da = 3 — 2 = 1, we have to take t = 74 -} 7,2, 7, &+ —1. Then

X=(1+1)z+1,
Y = —1,2% — 1422

and the only choice to get 6Y < 80X is 7y = 0, 7y = 0. Then, however, X% =2z Y%= 0and we
have destroyed the primeness of X 9 and ¥° because (z,0) = z.

We conclude that no minimally realized controller exists that would assign the polynomial
¢ = z°. Indeed, R = 0/z = 0 would have the minimal realization # = {0, 0, 0, 0} and it would
yield ¢ = z%

On the other hand, there are nonminimal realizations of R = 0, e.g. the £ = {0,0,1,0},
that do yield the desired polynomial ¢ = 23, They cannot be found on the basis of the impulse
response description, however. The resulting feedback system is degenerated, see Fig. 9.

Fig. 9. The degenerated closed-loop system from
Example 4.8.

Quite similarly, we can pose the problems of assigning a given pseudocharacteristic
polynomial or pseudoinvariant polynomials. The formal definitions are as follows.

(4.46) Given a system & which is 2 minimal realization of

S =B A" = A['Bye F1alz"}) .
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Find a controller £ which is a minimal realization of some

Re §nifz™Y}

such that the pseudocharacteristic polynomial of the closed-loop system in
Fig. 5 be equal modulo a unit 'of §z7'] to a given nonzero polynomial
ce[z7'], where (¢, z71) = 1.

(4.47) Given a system & which is a minimal realization of
S=B4;' = Ai'Bye Fumiz ™'},
Find a controller # which is a minimal realization of some
ReFualz ™}

such that the pseudoinvariant polynomials of the closed-loop system in Fig. 5
be equal modulo units of [z~ *] to a given set of nonzero polynomials ¢,¢,, ...
conc € F[z71], where (¢, z7!) =1 for k=1,2,...,5, ¢ sy for k =

L
=1,2,..,s— lands 2 } dc,
k=1
Since the dimension of the closed-loop system must be equal to the number of
5

given invariant polynomials and dc, < 8¢,, we obtain s 2 3" dc,.
=

=1

Theorem 4.4. Problem (4.47) has a solution if and only if either the linear Dio-
phantine equation

(4.48) XA, + Y,By = Cy
has a solution X%, Y3 satisfying
(4.49) (Qetx?,z7") =1,
X? and Y left coprime

or the linear Diophantine equation
(4.50) AX, + B,Y, =C,
has a solution Xg, Y? satisfying
(4.51) (detx9,z7Y) =1,

X9 and Y? right coprime,

where C; € §,[z""] and C, e &, [z7'] are matrices having their nonunit in-
variant polynomials equal to the nonunit polynomials among c,, ¢,, ..., C,.
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The controller is not unique, in general, and all controllers are obtained as
minimal realizations of

R=Xx71'y?
for all C, or as minimal realizations of

R =YX3!
for all C,.

Proof. The proof is trivial in view of the fact that the nonunit invariant polyno-
mials of the matrices C; and C, are equal to the nonunit pseudoinvariant polynomials
of the closed-loop system. It just remains to check whether £ is a system according
to our definition. Indeed, the first condition in (4.49) and (4.51) makes R physically
realizable while the second condition in (4.49) and (4.51) guarantees that 2 be a
minimal realization of R. ]

Since C; belongs to F, [z "], C, belongs to &, ,[z7], and their nonunit in-
variant polynomials equal, it is seen that the number of given nonunit pseudo-
invariant polynomials must not exceed min (I, m).

Again, the matrices C, and C, are given uniquely by ¢, k = 1,2, ..., s up to their
associates.

Corollary 4.2. Problem (4.46) has a solution if and only if either equation (4.48)
has a solution X3, Yy satisfying

(4.52) (et X%,z = 1,
X9 and YJ right coprime,
or equation (4.50) has a solution X3, Y} satisfying
(4.53) (detX9,z7Y) =1,
X9 and Y? right coprime ,
where Cy € §m[z™'] and C, € §; [27"] are matrices such that
c=detCy =detC,

up to units of F[z71].
The controller is not unique, in general, and all controlers are obtained as minima
realizations of
R = X"y
=4y I3

for all Cy or as minimal realizations of
R = Y{X3™!
for all C,.
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Proof. Since the pseudocharacteristic polynomial is the product of all pseudo-
invariant polynomials, problem (4.46) is a special case of problem (4.47). The matrices
C, and C, just will not be given by their invariant polynomials but only by the
characteristic polynomial irrespective of their structure. O

The degree of the pseudocharacteristic polynomial is not equal to the dimension
of the system and hence no counterpart of the very restrictive first condition in
(4.36) or (4.37) is necessary. Moreover, the pseudocharacteristic polynomial deter-
mines the characteristic polynomial uniquely up to a power of the indeterminate z.
Therefore, if a desired characteristic polynomial happens not to be assignable, we
may try to assign the corresponding pseudocharacteristic polynomial ¢ = z~%¢
at the expense of increasing the characteristic polynomial ¢ by an appropriate power
of z. In fact, equations (4.48) and (4.50) have always a solution because the matrices
A, and B, are right coprime and the matrices 4, and B, are left coprime. It just be-
comes a matter of satisfying conditions (4.52) or (4.53).

Example 4.9. Consider again the system from Example 4.7. Inasmuch as the characteristic
polynomial ¢ = z3(z —0-5) cannot be assigned, we will try to solve problem (4.46) for

c=z"%zz - 05)]=1-05z"1.
We write

Z—3

§=_72
1—-2z"!

and hence equations (4.48) and (4.50) become

l-zYYX+z3%=1-05z",

where X = X| = X,, Y= Y, = Y,. The general solution is evidently
X=1+05"14+05z"2 4 z7%,
Y=0'5—(1—z‘1)t

for any r e Rz 1].
This solution satisfies (X, z~ 1) = ], for all £. We just have to avoid certain t’s, e.g.

(4.54) t+ -05,
td 1+ 2(l —1)z7t, 1,eR, '

to guarantee that (X, ¥) = 1. Thus the controller is a minimal realization of

R 05—(1—z)¢
1+0527 + 05272 4 z7%

for any ¢ meeting (4.54).
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The characteristic polynomial of the closed-loop system then becomes
8y = z*(z ~ 0:5) if =0,
2"z - 05) if ot

Il
B
v
o

Thus the choice r = 0, i.e. )
0-5
Re o
14 0-5z7% 4+ 0-5z

gives the best assignable approximation of ¢ = :3(2 — 0-5).

4.4. Stability conditions

As mentioned at the beginning of the chapter the closed-loop system need not be
a minimal realization even if both & and # are. Then the impulse response matrices
Ky y» Ky 5, Kypjp or Ky )y, Kyyp, Kyypy do not fully describe the closed-loop system any
more. Specifically, this impulse response matrices may not reveal the actual system
dynamics or, even worse, they may conceal the system instability. Otherwise speaking,
stability of this impulse response matrices does not generally imply stability of the
closed-loop system [33].

To illustrate the difficulties arising in the closed-loop system stability analysis, we
consider ‘

Example 4.10. Given the configuration shown in Fig. 7, where & is a minimal realization of
-

5=[3Li]

\z(z — 1)

bl

and Z is a minimal realization of

s

both over the field R valuated by (2.25).
Let the external input W be applied. Then all impulse responses of the closed-loop system, viz.

Ky)y = SR(I, + SR)™" = [0],
Ky);p = (Il + SR)—I = [1] »

=R, + SR)™"' = E:]

Ky = 2 =
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are stable and one might get the impression that the closed-loop system is stable. This is false,
however. The characteristic polynomial of the system is given by Theorem 4.1 as

¢=det[z(z — 1)z + 0] =2z — 1)

and it is not stable.
What has happened? A minimal realization of § is

A=[00], B=[10
01], 111

c=[1 -1], p=[00]
and that of R becomes
F=[0], ¢&=[1],
H=[-17, J 1].
0 1
Then using (4.20), (4.24) and (4.21) we can check that the closed-loop system is not a minimal
realization of any impulse response matrix considered above. Hence the closed-loop system

contains certain parts which cannot be determined from the impulse response matrices, and
they caused instability.

1

Our next task is, therefore, to find additional conditions for the impulse response
matrices of the closed-loop system that would guarantee the system stability. To do
so, we shall denote

(4.55) K, = Ky;y = SR(I, + SR) '€ §,,{z"'}.
K, = — K, p = RS(I,, + RS) ' €& miz™'}.

Theorem 4.5. Given the closed-loop system shown in Fig. 5,where & is a minimal
realization of

S=B4;" = A{'Bye Fim{z ™"}
and R is a minimal realization of
R =S,R;' =R['S, € §,.{z7"},

where & is an arbitrary field with valuation ¥". Then the characteristic polynomial
of the closed-loop system is stable (with respect to ¥) if and only if the impulse
response matrices K, and K, have the form

(4'56) K, = B{M,, K, = M,B,,
I,— K, =N4,, Im — K, = A;N,.
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where My e §r {z7'}, Ny e &{z7"} and My e &\ {27}, Ny € §o {27} satisfy
the equations

(4.57) BM, + N, A, =1,,
AN, + MyB, =1,,.

Proof. The stability of the characteristic polynomial of the closed-loop system
is equivalent to stability of the pseudocharacteristic polynomial

c=detCy =detC,.
Necessity: Let ¢ be stable. Using (4.19) and (4.55) we have

K, = KW/Y = BICI‘SZ s
I, - K = KW/E = R2C1_1A1 ’

K, = 'KV/D = S,C;'Bz,
I.— K, =K,y = A,C{'Ry.
Denoting
(4.58) M, =C[{'S,, M,=5C;",

Ny =R2C2—l, N, = C1_1R1:

the K; and K, have indeed the form (4.56). By the assumption that c is stable the
M, Ny and M,, N, are stable, i.c. they respectively belong to & ,{z™'}, &, {z™'}
and § {z'}, Fn.miz ™'}, and since
K+, -K)=1I,
(Im - K2)+ K, =1,,
they satisfy equations (4.57)‘
Sufficiency: Let
K, =B M, K, = M,B,,
I, — Ky = NjAy, 1,~ K, = 4,N,,
where
M, = Cl_lsz € %;.:{Zﬂ} s My = Slcz_l € 8‘;,1{2"} s
Ny =R, C;*e§ifz™'}, N, =Ci'Rie§mn{z7'},
and suppose to the contrary of what is to be proved that ¢ has an unstable factor e,
¢ = coe. Then matrices E; € §,, ,[z7'] and E, € §, [z~ "] exist such that

Cy =ECyo, C; =CykE,
and
' e=detE, =detE,.
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Due to the stability of My and N, the E; must be cancelled in both M, and N,,
i.e. the Ry and S, must have the form

Ry = ERyp, S;=ES;-

Similarly, due to the stability of N, and M, the E, must be cancelled in both N; and
M, ie. the Sj-and R, must have the form

S; = SioE2, Ry = RyE, .

By definition, Ry and S, are left coprime and Sy and R, are right coprime. Hence
E; is a unit of &, ,[z”"] and E, is a unit of &, [z~']. It follows that e is a unit of
F[z7'] and as such it is stable with respect to arbitrary valuation, contradicting
our hypothesis. In turn, the ¢ is stable. ]

The above theorem specifies just all possible impulse response matrices K; and
K, that yield a stable closed-loop system. Note that conditions (4.56) involve matrices
over §[z~'] rather than §[z]. This is highly purposeful and enables to state that
My, M, and N,, N, are arbitrary matrices over §+{z™'} satisfying (4.57). If the
conditions (4.56) were stated in terms of matrices over §[z], the My, Ny and M,, N,,
apart from being stable, would have to make the K, I, — K, and K,,I,, — K,
physically realizable. The synthesis procedure would then be unnecessary involved.

It should also be stressed that both Ny and N, are invertible. Indeed, by the
assumption- on including the delay into &, we have z7! | B and hence z7! | B,
z7!| B,.Thenl; — Kyandl, — K, are units of &, {z 7'} and §,; ,,{z™'} respectively,
and as such they are invertible. Since A; and A, are invertible, the claim follows by
(4.56).

Corollary 4.3. The matrices My, M, and Ny, N, defined in (4.58) satisfy the fol-
lowing mutual relations

(4‘59) A,M; = M 4, ,

BN, = N,B,.
Proof. The identities

R(I, + SR)™* =(I, + RS)"'R,
(I, + SR)™' S = S(I,, + RS)™

can be directly verified. Then

KW/U = SIC;]AI = Achlsz s
K,y = B,C'R; = R,C;'B,.

Taking the definitions in (4.58) into account, relations (4.59) follow. 0
If the system & is stable, the statement of Theorem 4.5 greatly simplifies.
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Corollary 4.4. Given the closed-loop system shown in Fig.5, where & and & have
the same properties as in Theorem 4.5 but, in addition, the & is stable. Then the
characteristic polynomial of the closed-loop system is stable if and only if the
matrix Ky has the form

K, = B M,

where M is an arbitrary element of §v {z™'}.

Proof. The condition is evidently necessary. To prove sufficiency, observe that &
stable implies that det A, = det 4, € F[z~'] is a stable polynomial. Hence A7! is
a unit of §,,{z"'} and 45" is a unit of F,, .{z7*}.

By Corollary 4.3, A,M; = M,A and, therefore, M, and M, are associates in
o {271}, Otherwise speaking, M, arbitrary implies that M, is also arbitrary to
within its associates.

Further set

Nig = NiA;, Ny = AN,
Then Ny, and N, are associates in §,,{z™'} and N,, and N, are associates in
mmiz "'}, With this notation, equations (4.57) become
; BiM; + Ny =1,
Nyo + MyB, =1,
and it is seen that
Ny =1, —BM,, Ny=1I,—~ M,B,
are stable for any M, and M,. Hence also N, and NV, are stable and the hypotheses
of Theorem 4.5 are satisfied. It follows that the closed-loop system is stable. O
In other words, for a stable system & the condition K| = B;M, alone already

implies all the remaining conditions. This is a striking illustration of how the stability
assumption is restrictive.

Example 4.11. Given the system % which is a minimal realization of

z7t o
S = Li:ﬂiz,;‘)z] _ [Z" 0 ][1 gt 0]71

1-22"0 ozt -2z"9]o 1

over the field R valuated by (2.25), find all possible impulse response matrices K; and K, that
vield a stable closed-loop system.

We are to solve the equations
1 07.
01

(=]

1]

(=3
—_

z71 0 M, + N1 -2z7'0
0 z7'(1-2z71) 0 1

1 =227V 0N, + M,[z71 0 '
o 0 1 0 z7M1-2z7Y)

141



The general solutions become

[ :] + [(1 — 2271y, tu],

ty Iz
27y, 2 ]tlz

01 27y 27 (1 = 227N 1y,
=10} -[z"tvyy 270, >

01 270, 271~ 2271 vy,
M, = [2 O:I [(l ~ 227 vy, nu]

031 V32

for arbitrary elements £,; and ;; of ®*{z™1}.
In order that K; and K, may be properly generated, these solutions must satisfy mutual
conditions (4.59). It follows that

[(1 — 27 a, (1 - 2270) 112] = [(1 — 2271y, vn]

31 2 (1=227"Y 0y vy

—_

and

and
[z:zo“ i 2720, i ] = [zizt“ z:z(l - 22:1) t,z]
2721 — 227" vy 2731 = 2271 vy, 272y 271 = 227 ) 8y,
that is,
0 =tyy, v =(1=2271)12,,

(=227 0 =25, v33=1p.
My =T201+[(1 -2, 1,7,
00 (1 —2z7") 0y vy,
Ny =[107 -z, z7 'y, s
01 271 =227 0y 27 (1 — 2271 0y,
Ny =[10]=[z""yy z7'(1 — 227 ") 1,7,
01 270, 271 = 227 ) vy,

M, =201+ [(1 -2z, (1 -22""1,7,
00 vy vy,

for arbitrary 1,4, t;, and v,;, v,, belonging to R*{z~ 1}.

Thus

and
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All admissible K; have the form

K, = |:2z_1 +z7 (1 =227ty 27, ]

271 = 2272 0y 271 — 227 ) vy,

and all admissible K, have the form
K,=[2z"" +z7'(1 =227 ¢y, z7'(1 = 227") ¢y,
z7lyy 271 =227 vy,

on using (4.56).
In particular, note that only the first (or the second) equation (4.57) alone is not sufficient to
guarantee stability, even though the system & is diagonal! Indeed, the matrices

M, = 207, N,=[1 0
-10 z71 1

satisfy the first equation (4.57) but they yield the controller

R = 2(1 - 22_') 01 ~2z7' 07! = —(1 - 22“) “iIr1 o
-1 ollo 1 1 21-2z"1] joo
and the pseudocharacteristic polynomial

c= det[ 7' —(1- 22“1)] = det[l - 227! 0] =1-2z71,

1—2z70 21 —2z7? —-z7'(1 =221
which is not stable.

An interesting interpretation of the above results is as follows.

Theorem 4.6. Given the closed-loop system shown in Fig. 5, where & is a minimal
realization of .

S=BA;' = AT'Be &, .{z7"}
and R is a minimal realization of

R =S{R;'=R{'S, e, {z7"}.
Write

I

M =Ci'S; = M{!My,, M, =5,C;' = MyM3},
Ny = R,C;' =N N3, N, = C{'Ry = N3/N,,

where matrices My; and M, as well as M, and N ,, are left coprime while matrices
M,q and M,, as well as Ny; and Ny, are right coprime.
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(4.60) Dy, = greatest common left divisor of S; and A4, ,
Dy, = greatest common right divisor of R, and B, ,
D, = greatest common left divisor of By and R, ,
D,, = greatest common right divisor of A; and S, .
Then
(4.61) ¢ =det Dy, .det M, = det N, .det Dy, =
= det D, . det N, = det M,, . det D,,

up to units of F[z~'].
Proof. We shall prove the first two identities in (4.61), the remaining ones can be

proved analogously.
By definition,

Sy = Dy(S10,

Ay = Dy 4,0 - i
Note that '
(4.62) A7'S\R;' = A;'RIISZ.

Since D, is cancelled on the left-hand side of (4.62), a matrix F(; € §, [z ~'] such
that det F; = det Dy, must be cancelled on the right-hand side of (4.62). Hence
F 4 is a greatest common right divisor of Ry 4, and S,, and

(4.63) Cy = R4, + S,B,

implies that F, is also a greatest common left divisor of C; and S,.
Then
M, = C;lsz = AM1—11M12
yields
¢ =det C; = det Fyy det M, = det Dy, det M,

up to units of F[z71].

Similarly,
Ry = RyoDy;,
B, = By Dy
by definition. Note that
(4.64) B,R['S, = B,S(R; .

Since Dy, is cancelled on the lef-hand side of (4.64), a matrix G, € F, ;[z7*] such
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that det G;, = det D, must be cancelled on the right-hand side of (4.64). Hence
G, is a greatest common right divisor of B,S; and R,, and

(4.65) C, = A|R, + B,S,

implies that G, , is also a greatest common right divisor of C, and R,.
Then
N, = chz-1 = NuNl-z‘
yields
c=detC, =detN,,det G,, = det N;, det D, .

up to units of Fz""']. : [m]
We recall that if | = m = 1 (single-input single-output system) then

N

SR = RS =

ESERE~

and the polynomials D, = D,, = (a,s) and D,, = D, = (b, r) can be inter-
preted [33] as the “zero-pole” cancellations, i.e. as factors cancelled from the nume-
rator and denominator polynomials in the cascade ¥ 2 = 2.

In the multivariable case, we have

SR

BlAz_‘Sle—l = Ax_lB:R;isz ’

RS = S,R;'BiA;' = R{'S,A['B,

and, therefore, matrices D{,, D,,, D,; and D,, in (4.60) can be interpreted as the
matrix “zero-pole” cancellations between the numerator and denominator matrices
in the cascades % and #%. Whenever any of these calcellations occurs the
closed-loop system is not a minimal realization of the respective impulse response
matrix.

In view of this interpretation we can say that the closed-loop system is stable if
and only if both K, and K, are stable and no unstable *zero-pole” matrix cancella-
tions occur. In fact, Theorem 4.5 guarantees the closed-loop stability just by pro-
hibiting such cancellations.

We have to make distinction between the “zero-pole™ calcellations defined above,
which are cancellations between polynomial matrices, and the cancellations of
rational matrices in the cascades % or #%. Example:

S Sl e
|

=[1—z“’]_l' Fz“‘ —a e - 2)] = [ 0][1 — g vz]",

0 1
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We can write

that is, the rational matrix

cancels in the cascade ¥, yet no ““zero-pole” cancellations occur!

Example 4.12. Consider the systems % and # over the field R that are minimal realizations of
P (s R car ) I
1-zYz"'-2)
=[0 -z =20 [ -2 -G -] =

= O -( - E - G - 2]
(o506 T S )

and

R= E;;;:ﬂ - [—(1 —z7) —(1 - z"):l"I:]] _ [Z—l _—3] [1-z1]"

1—z! -(1-z")y z'-2 0 1—z
respectively and analyze the “‘zero-pole” cancellations.

We have '
e et B ek

_1(1 =) -2 -0 :f‘)
o)
B H1 PR 1)
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t—z710Q

1

5

== =@ =] = 27 -2 - 2)] [0
SR R o A A
B, =[z"10],
R, =[1-z""]
A4 =[(~=2")E" -2,

and hence

are the ““zero-pole™ matrix cancellations.

C;,=[z""! _(1 _ Z—l)
Co-onern o )
=l - (e - 2)]

ce=(1-z"" (" -2),

wlal

11—z

M,

[

1

- E )

= r-vl —
- e -2

z7l —2
21

»

(L -G - D)

[ (1-2z7" ]
N, = 1=z ) (2 =4z 4 2) (27 —2) (1 =327 + 277 ,

(- PG -2
K, =[0}, I, - K =[1],

[z_l(l -z (Tt =2) —z7 (7 -2
K, =

271 — 7

ST a0 (G

|

(== e -2

147



I, - K =T (-G -2
" (== -2)

and the closed-loop system is a nonminimal realization of both K, and /; — K, while it is a mini-
mal realization of K, and I,, — K,. Note that

detDy; =(1—z")(z7' = 2),
det Dy, =1 —z7!

and
detMy = 5 =1-z71
det Dy
c
detN,, = =(1 -z Yz -2).
27 det Dy, ( ) )

4.5. The existence of a stabilizing feedback

‘We have seen that given a system & it is not always possible to make the closed-loop
characteristic polynomial equal to an arbitrary polynomial. The question now is
whether or not the characteristic polynomial can be made stable. The affirmative
answer is plausible but the author is not aware of any direct proof.

Theorem 4.7. Given the system & as a minimal realization of
S =BiA;' = AT'Be Fu{z7 '}

where § is an arbitrary field with valuation ¥", then a controller R which is a mini-
mal realization of some

Re§,i{z7"}

always exists such that the closed-loop system shown in Fig. 5 is stable (with respect
to 7).

Proof. We recall (2.4) that
B, = E, diag {b;, b,,...,b,,0,...,0},
A, = E7' diag{a,, a5, ...,a, 1,...,1},
A, = diag {a;, a5, .., a,, 1, .., 1} E[*,
B, = diag {by, by, ..., b,,0,...,0} E, .
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Hence equations (4.57) are equivalent to the set of polynomial equations
by + dfhe; =6, ij=12,..1,
afl, + mib,=6,, pg=12..,m,
where b, = 0, a, = 1 for k > r and
on=1 for k=mn,
=0 for k#n.

These equations have a solution if and only if (a,, b,) | Oy, Tor all k, n and this condi-
tion is always satisfied since (a,, b,) = 1 by definition.

Further, mutual conditions (4.59) are equivalent to the polynomial equations

1 a2
ag; = fia;, i L,2,...,m,
J=12..1,

a2 L2
b, =tyb,, p=12..1,

g=12..,m,
which can always be satisfied.
Therefore, elements My € Fov {z7'}, Nie & {z7'} and Mye §) {z7'}, N, e

€ §nu n{z7'} always exist that satisfy equations (4.57) and (4.59). Then the impulse
response matrices

K, =B M, K,=M,B,

satisfy the hypothesis of Theorem 4.5 and hence the closed-loop system is stable. [J
All stabilizing controllers £ are given as minimal realizations of

(4.66) R = M,N;'=N;'M,.
Indeed, using (4.19) and (4.56),
BM, = K, = SR(I, + SR)™' = SR(I, — K,) = B;A;'RN, 4,

and hence
R = A, M AT'NT' = MyA A7'NTY = M,N[?

by (4.59). Similarly, using (4.19) and (4.56),
M,B, = K, = (1, + RS)™" RS = (I,, = K,) RS = A,N,RA{'B,
and hence

R = N;'A;'M,A; = N;'437'A,M, = N;'M,
by (4.59).
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Example 4.13. Given the system & as a minimal realization of

S=[z"! 1 -2zt 07!
0 z Y1 -2z:"1]]0 1

over the field R valuated by (2.25), find all stabilizing controllers.
The system has been considered in Example 4.11. All stabilizing controllers are given by
(4.66) as minimal realizations of

R = M,N{' = N;'M,,
2+ (1 —227"¢y 15,
(1 =227 vy vy,
Ny =[1—=z"t, —z7 'y,
—z7 (1 =227 vy 1 — 271 = 227 vy,

N, = [1 -z 'y, -z (1= 2z“)t12:|,

-zl 1=z (1 =227,

where
M,

]

and

M, = [2 (=22 (1 2z")t12]
LP3 V22

for arbitrary #,, #;, and v,;, ,, belonging to R*{z™'}.
5. CLOSED-LOOP CONTROL
5.1. Problem formulation
This chapter is devoted to the synthesis of optimal closed-loop control systems.

The configuration of the closed-loop system considered here is shown in Fig. 10.
The & denotes the system to be controlled, & is the controller, and W is a given

Fig.10. Thwe closed-loop control
configuration.

reference sequence. The fundamental properties of the closed-loop system have been
discussed in Chapter 4, now we concentrate on solving the optimal control problems.

Roughly speaking, the closed-loop optimal control consists in the following.
Given a system &, find a controller # such that the closed-loop system is stable
and an optimality criterion is minimized. The same optimality criteria as for the
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open-lopp control will be considered here, viz. the stable time optimal control, the
finite time optimal control, and the least squares control.

The basic and most important condition is that the closed-loop system be stable.
It makes it possible to counteract disturbances appearing anywhere in the control
loop simply by making them decay exponentially.

It is appropriate to make the following remark at this early stage of development.
The controller # couples the E and U as

(5.1) U=RE.

One might think of closing the loop by simply feeding back the error of the optimal
open-loop control to get the closed-loop system, i.e. finding any transfer function
matrix R satisfying (5.1) with U and E obtained via the methods discussed in Chapter
3. This is not acceptable, however. The resulting controller need not exist or need not
be physically realizable. To make the matters worse, if such a physically realizable
controller does exist, it may not yield a stable closed-loop system. By (4.66), only the
controllers given as minimal realizations of

R = M,N{'=N;'M,,

where M,, M, and N;, N,, satisfy the hypothesis of Theorem 4.5, will create a stable
closed-loop system. Thus special synthesis procedures have to be developed to
produce the closed-loop optimal control systems.

Theorem 4.5 itself suggests that first all possible closed-loop transfer function
matrices yielding a stable system should be determined and then the remaining
degrees of freedom should be used to minimize some criterion.

The exact formulation of the optimal control problems is given below.

(5.2) Stable time optimal control problem:

Given a system & which is a minimal realization of
B -1
S=-€eaiz"'}, B+0,
a
and a reference sequence
W = 9 z7! 0
*;Eg'm{‘ }, @+0.

Find a controller # which is a minimal realization of some

R E Fma{z™'}

such that the closed-loop system is stable, the control sequence U is stable, and the
error sequence E vanishes in a minimum time k,;, and thereafter.
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(5.3) Finite time optimal control problem:

Given a system & which is a minimal realization of

B -
S:;Eg'l,m{z 1}’ B*0,
and a reference sequence

W< %eg,,l{z-l}, 0+0.

Find a controller # which is a minimal realization of some
Re Fui{z™'}

such that the closed-loop system is stable, the control sequence U is finite, and the
error sequence E vanishes in a minimum time ki, and thereafter.

(5.4) Least squares control problem:

Given a system % which is a minimal realization of

s=8cF.. 0z, B+o,
a

and a reference sequence

:%e&,l{z"}, 0+0.

Find a controller # which is a minimal realization of some
ReFn iz}

such that the closed-loop system is stable, the control sequence U is stable, and the
quadratic norm || EJ|? of the error sequence E is minimized.

It is to be noted that the control sequence U is required to be stable in all control
problems. This is rather a strict assumption motivated by physical realizability of
the optimal control. However, an optimal control which is bounded instead of stable
may be well acceptable in the engineering practice. This it to be born in mind when
applying the synthesis procedure.

It is also essential that both & and # be minimal realizations of S and R, respec-
tively. Otherwise the actual closed-loop system characteristic polynomial would be
different from ¢ = det €, = det C, and the method of synthesis could not guarantee
a stable closed-loop system.
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It is easy and transparent to find a minimal realization of § when & is a single-input
single-output system. However, the problem becomes quite difficult for multivariable
systems. For instance, realizing each element s,; of § or r;; of R separately almost
always leads to a nonminimal realization and the general procedure described in
Chapter 2 is recommended.

An interesting feature of the closed-loop control is the inherent nonuniquenes
of the optimal controller. More specifically, the optimal control and error sequences
are, as a rule, unique but they are generated by many and many controllers. Hence
the closed-loop system transfer function K, and the characteristic polynomial are
not unique, either. This phenomenon makes the synthesis depend npon somewhat
arbitrary choices and, therefore, more complicated and less suited for machine
processing. On the other hand, it leaves more room for the engineer to realize the
synthesized system according to additional requirements. The author is not aware
of any systematic description of this effect in the literature. In fact the closed-loop
optimal control problems (5.2), (5.3), and (5.4) have never been solved in general.
The only exception is the solution for single-variable systems in [30, 31, 32, 34] and
a very restricted solution of multivariable problems (5.2), (5.3) in [55] and (5.4) in

[60]-

5.2. Stable time optimal control problem

Let & be an arbitrary field with valuation ¥~ and write

s=B_ B A;' = A{'B,,
a

rank B, = rank B, = r
and
B, =~ B{B} .
By the definition of B in (2.30) we have
By = [By, 0]
where
Bhe&,[z7"], 0e&,.—[z7"] and rank By =r.

We also write

0=00"

“l]

where
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with
q € %1,1[271],0‘5 %ht,t[z_l]

RN o )
Ql—Q[O] 2.

A Q.
14

and denote

For convenience, let
F
T
Po
where (po, F) = 1 and write

F=F*F,

F~=]f"

]

with f~ e Fy 4[z7"], 0 §,_, 4[z" '], and denote
fm=foqa -

Then we have the following result.

where

Theorem 5.1. Problem (5.2) has a solution if and only if the linear Diophantine
equation

(5.5) BT, X + Ypfy = o7
has a solution X°, Y° such that 8Y° = min subject to matrices M, N{ and M,, N,
exist in o {27}, Fi{z7"} and §of {27}, Gk mlz 7"} respectively and satisfy the
following equations
(5.6) ByM + NiA; =1,

AN, + MyB, =1,

(5.7 AM, = MyA,
BN, = NiB,,
(5~8) M, =X°, BiM,Q* =[M11 Mzz:lf
M,y M,

Ny = Y%, NF' = [Nu Nu]
and also subject to
F
(5.9) U=M, —,
' Po
belongsto &, {z71} .
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The optimal controller is not unique, in general, and all optimal controllers are
given as minimal realizations of

R=M,N{'=N;'M,.
Moreover, U is given by (5.9) and
E=Y%",
Koo = 1 - 3Y° + 0f .

Proof. The error is given as
E=Ky W=(I,-K)W.
To guarantee a stable closed-loop system we have to set
I, = K = N4y,

where N; € &, {z"'}. It follows that

o]
E = N A, 9 =N, ’Ii = [Nu 1\’12]1;(L = Nu L)
r Po Po Do
where
N1F+ = [Nu le]
and

Nie®idz™'}, Noedlo {7

Since the error sequence is to vanish in a finite time and thereafter, E must be a matrix
polynomial in &, 4[z”']. Therefore,

(5.10) Ny = Ypo,

where Ye &, ([z7*] is a matrix polynomial to be specified later. This choice yields
the error

(5.11) E=1Y".
The error is also given as
E=W- KW
and, in order to guarantee a stable system, we have to set

K, = BM;,
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where M, € &, ,{z"'}. Then

(5'12) PE=Q - BMQ=Q— [Bl_l 0] BTM1Q+ 9 =0 —-BiMuq ,
0
where

B1+M1Q+ = [Mll MIZ]
M,y M,

and v
M e 3:1{2‘1}; M, e 3::—1{2—1}, M, e TS‘;—;J{Z_I}’ My, e 8':--'.1-1{2_‘} .

The E is a matrix polynomial whenever pE is so. It follows, that B{;M;,;q~ must
be a matrix polynomial, too. This is effected by the choice

(5-13) . M, =X,

where X € §,,,[z7 "] is an unspecified matrix polynomial as yet.

In fact, substituting (5.11) into (5.12) we end up with equation (5.5) coupling the
X and Y.

To guarantee the closed-loop stability, the M, and Ny must satisfy the equation

BM, + N4, =1,

in addition to (5.10) and (5.13), see Theorem 4.5. However, we must also solve the
equation

AN, + MyB, =1,

for M, € § {z"'} and N, € &7 .{z"'} and in order that the four matrices may be
properly related they must further satisfy the mutual relations

AM, = M,A,,
B,N, = N,B,.

We must take, therefore, only those solutions of equation (5.5) that make the
above specified M, N; and M,, N, exist. Further, we must take only those solutions
. which make the control sequence

U=KyoW=aM %=1, 2=, £
P p Po

stable, as required. And within this class we must further confine ourselves to those
solutions which minimize the degree of E. Therefore, in view of (5.11), equation (5.5)
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is to be solved for a solution X° Y° such that 0Y° = min subject to all stability

requirements.
All optimal controllers are then obtained by (4.66) as minimal realizations of

R=MN;' = N;'M,,

where M, N; and M,,, N, satisfy (5.6), (5.7) and (5.8).
The optimal performance measure becomes

Kpin=14+0E =1+ 0Y° + 0f ™
in view of (5.11). Since it is assumed that z~! | B, we always have Y° # 0. O
Example 5.1. Given the system & over the field R valuated by (2.25) as a minimal realization of
27t 27!
-S=[Z_1 2_1:]= 2O = 27t — 1T =
1 —z* z71 0|0 1]
=[1=z1 0] '[z! 2717,
-1 1 0 o0

solve problem (5.2) for the reference sequence
1
-1

W = .
11—zt

We compute

Bi=[z""], @*=T 10, ¢ =1, Qf =] 17,
27! ~11], -1
Fr=[1-2z10], f~=1, f~=1

-2 1

and hence equation (5.5) becomes

(5.14) [ij:lx +Y(1 -2 = [_;]

Since the matrix
B, O =[z"10
0 pfs z71 0

0 1-z!
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has the invariant polynomials 1, z“l(l — 2“1) and the matrix
B, 0f |=[z""
0 pfs 7t —1
0 1-2z7t

has the invariant polynomials 1, z~ 1, equation (5.14) has no solution. Therefore, our problem has
no solution.

Example 5.2. Consider a minimal realization of

R ——

-1

1—-z

B [(Z)l S"(l — 2 (et - 2)] [g - —(: - il)]

| S I

over R valuated by (2.25) and solve problem (5.2) for the reference sequence

1 -zt
We shall first find all matrices M; and N, that satisfy the equation
BM + N4, =1,.
It is equivalent to the set of equations
z7hmy g (=27 =1,
270 my g +ony (L —271) =0,
z"l(l =220z = 2)my 5+ py(t —27) =0,
271 =227z = 2)my 5+ p(1 - 27Y) =1

M =[my "'1,12], N = I:(lx,li "1.12]-
my a1 My,22 ny,21 My,22

The general solution becomes

M, = [1 +(U—z e (1-z7Y) tu],

=zt L+ (1L =21y

and
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N; =

1 -z, —z7 'y,
—z7 M1 =227 (7 =2ty 1+ 327 =227 =27 (1= 227" (27 = )1y,

for arbitrary ¢;; € Si*'{z‘l}.

Further we shall solve the equation

ANy, + MyB, =1,
which is equivalent to the set of equations
(1. -z Ny, + my gzt =1,
A=z myyp + my 27 (1 =227 (7 —2) =0,

(t—2 ") mp +myp27! =0,
(U= 2" my + mypz (1 =227 (27 = 2) =11

N, = ["2,11 ”z,lzjl [1 1], M, = [1 "1] [”’2,11 ’”2,12]-
y,21 My 22 01j, 0 1 my oy My 5;

The general solution becomes

and

Ny =Tl4+z" s T+ + 271 =227 (7" = 2) vy,
27 oy 14327 =227 27 ey 427 (L— 2270 (27 = 2) vy,
M, =1 — (1 =z (vyy — vay) =1 = (L =27 ") (v, — 0y5)
7(1 \:_’) vy 1-(1 —:“')vzz
for arbitrary v;; € Rt {271}
In order that the mutual conditions

A,M, = MyA,,
B,N, = N,B,

may be satisfied, we must take

i.e. the matrices N, and M, become
Ny =[1 -zt 1=z —z7 (1 =227 (270 = 2) 8y, :
=z 143270 = 2272 — 27y~ 2 (1 = 227 (27 - 2) 1, ],

M, = [1 + (L =zt —tyy) —1L+ (L~ 27 (t, — tu)]
’ (1—2“)12,_ 1 +(1727I)t22
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Computing

Q

: 1 o =1 ,
o PR B PR

! , Fr=T1 s ¢ =f"=p =1,
N B

B, =[z"t0 , Bf =J10 :
0zl -2:7Y) 0zt —

equation {5.5) becomes

[T LA P

and its general solution obtains as

SR
QLR b

for arbitrary t;,1, € Riz7L
Now we have to confine ourselves to those solutions My, Ny and M,, N, only that satisfy
(5.8). Computing the B1 M, 0 *and N.F *, equations (5.8) become

R TR U A RN (RO T
(1= =) =2 (L= =) = D+ (= 2)(1 =2 bas =
=1 -z").

11—zl — 271 —z Yy, =1 -z,

(1 — z"l) (1 + 3271 22'2) — z"’(l — 22“1).
(2 =ty — (1 =22 =)L -2 )y, =
=1-z'1-22""1,
and yield .
(5.16) ‘ ty (=2, =14,
' =21+ 6+ (=27 )t,] =1,

We have to further choose only such solutions XO, ¥0of (5.15) that minimize & ¥° while satisfying
(5.16). It follows that 1y = 0, 7, = 0 and, in turn,

tyy=—(1 -z,
hy==-1-(1=z""t,.

i
—
—_
|
"

F

I
-
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Hence

X =017, Y =T1
0 1
and, eventually,

(5.17) M, = {— 1—(1 =z Yy, (1-z""1, ]

—( =z = (1 =z7W 1y 1+ - 271y,
N =1+ 27 (1 = z7 Yy, —z7 %y,
2'1(1 —«22'1)(2'1 —-2)+ 1 4+3z7' —-2272 —
+z7 (1 =227z =21 — 27ty —z7 (1 = 2270 (27! = 2) 8y,

Ny, =[1+z7'(1 -z,
27 4+ 27 (1 = 27 ¢y,

L+ z7 (1 =zt —~ 27 (1 =227 (27t = 2) 1y,
1T+4z7 = 2272 4 27 (1 — 27 8y, — 27 (1 — 2271 (271 = 2) 8y,

o[ 20 ) S - ]
L=z = (1 =27y, L+ (1 =zt

Since the control
v=m Lt - m|! [t
Do 1—-z71 0

is stable, all optimal controllers are given as minimal realizations of
(5.18) R = M,N{' = N;'M,

where My, Ny and M,, N, are given by (5.17).

The resulting error becomes
E=[17, kpyn=1.
1

We recall that the same system has been considered in Example 3.7 for the open-loop control.
We have obtained exactly the same U and E. One might get the idea to bypass the above computa-
tions and find an optimal controller Z simply as

i
B

that is,
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where ¢, 7, are arbitrary elements of Eﬁ{z‘ 1}. This is impossible, however, since not all controllers
created in this way will yield a stable closed-loop system. For example, f3 = 1, t; = 0 gives

R=[10]=[10][107!
00 00j[01
c=detC; =det[1 —(1—-z"")]=1-2z""
0 1-z!

and

is not stable. Only the controllers having form (5.18) are acceptable.

Example 5.3. Consider a minimal realization of

B I:\/z\(l - )] B [/2\ - )] [ =

i [~1¢z\(1 - z*)ﬂ_l [o]

over the field R valuated by (2.25) and solve problem (5.2) for the reference sequence
1
V2
W = -~ .
z7h -2

We first find a stabilizing feedback.
The first equation (5.6) becomes

[ i BT

and it is equivalent to the set of equations

-1 p_— -1 —
27 my g 0y =1, z7im g, +ag =0,

Ry =0, Ry 22 ,

M, = ['"1,11 ml,lz][ 1 Ojl,

—A (=)
Ny = [1 0:| l:"t,u. "1.(2] .
V2@ =2y 1 im0 By
The general solution is

My = [ty — J2\(1 — z7") #;, t15]

where

Ny =1 =27y, —z71,
VA -z = 2z 1 =27y - Y2\ 27 (1 =2 ey,

for arbitrary #,4, t,, e R*{z71}.
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The other equation (5.6) becomes

[N, + M, [3‘] = 1]

the general solution being
N, =14z v,

M, = [—”11 —”12] >

for arbitrary v, v,, eRT{z7'}.
Mutual conditions (5.7) then necessitate

Vg = —lis Vi = iy,
Ny=1—z"'ty, M,=[t; t.].

Now we shall seek for optimality. We compute

0=[17]. @ =1 ,]. or=[17,

V2 V2 V2
~1 11 -1
F = 1 Ft =
- | <o)
J2 J2
P 272

and equation (5.5) reads

[z" ]X +YE -2) =] 1

J2AzT (1 -z

Consulting Example 3.3 we obtain the general solution as

X=—]—+ll(z“‘—2),

B
2> Y2z =27

14 z7!
2
for any r; e R [z 1),
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Conditions (5.8) can now be written as
1 -1 1 -1
— gy + (2T =Dt =—— + (27 - 21y,
22

72
1 1 - 1,1 1
— ==z Tty =z 2T = 2) = —-
2 2 11 ( ) 2 2\/2
11—zl =z )ty — YAz @ =27 (z7 = 2)t, =
=—-1-05z"" + 05272 — /2\z7' (1 - z7") (27" = 2)14
and they yield

=2~z z' -2y,

t; =05
tip =1y .

Now we can minimize the degree of ¥ by taking f; = 0. It follows that

X0 = L’ YO = __1_
2\/2 2\/2
1+ z7!
2
and
M, = [0'5 0],

" Dz_\ AR |

N, =1— 05271,
M, =05 0] .

The control sequence

1 1

22271 -2

is stable and the optimal controller is given as a minimal realization of

R = [0'5 0] 1 —0-5z7¢ 0]t =
VA -z (1 —05271)1
c=[1-05"1]1[05 0] = [—'1—*1 o)
. z7t—1
and it is unique. The resulting error becomes

E=[__1 -
22
05 + 052!
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Example 5.4. Given the system over R valuated by (2.25) that is a minimal realization of
-1 -1 -1
z z ~ 1—z -1
S = ——7[ —vvl = [Z ! 0] =
1 -2z 0 1
LR P B

solve problem (5.2) for the reference sequence

As usual, we shall solve first the equations

[ 0 M, + M1 - =] =[1],

B—fl—ﬂm+mpﬂf1=rq

01
and obtain
M, = [1 +(1- z_l)tu:l, Ny =[1-z"",),
21
N, =

vy 142700y —ty

l:l + Z:;”u 1+ 2_1”11], M, = [1 ~(=z oy + "21]
z

for arbitrary #;;, v;; € R {z71}.
Mutual conditions (5.7) necessitate to set
iy = =0y,

= —(1 = z7uy.
Then

M, = [1 ~( - Z_l)"u]; Ny =[1 + z7'o4].

— =z

Now we compute

By =[z"'0], B =z"', r=1,
Qg =1-2z1, F=1-271, !

Q" =0 =F*=1, ¢g- =f" =1-2z""
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and equation. (5.5) reads
X+ Y1 -z ) =1,

The general solution is
X=1+(0—-z"YYt, Y=1—-2z""¢

for arbitrary ¢ € R[z~!].
Equations (5.8) give

1-(1—z Yo =1+(1-2z"Yt,

14z ', =1-z""
and, hence
vy = —1t.
To minimize the degree of ¥ we set 1 = 0.
Then
X°=1, Y°=1
and

M1=[1 :| N =1,
—(1 =27 vy

N, =1 1 , My =[1+ vy
27, 1+ 27y, ) — vy,

and the control sequence

U=F+uiﬂ—mﬂ

— Uy

is stable, as required.
Thus all optimal controllers are given as minimal realizations of

R=[l+vo 1] =1 1 - =T+ v
— vy 27, 1+ vy —(1 —z7") vy - vy

and they yield the error sequence 7
E=1-2z", Kein = 2.
It is worth examining how a particular choice of v, affects the pseudocharacteristic polynomial

of the closed-loop system.
Write
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where a, b € R[z™'], (a, b) = 1, a stable. Then

[

R=|1+

Qo

and
c=detCy =det[(l -z Va+za+b)—z'b]=a.

5.3. Finite time optimal contrel problem
Let & be an arbitrary field with valuation ¥~ and write

S == =BA;' = 4;'B,,

8 |w

rank By = rank B, = r.
By the definition of B, in (2.19) we have
B, = [BLI 0]
where

By e 8’1,,[2_1] , Oe 8‘1,".~r[2_1]

and rank By; = r.
We also write

0=0%0",

“l ]

with ¢~ e §; ([z7'],0€ §-1,1[z7'] and denote

where

For convenience, let
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where (po, F) = 1 and write
F=F'F,

"l

with f~ e, 4[27'], 0€ Fi—y,1[z "] and denote

where

T =fa .
Then we have the following result.

Theorem 5.2. Problem (5.3) has a solution if and only if the linear Diophantine
equation

(5.19) By X + Yofg = OF
has a solution X°, Y° such that Y® = min subject to matrices My, N; and M,, N,
exist in v {z7'}, §{z7') and § {27}, G m{z™"} respetively and satisfy the

following equations

(5.20) B;M, + N4, =1,,

AzNz + Mle =Im ’

5.21 A,M; = My4,,
247 2
BN, = N;B,,
(5.22) My =X, MQ" = [Mn. Mu] ,
MZI MZZ

Ny = YDPn , NF* = [Nu Nxz]
and subject to
(5.23) _ v=mL

belongs to F4[z7"].
" The optimal controller is not unique, in general, and all optimal controllers are
given as minimal realizations of

R = M,N{! = N;'M, .
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Moreover, U is given by (5.23) and
E= Yof‘ s
k

—

+0Y° +of .

min

Proof. The error is given as
E=Kyp=(,—-K)W.
To guarantee a stable closed-loop system we have to set

I, - K, = N4y,

where Ny € §F,{z'}. If follows that

[f_]
F 0 B
E=N1A12=N1—=[Nu NIZ] =N11f_,
p Po o Po
where
NLF+ = [Nu. le}
and

Ny € %I1{Z_l} , Nie %::1—1{3_1} .

Since the error sequence is to vanish in a minimum time and thereafter, E must be
a matrix polynomial in &, ;[z"']. Therefore,

(5.29) Nyt = Yoo,

where Ye & 4[z7'] is a matrix polynomial to be specified later. This choice yields
the error

(5:29) E=Y".

The error is also given as
E=W-KW

and, in order to guarantee a stable system, we have to set

K, = B,M,
where M, € §. ,{z™'}. Then

(s.26) PE= Q¢ BiMiQ =0~ [Bi, 0] M, Q" [q”] = Q- By Myq™,

0
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where

M1Q+ = |:M11 Miz:l
M, M,

and My e §{z7}, M, e F e}, My eFi,{z7'}, and My, €
€ %yt—r,l—- l{z‘ 1} .

The E is a matrix polynomial whenever pE is so. It follows that B;;M;,q9~ must
be a matrix polynomial, too. This is effected by the choice

(5.27) M11 =X,

where X € §, 1[z7'] is an ur;speciﬁed matrix polynomial as yet.
In fact, substituting (5.25) into (5.26) we end up with equation (5.19) coupling
the X and Y.
To guarantee the closed-loop system stability the M; and N, must satisfy the
equation
BM, + N A =1,

in addition to (5.24) and (5.27), see Theorem 4.5. However, we must also solve the
equation :
AN, + MyB, =1,

for M, e §oi {z"*} and N, €'Fr .{z™'} and in order that the four matrices may
be properly related, they must further satisfy the mutual relations

A,My = M)A,

BN, = N,B,.

We must take, therefore, only those solutions of equation (5.19) that make the
above specified M;, Ny and M,, N, exist. Further, we must take only those solutions
which make the control sequence

F
U= KW/UW = Ale.g = M4, Q— =M; —
14 P Do

finite, as required. And within this class we must further confine ourselves to those
solutions which minimize the degree of E. Therefore, in view of (5.25), equation
(5.19) is to be'solved for a solution X°, Y such that Y® = min subject to all stability
and finiteness requirements,
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All optimal controllers are then obtained by (4.66) as minimal realization of
R = M,N{' = N;'M,,
where My, Ny, and M,, N, satisfy (5.20), (5.21), and (5.22). The optimal performance
measure becomes
kpin = 1 +0Y® + &f ™

in view of (5.25). Since it is assumed that z7*|B, we always have Y° + 0.

Example 5.5 Let the system over the field R valuated by (2.25) be given as a minimal realiza-

tion of
R 0 1-z'ol!
0 z7 (1 =z [0 1

and solve problem (5.3) for the reference sequence

- = ,

1—-2z71

Closed-loop stability is guaranteed by solving equations (5.20) and (5.21). They give
M1=l'1 + (1 =z, tu],
—(1 =z, —vy

L -z, —z7y,

'1(1 -z 1) vy 1+ z"](l - z“) v22:|

1-z ‘tu -z (1 =z Y1y, s
1+z7' (1 =z Y,
[ I—Z‘I)t“ (l—z_l)tu]

Uy —Vy

>

for arbitrary ¢;;, v;; € R*{z71}, similarly to Example 4.11.

We compute

R Y el P L P

F=1]1 , Fr =1 01,
1 —z1 1—z7'1 -
1 )

q =

171



and solve equation (5.19), which is

[0 T i |

The general solution is obtained as

X=[ 1+@0—-zYg], Y=[1-2z""y
-1+t 1 -z,
for arbitrary ¢,, 7, € R[z '], see Example 3.6.
Now we have to satisfy equations (5.22), which are

1+l —zYy + (=27, =1+(1—-z"Y1,
—( =2y (A =27 vy = ~1 41y,
1—zyy —z7 (1 —z7 Y, =1-271y,
1=z 4271 =27y + 271 =27 oy =1 — 27,
It follows that
(5.28) i+ (1 =zt =1y,
1—(1—zNvy — 1=z o, =t.
At this stage we should take #;, ¢, so as to make @Y = min. The choice t; = 0, #, = 0 tozally

minimizes 2Y, but it does not satisfy the second equation (5.28). Hence &Y = min subject to
(5.28) is obtained when setting #; = 7, 1, = 1, 7y € R arbitrary. Then

X0 =T(1 + 1) — tgz™*], Y'=[1—rpz™"
0 1—-2z71

and
ty =1t — (1l =z,
vy = —(1 =27 vy
yields
(529) M, = [ A +1) =tz = (1~ 271y, tu] s
1 —-z""o, —0y,
Ny =T 1—rz"t +2z7(1 - z7Y) 1y, —z7 4y, s
—z7H1 = 27 oy, 1+z7'(1 -z Y,
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N, = [ 1—1z7' + 27 (1 — 27 ¢, —z7Y1 — z7 ")ty ],

—z7 1 = 27 vy, 1+ z7Y1 =27,y
M, = ]: Q+r)—tz ' =1 —2ze, (1-z7%) tu] .
(1~2z""v,, —v,,

Since the control sequence

U=M, E ) 241] = [5)1 +10) - roz'l}

is finite, as required, all optimal controllers are given as minimal realizations of
_ -1 _ a1
R =MN;{ =N, M,

where M;, Ny and M,, N, are given by (5.29).

The resulting error is
E=T1—-12""}, kpin=2.
1-z!

Example 5.6. Given a minimal realization of

o e

over R valuated by (2.25), solve problem (5.3) for the reference sequence

W=T[1-z""].
z—‘l

To make the closed-loop system stable, we solve the equations

i et
[1-2z"IN, + M, [(z)“:l =[1],
[-z'1M =M, [1 -z 0],

-zt 1
"IN, =N, [z71].
z72 0
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They yield the general solutions

M, =[1+ (1 - z‘l)t“ —z7 'y, tlz]s

Ny =[1=-z27"% -z, s
27—z 1—z7%y,

Ny =1—z7Yy,,

M, =[1+(1—z ey (1-2z7")¢,]

for arbitrary £;,, #;; € R*{z71}.

X +Y=[1- 2z
772 z7!
and it has the general solution

X=-1+1t;, Y=[1-2z14
27l b 27— 27y

Now we are to satisfy equations (5.22), i.e.

Equation (5.19) becomes

for any t; € Rz~

1=z + (=27t + 274, = -1 +1

and

=z -z 0 =z Wty -z, =1 - 27",
27—z 2 =2ty — 2y, =2 2T =2 Ry

They necessitate the choice

(=2 +z7%,=2"" -2+1 .

where £, is to be taken such that Y = min.
It follows that r; = 1, and

tyy=—-1—z1'4z%
to=—-1+z"1=(1-z""¢
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for arbitrary £ € ¥ {z7'}. Therefore,

X0=0, Y =[1-2z7"
Z*l

M =[z"+z'1—-z —(1-z")—=(1-z""4,

No=[l4+z'+z2—2z3% 7' —z2423( -zt )
ye

e - -y B B - A (-

and

N, =t +zt+272 273,
[z72+z721 -z (1 =z = (1=-z""Pe].

The optimal controllers are given by

M,

R = M,N;{' = N;'M,,

with the matrices M|, N; and M,, N, given above.
The optimal control is

U=[t-z"][0]=0

E=[1-2z17.
21

R=[0 0].

and the error

Note that

is not acceptable, since it does not stabilize the closed-loop system.

Example 5.7. It is important that both & and # be minimal realizations of their transfer

function matrices. This example is to illustrate what might happen if this assumption is violated.

Consider again the problem solved in Example 5.6 and let the & be realized as {A, B, C, D},
where

A= 10|/, B=|0],

10 1

01

c=[001], D
100

This is an elementwise realization of S, see Fig. 11.

o O O

il
o o
| M—]
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Further choose ¢ = 0 in (5.29). Then the controller is

2 -1+

5.30
(5:30) 14zt 42772

Fig. 11, An elementwise realization of §
in Example 5.7.

and let it be realized as {F, G, ﬁ, J}, where

(5.31) F= [_? _}] G= [_1 _ﬂ

H=[10], J=[0 -1].

This is a minimal realization of R, see Fig, 12,

Fig. 12. A minimal realization of R
in Example 5.7.

Then the characteristic polynomial of the closed-loop system becomes

¢ =det(zl,,, — K) = det [ z —1 0 00 TJ=
-1 z—-1 0 -1 0
-1 0 z—1-1 0
2 0 1 z —1
-1 0 -1 1 z+1

AT A o )
and it is not stable,
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The trouble is due to a nonminimal realization of S. A nonminimal realization of R can cause
the same sort of trouble. Consider a minimal realization {A, B, C, D} of S, where

SRR
N

bt

T
) W
Ik

Fig. 13. A minimal realization of S in Example 5.7.

see Fig. 13, and let the Z in (5.30) be realized as {F, G, H, F} with

F=[0 1 00], G=T[o0],
~1-1 00 10
0 0 01 00
0 0-11 01
H=[0112], J=1[0 -1].

This is an elementwise realization, see Fig. 14.

Fig. 14. An elementwise realization of %
in Example 5.7.

Then the characteristic polynomial of the closed-loop system becomes

¢=det(zl,s, —K)=det][z ~10 0 0 0 =
0 z0 -1 -1 =2
0 0z —1 0 0
1 01 z+1 0 O
0 00 O z —1
0 10 0 1 z+1

=z2(z2 +z+ 1)(2° + 2 + 3z + 2)

and it is not stable, either.
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On the other hand, taking the minimal realization (5.32) of & and the minimal realization
(5.31) of ®, the characteristic polynomial becomes ¢ = z* and it can be computed via Theorem
4.1, Its stability is guaranteed by the method of synthesis.

Example 5.8. Consider the system & described by the infinite set of equations

Xir1,0 = X1 + Uy, Xe-1=0,

xk.l" k,1=0,1,2,...,

Vi

over the field R valuated by (2.24). This is an infinite dimensional system over R.
To simplify its analysis, let us view it as a system over § = R{w™'}, the field of rational
functions over R in the indeterminate w™ !, Indeed, making the identifications

X = X0 + X W'+ xk’zw-—z +...e§,

U =tho + U W Fuw i+ eF,

the system equations can be written as
Xeer= WX, 4 Uy,
Ve =X

and the & has dimension 1 over R{w™!}.
The transfer function of % becomes

z~1

5.33 S= e
(5:33) 1—wiz™!
by virtue of (2.1). The § is stable under the valuation (2.26), see Example 2.12, which is compatible
with valuation (2.24).

To illustrate how Theorem 5.2 works, consider problem (5.3) for a minimal realization of
(5.33) and the reference sequence

1
W= .

1—wiz
The stability equations (5.20) and (5.21) reduce to the equation

M+ NI —wiz7 ) =1,

which has a solution
Me §t{z™'} arbitrary,

N = 1 - )
1—wilz7t 1wtz
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The optimality equation becomes
X 4+ Y1 -wlz7) =1
and its general solution is
X=w'+(l=-wlz"1,
Y=1-z71

for arbitrary t € %[zﬂ].
To minimize the degree of ¥ we set f = 0, i.e.

X0=wl, Y°=1
and, by virtue of (5.22), we obtain
M=w'! N=1.

Hence the optimal controller is given as a minimal realization of

M -1

R=—=w
N

and it yields
U=w', E=1, ky,=1.

This control law over éﬁ{w”’} can be inplemented over i as shown in Fig. 15.

Fig. 15. The optimal control system
in Example 5.8.

5.4. Least squares control problem

Let § be a subfield of the field € of complex numbers valuated by (2.25) and write
B -
S == =BA;' = A['B,,
a

rank By =rank B, = r
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and
B, = B; B} .

By the definition of B} in (2.30) we have
By =[By, 0],

where By, € &, ,[z7'],0€ & m-r]z '] and rank B, = r.
We also write
Q=00",

where

with g7 € §,41[z7], 0 & -1, [z7"] and denote
0*=0%[q""7,
- (]

F
Axg:*,
p Po

sec Chapter 2.
For convenience, let

where (po, F) = 1. Write
F=F'F,

Tl

with f~ € F, ,[z7'],0€ F;_; [z "] and denote

where

fm=fea .
Further, let
BI'Bi; = (Bry)*™ (Biy)*
and denote

(5397 d = 8By, — a(By)*.
For notational convenience we shall denote

(3;1)* =H.

Then we have the following result.
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Theorem 5.3. Let § be a subfield of € valuated by (2.25). Then problem (5.4)
has a solution if and only if the linear Diophantine equation

(5:35) zTH™'X + Ypfs = By, Q%5

has a solution X°, Y° such that 0Y° = min, matrices M, N, and M,, N, exist in
Foalz™'Y &) and For {27 G a{z™") respectively and satisfy the equa-
tions

(5.36) B M; + N4, =1,

AN, + M,B, =1,

(5.37) A,M, = M4, ,
ByN, = N;B,,
(5.38) HMf~~ = X°, B{M,Q* :[Mu MIZ]:
M, M,,
Bl_l_lNu.)“N = YOPo» N1F+ = [Nu Nxz],
and
(5.39) v-m L,
Po
(5.40) g-nL
Do

belong to Fm {z7'} and ' {z"'} respectively.
The optimal controller is not unique, in general, and all optimal controllers
are given as minimal realizations of

R = M,N{' = N;'M, .

Moreover, U is given by (5.39), E is given by (5.40) and also satisfies

B[, E = Y"ffj , o

and

[l = <) ¥ @) v +
b + (W1, - B]‘lH—l(Hz,)_1 B;f') WS
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Proof. In order to minimize || E||* we shall assume that E is stable whereby
nE”Z = EY'E).

Then we manipulate the expression (E~'E) so as to make the minimizing choice of
R obvious.
Write
E=(I,-K)W.

To guarantee a stable closed-loop system we have to set

i N K, = B(M;,
where M € § ,{z7'}. Then

.- -
E=W-[B; O]B;Mtg‘[q ]= W_Bl_lMl_lg—’
p 1O p

where
B;M1Q+ = [Mn Mt.z]
My M,

and

Mye& {27}, Mue®i- a7}, MyeBa,.{z7'},

Moy € Foern-1{z7'} . V
Then
(5.41) E“E=W~W — WB;;M,; = -

p

-4 My W+ L myBr B M, =
p p p

- ((H=')-1 Bi~'W — HM,, ‘17)_ ((H")‘l BI'W — HM,, ‘1? ¥

T4+ WEW — W¥B H YH™') ' BT'W
on completing the squares. Since the last two terms in (5.41) are independent of M,

(and hence M, and, in turn, R) the expression (E~'E) attains its minimum for the
same controller R as the expression {E; 'E;) does, where

E, = (H=')™' B[™'W — HM,, ‘17 .
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Further observe that
e - () ()

Ve N bt A i el

17" 2T

because

1.

Therefore,
E ff_ = ()" By %_ —mm, ff— -

net p-=s QF q']fo’”q” 4 fo a "
= (H 'B = — - HM;; — " =
=) B P [0 foa” O ra

Y P

oo ofe
Using (2.28) and (5.34) we have
N H~"! B~
(H ) 1 B ' = %;1* >
and hence
() g L) BT HMs

Now take the partial fraction expansion

H) B QYo _ X | (HT)'Y
27°pfg ofo z74
of the first term on the right-hand side of (5.42). It follows that the X and Y are
coupled by equation (5.35).

Collecting the terms gives us

(5.43) EL-- EVY 4,
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where

(s.40) Ao X HMyT

ofs Pl
Hence, by virtue of (5.43),

(5.45) Elf; =~ Elf;: _
(=57) (=)
(7 (O
(Y (35

Any solution of equation (5.35) can be written in the form

(5.46) X =X°+ D 1Tpfy ,
(5:47) © Y=Y -z HDTIT

by (1.19), where D € §, [z '] is defined in (1.20) and Te §, ,[z™'] is arbitrary, and
where

(5.48) aY° < 3z7H™" .

Substituting (5.47) into (5.45) we obtain
(=) (=5~
(Y (@Y oy -

(Y ) e ()
G ERTC S

D7) A = (AT(DTT)y 4 AT
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The key observation is that

((HA‘,)*I YO):' = Z—Ld+i‘l]"'—0¥°]H71(Y0)~l

Z—d

is divisible by z™" due to (5.48) and hence

<(§H:;)::lo)=, (D= T)> -0,
<((fzjf3;;,£°)=’,,> 0.

Therefore,

(55) (87)) = oy vy +

+ (4 - DT) (4 = DT,

The first term on the right-hand side of the above equation cannot be affected by
any choice of M, (and hence R). The best we can do to minimize

6 (=57) (=5%)

is to set A — D™'T = 0. By virtue of (5.44) we obtain

X _HM S

— - - D 'T=0,
2o pfo

X - D™ 'Tpfe = HM,f~" .
But
X ~ D Tpfy = X°
by (5.46) and hence (5.49) is minimized by setting
(5.50) HM, f~~ = X°.

It means that
1B = &~B>

is minimized by the same M;.
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The error becomes

E=W—K,W=2—M=

p p

_ (_Q_+ [‘Zu} _ B1_1Mu(1—> q " - (Qi _ Bl_lH_lXo> 9
p L0 P q " p ofe” Ja "

by virtue of (5.50) and hence

—~1aRfm~ L —dpy~ry0 -
(5.51) By E=B @l — ZHTXN g _ o S
: o q fo

on using (5.35).
To guarantee stability of the closed-loop system, we have to set

I, — Ky = N A,
for some N, € §/",{z~'}. Then

(552) BiE = B (I, — K\) W = BN, A, % =

o)
ey, F . [0 BN f
= Byy 'Ny — = B '[Ny Nio] == ”klﬁ”!‘!'[:‘j:j ,
Po Po Po f
where
NF* = [Nu Nxz]

and Ny, € §1{z7'}, N, e &i-1{z"'}. By comparison of (5.51) and (5.52) we
get

(5.53) B, 'Ny f~™" = Y°p,.
The matrices M; and N satisfy the equation
| BM; + NjA; =1,.
However, we must also solve the equation
AN, + M,B, =1,
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for M, and N,, see Theorem 4.5, and satisfy the mutual relations

AM; = M4, ,

BN, = N,B,.
Since the My, N; and M,, N, must be stable matrices, we must take only those
solutions of equation (5.35) that, in addition to satisfying 0Y° < 9z “H™’ and

(5.50), (5.53), will make the M;, Ny and M,, N, stable. Further, both the resulting
control sequence

U= Ky W= AZM, ;Q = M,A, _Q = Mzi
p P

Po
and the associated error sequence

E=KW,EW=N1A12= N,E,
p

Po

must also be stable.

All optimal controllers are then obtained by (4.69) as minimal realizations of
R = M,N{* = N;'M,

where M, N; and M,, N, satisfy (5.36), (5.37), and (5.38).

The optimal performance measure becomes
(5:54) |Elmia = <)M YO (H)" YO +
+ Wl = BLHTHT) BT W

by taking (5.41) into account. Note that when r = [ the By is invertible and, by
definition, B, H ™ '(H5y)™* Biy"' = I,. Then (5.54) simplifies to

B0 = <@ 7 (@) 7
Example 5.9. Consider a minimal realization of
z7' 0
0 z7! z7t o 1-z710 -1
S==_° 4=
1-z7t 0 z']|o 1-2z7?
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over R and solve problem (5.4) for the reference sequence

To make the closed-loop system stable we solve equations (5.36) and (5.37),

[z=1 0 M, + N/ [1-z710 =107
10 7! 0 1—z71t 0 1]
[1—-z"'0 Ny, + M,[z7' 0 =1107
0 1 -zt 0 z7! 0 1]
[1—-2z10 M, =M,[1-z10 T
K 1—2z71 0 -z
27 0 AN, =N [z"' 0 .
10 z7! 0 z!
They give the general solutions
M =M,=[1+(1—z""¢, (1 —z"Y¢,7,
(] —:_'_l)t‘,'1 1 +(1—Z")t22
Ny = -zl —z7't,

1

for arbitrary #;; € R*{z™'}.
Now we compute

B;=[z"'0 -
0 z71
H =J10],
01
o =[z7"7,
1
F =z,
1
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Ty 1 - Z_lfzz]

By, ' =T[107,
01

H™ =[10], d=1,
01

ot =[z'17, ¢ =1,
1 0

F* =[z"'1], f- =1,
1 0



and solve the optimality equation (5.35)

[(Z)*‘ (z)%]x +Yl-2zY)= [j“} ,

X = l+(1—z’1)t1 , Y= —z 71y
1+ -z 11—z,

for arbitrary #,, 1, € Rz~ ']. The solution X°, ¥° satisfying 2Y° < 1 is obtained when setting

t; =0, 1, = 0. Then
X°=[17, Y°=[0
1 1

which yields

and equations (5.38) become

and

They necessitate the choice
o - 1
typ =, fpy=1-—12z""v,

By =1y, fy = —z'n

for arbitrary vy, v, € R {z7'}.

Therefore,
Mi=M,=[1+(1-z""p, 1—2_'~2_1(1—2_1)u1 s
(1 -z, L=z (t—2z"")0,
Ny =N, =[1—z"py —z7! —z %,
—z ', 1+ z7%,

and all optimal controllers are given as minimal realizations of

R = M,N;! = N;'M, =
Tt+ (U =z Yo +z ", 1_
1~z 1ty '
L S 1
IR 1—z7 1ty
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The resulting control is
F 1
v= Mz 70 [ }
Po 1

E=N1£=[0], JE|2m =0+ 1=1.
Po

and the error

1
Even if the system & is a very simple diagonal system, the optimal strategy requires a controller
that cannot be made diagonal for any choice of v; and v,. It follows that the optimal closed-loop

system matrix K; cannot be diagonalized, either.

Example 5.10. Given a minimal realization of

1-z7! IR
-2zt o7 fz?
—\/2\(1—2_1) 1 0
over the field R, solve problem (5.4) for the reference sequence

z7' -2

The first equation (5.36) reads

P Ll I P

and it is equivalent to the set of polynomial equations
-1 -1 -1 =
270 my (1 —27) =1, z70m g 8 =0,

ng (1 —z71)

R Y

Ny = [1 0] ["1,11 "1,12]-
\/2\ (1 =z 1] m o R

07 ’;1,22=1,

where
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The solution is

mig =1+ =z"t;, m,=041,

and
mogg=1—z"%, n,=0-z""t,,
n,; =0, ni, =1,
that is,
My =1+ -zt —JA0 =21ty t;,],
Ny =

[1 —z7 'y —z7 'y,
VAQ =z = 2270 =27y 1 - Y2\ 27 (- 27ty
for any #,, t;, € R+ {z7'}. The second equation (5.36) becomes

[1-z1]N, + M, [z-l] =[1]

0

and its solution is
N, =14z vy,
M, =[t-(- Z"‘)v“ —012]

for any vy, vy, € R {71}
Mutual conditions (5.37) yield

Le 2t (Lm 2ty = 2\ (1= 271y,

=1—-z '~ (1 -z, + JAQ =z ey,

(=2t = —0,
and hence

Vi =~y

v =—(1—z"Y¢,.

It follows that

N, =1—-z"",

M, =1+ -z, (1-z711,].



Now compute

Q=1 ,  0r =TI 0], @*=[1 , o9 =1,
1—2z71 1—z711 1 —z!

S PR Ll PO |

frefi=1=zt, pg=zTt =2,

B, =[z"! , B =zt J2 (7 = 1)].
\/2\ z"‘(l — z"‘)l

H=z'-2, H'=1-2:"%, d=1
and solve equation (5.35), which is
-2 X 4+ Yz =21 -2 =
(=Y (1 +2y2) 7 = A - ).

We obtain

x =222y = ) (1= 2 Y

6
2 /
Y= - L 2H2INZ oo C oy,
V2 3

for arbitrary 7; € ER[zilj. The solution XO, 7O with 6v° < 2is

- 2 /
X0=2 6V2(1_Z_1)’ YOZ—:/%A-——%NZ'JMI

on setting t; = 0.
Now we have to satisfy equations (5.38). Computing

My =[1+(~ ?_1)t11 + (=) -z ],

Ny =[1—z1; —(1-y2)z7%%, ,
1=z = 2z (1= z7 )ty + (2= 2D 27 (1 = 27Ny,
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we get

"=+ -zt + (1= J2)(1L =zt (7 = 1) =
- 2;6\/2(1 e

[V +@+V2)z7t — 2272 + (2271 — 5272 + 227 %) ¢y +

H(2-2y)zt = (5-54)z2 2+ (2222 )¢, =

(oL g2y ' -2).
V2 3 ’

It can be seen that these equations cannot be satisfied by any stable rational functions ¢, and

t,,. Indeed, 7,4 and/or £;, would contain the factor 1 — z7 1 Therefore, our problem has no
solution.

Example 5.11. It is commonly asserted that when the system has poles on the stability boundary
that are to be compensated in the least squares sence, the closed-loop system shown in Fig. 10

cannot be stable but has itself the same poles. This example illustrates that it need not always
be true.

Consider a minimal realization of

oo U5
1 -zt

over R and solve problem (5.4) for the reference sequence
_1-05z7"
1405270
Solving the equation

05z M + N1 —z7%) =1

we obtain

M=2+(1—-z"t, N=1+z"'—05"%

for arbitrary z € §R+{z"1}.
Since

By=z% Bf=05, H=1, d=2,
0* =1-05z"1, F* =1, 0*=1-052"1,

g =1, fT=f3=1-2z"", py=1+05z"*
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we have to solve the equation
22X 4 Y(1 -z ) (14 05270 = (1 — 05271 (271 — 1)

and obtain

X

—05(1 -z + (1 -2z (1 + 0527w,

Y —(l —271)—2_20

I

for v € R[z~1]. The solution X°, ¥° for which 2Y° < 2 reads
X0 = —051-271), Y= —-(1-2z7%
and equations (5.38) become
05[2+ (L =z ] (1 = 05z71)(z7r = 1) = —=0-5(1 — z71),

[1+z7'=05z72](z7 ' = )= —(1 =z ") (L + 0'52‘1).

They yield
’ _ 1
o 1-052t
Then
= ff,l,i, N1 + 0527
1— 05271 1 — 05271

and the optimal controller is unique and is given as a minimal realization of

The pseudocharacteristic polynomial of the closed-loop system then becomes
C= (1 - z_‘)(l =+ 0'5271) +05z7% =1 —-05z"1,

which is stable. Further

U= — ", E=1-2z"", HE‘

2
min,=2-

Example 5.12. Given a minimal realization of

§=[z2 ’2"3] =0 [1 _2-1]-1

0 1
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over {R, solve problem (5.4) for the reference sequence

Equations (5.36) and (5.37) become

[Z_z 0]M| + N =1,

1 =z IN, + M[z7? 273 =10
0 1 01

1 —z7 V1M, = M,,
0 1

[z272 O] N, = Ny[z72 z7°].

and

The solution is

M, = [’11]5 Ny =1-z7%y,
LS}

N, = [1 —z7%y; z7' = z""t“_:l, M, [t“ — z7,,

— 272y, 1—z7%,,

for arbitrary #,4. t,; € R*{z~ B3
The optimality equation (5.35) is

272X+ Y2 -z =242,
the solution being
X=1+z"+Q2-2z%1,
Y=14z"1—-z"%
for any t € ER[Z_‘]. To satisfy 2Y° < 2 we have to set £ = 0. Then
X =1+4z1, Y'=1+42z"1
and relations (5.38) become
(2 +22")=1+2z7",

A~-zy)2+2z27) =1 +2z7)(2 - z7?).

195



They yield

tyy =05,
that is,

M, =[05 —z7't,,7], N, =[1-05z"2 z7! —05z7%].
1 — 27y 1= z73%y,

Therefore, the optimal controllers are given as minimal realizations of

[0'5 — z"tﬂ:l
R=L 231

1-052"2
and

5 -1 -1
U=[05 z tzx:I{L%{_’ E=1+z"", ”E"rzmzz.
t1|] 2—2z72

Note that the problem has a (stable) solution even though ¢~ = 2 + 2771,

6. DECOUPLING A MULTIVARIABLE SYSTEM
6.1. The inverse system

Problems related to system invertibility are of basic importance in system theory.
They have applications in system decoupling, decoding and signal recovering.

We first recall several algebraic concepts. Given a field § and a matrix 4 € §
the multiplicative inverse of A is defined as a matrix 4~' € §,, , such that

mms

A 'A = A4 =1,

The inverse exists if and only if det 4 # 0, or equivalently rank 4 = m, and it is
unique. It can be computed as

(6.1) PR E
detd’

where adj 4 is the adjoint of 4. 1e. the matrix of &, ,, whose (i, j}-th element is the
cofactor of the (j, i)-th element of 4, see [12]. When A™" exists, the A is said to be

invertible in §,, ,,.

196




If A€ &, we can define more general kind of inverses. A matrix 14 € &,,,; such
that
A4 =1,

is called the left inverse of A, while a matrix At € §,, ; such that

AAt =1,
is the right inverse of A.

The left inverse exists if and only if rank A = m and all left inverses are given as
(6.2) tA=(c4)'cC,
where C is a matrix in §,, ; such that the C4 is invertible in §,, .

The right inverse exists if and only if rank A4 = [ and all right inverses are given as

(6:3) At = B(4B)™1,

where B is a matrix in §,, ; such that the 4B is invertible in & ;.
When rank 4 = [ = m, there is a unique inverse 4 = At = 471
Given a matrix )
A=Ay + Az + Az + e Fualz Y,

the multiplicative inverse of 4 is again a matrix 47! € §,, .{z 7!} such that
p m,m

(6.4) A = A4 =1,
By definition, the inverse exists if and only if 4 is a unit of &, ,,{z "'}, that is, if and
only if the A, is invertible in §,, .. The inverse is unique and can be computed as
shown in (6.1).

When 4 € §,,,{z" '}, the left inverse of 4 is a matrix T4 € §,, ,{z~'} such that

(65) tAd =1, »
while the right inverse of 4 is a matrix A1 € §,, ,{z "'} such that
(6.6) AAT =1,.

The left inverse exists if and only if the A, is left invertible in §,, ;. The left inverse
is not unique and all left inverses are given by (6.2), where Ce §,,,{z7 '} is such
that the C4 is invertible in &, ,.{z~'}. The right inverse exists if and only if the A4,
is right invertible in §&,, ;. The right inverse is not unique and all right inverses are

given by (6.3), where Be §,, ,{z ™"} is such that the 4B s invertible in §,, .{z"*}.
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Of course, if rank 4 = | = m then 14 = At = A™* and the inverse is unique.
If I + m the existence of left inverse implies the nonexistence of right inverse, and
vice versa.

Somewhat limited interest is attached to this intuitive notion of inverse in the
system theory, however, since in a great number of cases no such inversion exists.
For instance, if the system contains a delay d > 0, its transfer function matrix has
order d and the inverse in the above sense does not exist. In this case the inverse
belongs to §, (z7!) rather that to &, ,{z”'}, i.e. it is not physically realizable.
Greater generality is obtained by considering “delayed” inverses defined below.

Given a system & over §& with impulse response matrix Se %,,,,,{z"}. Then any
system &, over & whose impulse response matrix S; € §,, ,{z~'} satisfies

(6.7) 8,8 = diag {z7%, 2712, ., 270

for some nonnegative integers L;, i = 1,2, ..., m, is called a delayed left inverse of &;
any system &, over § whose impulse response matrix S € §,, ,{z '} satisfies

(6:8) SS, = diag {z7%, z7%2, . 7%}

for some nonnegative integers R, j = 1,2,..., 1, is called a delayed rihgt inverse
of #. ’

Clearly, then, the cascade &, acts as a pure delay of L; time units in the i-th
channel and the cascade &%, acts as a pure delay of R; time units in the j-th channel.
Otherwise speaking, the left inverse system is realized as a delayed left inverse system
preceded by a bunch of L; anticipators in the i-th channel, while the right inverse
system is realized as a delayed right inverse system followed by a bunch of R; anti-
cipators in the j-th channel. It follows that the original input or output can be reco-
vered by using the number of anticipators shown above.

It becomes a question of practical importance and theoretical interest to find
a delayed inverse system which minimizes the number of anticipators required.
Such an inverse will be called the minimum-delay inverse. We shall see below that
the smallest numbers Ly, L,, ..., L,, denoted I, I,, ..., [, are invariants of & with
respect to left inversion and the smallest numbers R,, R,, ..., R, denoted ry, 15, ...
..., I, are invariants of % with respect to right inversion. They can be interpreted as
the inherent delays associated with the system, i.e. as the number of delayors which
no realizable left (right) inverse can remove from the i-th (j-th) channel.

Write
(6.9) : S =A7'B e §{z7},
rank B, =r.
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Then, by the definition of B, in (2.19),

(6.10) B, = [321],

0

where By, € &, ,[z27'], 0€ & -, [z '], and rank B,, = r.
If r = m,let

(6.11) det By, = 2%, ,
where (279, byo) = 1 and let b, ;;, i, j = 1,2,..., m, be the elements of adj B,.
Further let
by = Z_dz”}bll,ij , Bi=12,..,m,
where (z7%4, b, ;;) = 1 and denote

(6.12) z7 = (g gl z4my

That is, d,; is the greatest common delay of the i-th row of adj B, ;.
Write also

(6413) S =BA4;'e E,,m{zﬂ} R
rank By, =r.

Then, by the definition of B, in (2.19),

(6.14) B, =[By, 0],

where By, € &, [z7'], 0€ & n-,[z7"], and rank B, = r.
Ifr = 1, let :

(6.15) det By, = z7%,,
where (z79 byo) = 1 and let by ;;, i, j = 1,2,..., 1, be the elements of adj B,;.
Further let
by =z, Li=1,2,..,1,
where (z7%4, bf ;) = 1 and denote
(6.16) 27 = (g7, T T

That is, d, ; is the greatest common delay of the j-th column of adj By;.
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Since det B,, and det B,, are associates in F{z~'}, we have by, = b, up to units

of F{z1).
Theorem 6.1. Let & be a (not necessarily minimal) realization of
S=A'"B, e .{z7"}.
Then a minimum-delay left inverse &, of & exists if and only if
(6.17) rank B, = m.

All minimum-delay left inverses are given as (not necessarily minimal) realiza-
tions of

1 1 1 1 .
(6.18) §; = — diag {—“ s T —_d;} [adi By, T]4,,
bjo z

Z=du Smd22’

where T € §p,1-miz™ "} arbitrary.

The inherent delays of & with respect to left inversion are given as
(6.19) L=d—dy, i=12..,m.
Proof. To prove (6.17), let &, be a minimum-delay left inverse of &, i.e.
S8 = diag {z7", 27", .., 27"}

Then rank S = m. Since rank § = rank B, the necessity of (6.17) is apparent.
The sufficiency of (6.17) will be proved by construction. Let

rank B,(= rank B,,) = m,

(adj B;y) By; = det By,

and
S8 = det By, diag 1 , L yeees L
b20 Z7dn Z—-dzz z‘ﬂbn

on using (6.18) and (6.9), (6.10). Noting (6.11) we obtain

-d -a -

z z z
$,S = dia — ey —— 3
1 £ gmdu’ =TT —dam(




hence & is a delayed left inverse of & for

Li=d—dy, i=12,..,m.
Actually, it is a minimum-delay left inverse by virtue of the definition of d,; and,
therefore,

Li=d—dy,, i=12..,m,
are the inherent delays. O

Theorem 6.2. Let & be a (not necessarily minimal) realization of
S =B A7 eF .z}

Then a minimum-delay right inverse &, of & exists if and only if

(6.20) rank By = [.

All minimum-delay right inverses arez given as (not necessarily minimal) realiza-
tions of '

_ Tadj B, . 1 1 1)t
(6.21) ‘SZ = Az[ v diag Ta e e

where Ve &,_, {z7"} arbitrary.

The inherent delays of & with respect to right inversion are given as
(6.22) r=d—dy, j=12..1.
Proof. To prove (6.20), let &, be a minimum-delay right inverse of &, i.e.
SS, = diag {z™", 27", .., 27"}

Then rank § = [. Since rank S = rank B,, the necessity of (6.20) is apparent.
The sufficiency of (6.20) will be proved by construction. Let

rank B,(= rank B,,) = I,
then
By (adj Byy) = det By,

and

1 1 1
SS, = diag {.—d‘ , }det By,
z

—diz 7 San
z z bio
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on using (6.21) and (6.13), (6.14). Noting (6.15) we obtain

-d —d -d
sszzdiag{Z , ___}

Z7dn 71z z

hence S, is a delayed right inverse of S for
Ry=d—dy, j=12,..,1.

Actually, it is a minimum-delay right inverse by virtue of the definition of d,; and,
therefore,

rp=d—dy, j=12,..,1,
are the inherent delays. 0

It is to be noted that if S is a square nonsingular matrix, the minimum-delay left
inverse system exists if and only if the minimum-delay right inverse system exists and
both inverse systems are unique; however, they may be different in general. If S is
not a square matrix, the existence of minimum-delay left inverse implies the non-
existence of minimum-delay right inverse, and if either inverse system exists, it is not
unique.

Morcover, it is clear that [; =0, i=1,2,...,m, and r; =0, j=1,1,..,1,
implies the existence of the ““instantancous™ inverse defined in (6.4) or (6.5), (6.6).

The following corollary may be useful.

Corollary 6.1. Given an S € , ,,{z 7"}, where § is an arbitrary field with valua-
tion#".Then the Sy, if it exists, is stable (with respect to ¥) if and only if b, is stable
and Te & ,_,{z7'}. Similarly, the S,, if it exists, is stable (with respect to V")
if and only if by, is stable and V € Foi_, ,{z7*}.

If 1 = m, both 8, and S, are stable if and only if by (or b,,) are stable.

Proof. The proof is trivial in view of (6.18) and (6.21). If I = m, the matrices T
in(6.18) and Vin (6.21) disappear. Note that b,, and b, are associates in {z"'}. O

It is of great importance in some applications to find a minimum-delay left or
right inverse of minimal dimension. This may be a nontrivial problem when the
inverse system is not unique. The explicit formulas (6.18) and (6.21) for the inverse
systems are not convenient for systematic minimization of the system dimension.
Instead, we shall employ the machinery of linear Diophantine equations.

Theorem 6.3. Let. & be a realization of
S =By ez .

Then a minimum-dimension minimum-delay left inverse &, of & is given as
a minimal realization of
0-1y 0
§; = (Xx )Yz »
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where X‘;, Y3 is a solution of the linear Diophantine equation
(6.23) X, diag {z*, 2%, .., 2%} 4, — Y,2'8, = 0
such that @ det X§ = min subject to
(6.24) dadj X9) Y3 < ddet X7,

X9 and Y2 left coprime .

Proof. Write § = B,4;' and S, = X['Y,. Then

PR 2

_ - . 1 1 1
S8 = X7'Y,B,4;! =d1ag{ —,...,—}=
_ ldia {Zdu _d22 Zdzm}
= ] g z,..,

by (6.19) and hence X, Y, is a solution of equation (6.23). This equation is to be
solved for a solution X‘f, Y3 such that

38, = ddet X = min

subject to physical realizability condition, (6.24). ]

Theorem 6.4. Let & be a realization of
S= 7B, e i)

Then a minimum-dimension minimum-delay right inverse &, of & is given as
a minimal realization of

S, =Y} (X)),
where X3, Y is a solution of the linear Diophantine equation
(6.25) A, diag {z, 2%, .., 2"} X, — 2B, Y, = 0
such that @ det X§ = min subject to

(6.26) 0Y{(adj X3) < ddet X3,

X5 and Y? right coprime.
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Proof. Write § = A7 'B, and S, = Y,X;'. Then

SS, = A{'B,Y,X;' = diag { L i, —]—} =

)
r
7t

1
H d ~d digl
= ;dxag {29, 2%, 24

by (6.22) and hence X, Y; is a solution of equation (6.25). This equation is to be
solved for a solution X3, ¥{ such that

885, = & det X = min

subject to physical realizability condition (6.26). O
Equations (6.23) and (6.25) can be put to the unified form (1.5) by writing
(6.27) Y[ diag {z*, 2, ..., 2} 4, | = 0
—2'B,
and
(6.28) [A; diag {z%, z"2, .., 2%} —2'B,] X =0

respectively, where
X = [XZJ, Y=[X, v,].
Y,
Then the results developed in Chapter 1 can be applied to solve these equations.

It is to be noted that dimensions of &, and %, depend heavily on the numbers L;
and R;. In Theorem 6.3 and Theorem 6.4 we assume that the inherent delays /; and
r; are used, i.e. only the minimum-delay inverses are desired. However, considering
delayed inverses with L; = I; or R; = r; may further reduce the inverse system
dimension at the expense of increasing the delay.

Moreover, the minimal-dimension inverse is not unique, in general.

If we set '

Li=L,=..=1,=L

or R, =R, =...

i
=
i
=

we obtain the so called L-delay left inverse or R-delay right inverse. These special
kinds of (nonminimum) delayed inverses have been extensively studied in [36; 52; 53].
The problem of minimal dimension of such inverses is solved in [36; 61].
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Example 6.1. Given a realization of

L B )
e )

over R, find minimum-delay left and right inverses.
We shall first find the inherent delays of #. Since

B,, = [l z7! ], adj By, = [z'z(l -

0:"¥(1~:73% 0

—t

,1]
det By, =z %1 — z7%),

we have

d=2,
dzx =1, dp; =0
and hence the inherent delays of & with respect to left inversion are

=1, I,=2.

Similarly,

B,=[1 0 . adjB,, =[z"? (1 -=z"2 0],
(L - 272 —z73 1

det By, = z7%(1 ~ z72)

and
d=2,

d,=2, d,=0
implies that the inherent delays of % with respect to right inversion are
rh=0, r,=2.

Thus the the minimum-delay left inverse is a realization of




by (6.18); the minimum-delay right inverse is a realization of

1 —z7t z"z(l — z_‘) 0 1 1
S"[o 1 ][—z-3 1 FO 1—z°2

1 —z!
—-z7' 1 J

1-272

by (6.21) and both impulse responses are unique but different.
If we choose L= L; = L, = 2, R= Ry = R, = 2, we would obtain

z73 —z7!
-z73 1
S, =8, = e ,
but this is #ot a minimum-delay inverse.
Example 6.2. Given a realization of
z7 (1 - z7Y)
272
1 2—1(1 -z
s 772 [1 _ z—x]—l -
1-2z71 1
001 ~2z! -t
=10 —z}(1l-2z7Y 0
01 —z7? 0

over R. Find all minimum-delay left inverses and also a minimum-delay left inverse of minimal
dimension.

Since

B,y=1, adjBy,; =1, detB,, =1
we have

d=0, dyy =0, I, =0.

Thus all minimum-delay left inverses are given by '

S, =[1T, 1,][001—2z" =
10 —z73(1-2z7Y
01 —z72

=[T, T, (1—z %)=z =2z T, — 272 T,]
for arbitrary Ty, T, € ER{Z_ 1}, and the inverses are instantaneous.
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To minimize the degree of §; we have to find appropriate Ty and T',. This can be done syste-
matically by using Theorem 6.3. Write

z—1

1 .

2 z— 1] [z(z = 1)]*.
S = z

z(z — 1) 22

Equation (6.23) becomes

Y z(z—l) =0, Y=[X1 yz]»

—(z -1
-1
2
that is,
Y(1|=0
0
0
0
and
Y=[00 -1 o}Y.
01 -(z-1)0
10 z(z—-1)0
00 —z2 1

The general solution is

Y=[01¢t, t5],

Y=[t, t; —(z— Ut +z2(z — 1)t, — 2% 15]

for arbitrary #; € R[z.
It follows that
D¢ 1= [tz:l s

o=t —@E-0t,+zz-1)t, -z 1,].
The condition & det X; = min calls for

t,=1,+0, 1,eR.



Then the first condition (6.24) necessitates

th=7,€R, ty=1,N

and
—(z =Dy + 2z — 1)1, — 213 =14
Therefore,
Ty = —T2,
T3 = Tz,
Ty = Ty = —T,

and the minimum-dimension minimum-delay left inverse is given as a minimal realization of
=1
Sy =[] [=12 =1, 1] = [—1 =1 1].

Note that the inverse is unique and 85, = 0.

Of course, the existence of left inverse implies the nonexistence of right inverse of any kind.

Example 6.3. Consider a system & over 3, given by
s=[L_1ng
z

and find the minimum-dimension minimum-delay right inverse &, of &.
Since
s=1[z"0],
we have
B, =2z"', adjB,; =1, detB,, =z"%,
d=1, dy, =0
and obtain

ry=1.

No realizable inverse can remove this inherent delay.

To find a least dimension inverse, we solve equation (6.25).

[z —z 0] X=0,
which is equivalent to

[z00]X =0
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and

1

It follows that

for any 1, t, € 3,1z], and hence

X,=[t], Y.= [Z]

To satisfy § det X2 = min, we set
ty=T1,€3,, 7, +0.

Then physical realizability condition (6.26) necessitates 0t, < 0ty i.e. t, = 7, € 3,. As a result,
the minimum-dimension minimum-delay right inverse is given as a minimal realization of

L e

for arbitrary r € 3,. Note that the inverse of minimal dimension need not be unique.

6.2. The decoupling problem

A multivariable system is a collection of coupled subsystems. Thus a particular
input component may influence all output components. It would certainly be con-
venient for control purposes if a particular input component effected just the corres-
ponding output component and all others left unaffected. This motivates the follow-
ing definition.

(6.29) Stable decoupling problem

Given a closed-loop system configuration shown in Fig. 16, where & is a minimal
realization of Se &, ,.{z”'} and & is an arbitrary field with valuation #". Consider
the partition of the system output ¥ into I components

Y=y
Y2

Y1
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and the corresponding partition of the reference input sequence

W =|w;
Wi

Wi
Find a controller # which is a minimal realization of some
Re g, {z""}

such that the closed-loop system is stable (with respect to #7) and the j-th reference
input component w; does not affect the output components y; for i % j.

Fig. 16. Decoupled closed-loop system.

Since

Y=KW,

the stable decoupling problem calls for a diagonal matrix K,. In view of the ex-
pression
K, = SR(I, + SR)™!

it is intuitively apparent that 2 must be a kind of right inverse of & so that K; may
be a diagonal matrix. This inverse will be more restricted, however, due to the require-
ment of closed-loop stability.

Write
S=BA;" = A7'BeFua{z '},
where
(6‘30) B, =[B,, 0]
and

BiieFilz71],

rank By; = r.
Ifr=1llet by, i,j=12,..,1 be the elements of adj B;,. Further let

bli = (bl,lja b1,2/, ceny b,’,j)
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and denote
det By,

by;

(6.31) =boy, J=1,2,..,1.

That is, by, is a greatest common divisor of the j-th column of adj B ;.
Similarly, let a, ;;, i,j = 1, 2,..., ], be the elements of adj 4,. Further let

ay; = (al,ila Agiz, -0 a1,u)
and denote
t
(632) et s o =121
i

That is, a,; is a greatest common divisor of the i-th row of adj 4,.
Then we have the following result.

Theorem 6.5. Problem (6.29) has a solution if and only if rank B, = | and the
linear Diophantine equation

(6.33) diag {boys --., bor} Dy + Dy diag {aey, ..., dory = I
has a diagonal matrix solution Dy e &' {z""}, D, e §\{z'} such that matrices
MieFi{z7t, Ne@ (e} and Mye§!{z71), Noe @l {z7") exist and

satisfy the equations

(6.34) BM, + NA, =1,,

AN, + MyB, =1,

(6.35) A,M, = MyA,
B,N, = N,B,

and

. . 1 1 1
(6.36) My, = (adj B,;) diag {-—, —,...,—tD,

b11 blZ b]l
N, = D, diag {Al s L Y i—}(adj 4,),
ay gz ay

M, = Mu],
M21

M, e %:1{2—1} , M, e S’;»x,l{z_i} .

where
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The controller which stably decouples the closed-loop system is not unique and all
such controllers are given as minimal realization of

(6.37) R = M,N;'=N;'M, .
Moreover,
(6.38) K, = diag {boy, bos, .- bos} Dy ,

I, — K, = D, diag {ayy, agy, ..., do1} -
Proof. Necessity: Let the closed-loop system be decoupled and stable. Its stability
implies, by Theorem 4.5, that matrices M, € §,, {z7'}, N e & {z7"} and M, €
e T {z7'}, Nye §, {271} exist and satisfy (6.34) and (6.35). It follows that

K, =B M,,

I — K, = N4, .

Write

K, =B M, = [311 0] M, | =B M,
: M,

where By, € §,,[z7"], rank By; =rank B, =r and M eFh{z7'}, M, e
e F;_, {z™'}. Thus K, can be a diagonal matrix only if ¥ = I, i.c. only if rank B, = L.

Then B, € &, [z '] is a nonsingular matrix and
By = det By,(adj By,)"*.

Hence the M, must be of the form

. . 1 1 1
M,, = (adj B,,) diag {f——- S e —} D,,

bi b by

where D, € §;",{z7'} is a diagonal matrix. It follows that K, has the least possible
predetermination

K, = diag {bou bozs s boz} D,.

The K, being diagonal, the I, — K is also diagonal (and, of course, nonsingular).
We can write '

A, = (adj 4,)" ! det 4,
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and hence the NV; must be of the form

N1=Dzdiag{i, i,...,i}(adel),
3T ais asy

where D, € §;',{z™'} is a diagonal (and also nonsingular) matrix. It follows that
I; — K, has the least possible predetermination

I, — K, = D, diag {ay;, dg3, - .-, oy} -

We conclude that (6.33) and (6.36) hold.

Sufficiency: Let rank B, = I. Further let matrices M, € & {z7'}, Ny e &' {z7"}
and M, e & {z7"}, M, e§,r,.{z""} and diagonal matrices D, e & {z"!}, D, e
€ §{z™"} exist and satisfy (6.33) through (6.36).

By virtue of (6.34) and (6.35) the closed-loop system is stable and

K, =BM,, I,—K, =NA,.

Now rank B, = | implies that By, € &, [z *] is a nonsingular matrix and using
(6.36) we obtain

. . 1 1 1
K, = B;{M,, = B,,(adj B,,) diag PSRk D, =

11 by, by
= diag {boxa bozs -y boz} D,

I, — K, = NyA, = D, diag {i‘, L, cen *1*

a1 3% ay

} (adj A)) 4, =
= D, diag {a¢,, g3, ..., Aoy} -

Thus the K, (and also I, — K,) is a diagonal matrix, i.e. the closed-loop system is
decoupled in addition to being stable.

To find all controllers which stably decouple the closed-loop system, we shall
apply (4.66) and write
R = M,N{' = N;'M,

where M,, N, and M,, N, are given by (6.33) through (6.36). O

It is to be noted that diagonal matrices D, € &/ ,{z7'} and D, e §,{z™1} exist
and satisfy equation (6.33) if and only if

(agnboy =1, i=12,..,1,
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modulo units in §*{z7'}, that is, if and only if

(a(;ia bl;i) =1, i=12..,1,
modulo units in Fz71].
When I = m (the S is a square matrix) then B, = B,, M, = M, and the first

equation (6.34) is equivalent to equation (6.33) when relations (6.36) are taken into
account. The decoupling controllers are then given simply as

(6.39) R = M,N{! = 4,M AT'N]' =
= A,(adj By,) diag {L Y 41—} diag {1— Y e j-} D,D;'.
by by, ayy ayy

When [ £ m we cannot avoid solving the first equation (6.34) because D, specifies
just the matrix M, not the M,,. The submatrix M,, is determined solely by the
stability considerations.

Example 6.4. Given a minimal realization of

e = RSy

1 -zt z7'(1 -z |0 1

1=zt =1z 270
=lo 1 0z~ 2z

over the field ;& valuated by (2.25), find all decoupling controllers.
We have

rank B, =2, By, =B,
adj By; = [:z“‘(l ~z7Y) —z7Y1 - z“l)J, det By, = z7%1 — z71),

0 z71
(6.40) byy=z'1-z"Y, b,=2z",

boy =271, by, = z7}(1 — z7Y)
and

adjd, =[11—-2z"1], detd,; =1~z
01—2z"1

(6.41) a,; =1, A, =1—271
oy =1—2z"%, ag,=1.

214



Equation (6.33) becomes

1o D, +D,[1—z10]=[10
0 z1-:z9 0 1 01

and its general solution for diagonal Dy and D, is

(642) D, = [1 + (1 —z71) 0], D, = [1 ~z71% 0

0 t, 0 1—z7(1-2z71) t2:|

Since the § is a square matrix, the solution of the first equation (6.34) is obtained via (6.36) as

[(1) + (1 =z —(1 - z_')tz:l,

L5}

for any #;, t, e R {71}

M,

1l

N, [1 -z 1l—z7t—z7 (1 =27Y t‘:|.
0 .

1—-z71 -z Y¢,

The second equation (6.34) becomes

and yields

N, = [l + z7 'y, z7 My,

27y L+ 27 (1= 27 0y |

— Uy

M, = [1 — (1 =z vy —v,z:, :

U2
for arbitrary v;;e R+ {z7*}.

Mutual relations (6.35) then necessitate the choice

vy =1y, vp=—(L—z")+ (=27 (6 - 1),
Vi = —1p,

that is,

0 t,

M, = [1 b (lm Yy 1 — 2 = (L= 2 ) (g — rl)],

1=z 2z

N, = [1 oy M — ) 2 (- 2 (g - tl):l.
0
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Our problem has a solution and all decoupling controllers are given by (6.39) as minimal

realizations of

R= [(1) -zt (1)] [3-1(1 -z ~;:(1 - z'l)] [3'1(1 -z cz){l" .

.[1 -zt 0]“11)1151 =[1 —(t~ z-l)z]D,D;‘,

0 0 0 1

where D, and D, are given in (6.42)
Then

K = [z"l +zM(1-z"Y¢g 0 ]

0 27 (1 -z"Y
is indeed diagonal. '

Example 6.5. It should be noted that it may be impossible, in some cases, to make the de-
coupled system stable. To demonstrate this phenomenon, consider the system over R valuated
by (2.25) that is a minimal realization of

BB e

1 -zt —z7! z"l(l - z“l) 0 1

_Jos(t—z7Y) —05(1 — 7Y [z o
T 105 00 0 z Y{1-zY]
We compute

By, =[ A (e z—')], adj By, = [z:1(1 — 27 ;_21-1(1 - z")],

'—*Z-l z—l(l — z—l) 1

z

rank By, =2, detBy =2z"%1 ~z7Y),
by, =271, b, =2z7%,
boy = 22711 — 27Y), by =227 (1 = z7Y)
and
Ay = [0»5(1 —z71) —05(1 ~ z-‘)], adj 4, =[ 05 0-5(1 — z-l)],
05 05 —0:50:5(1 — z7Y)
det A, = 0-5(1 — z71),
a;; =05, a;,; =05,

ag, =1 —2z"1, ag,=1-2"1,
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Since
(aon bo1) =1-z",

(“02’ boz) =1-2z!

are not units of R*{z7!}, equation (6.33) can have no solution. Therefore, the system cannot
be stably decoupled.

6.3. Decoupling and optimal control

The ultimate purpose of decoupling a multivariable system is to simplify its control.
It is often convenient in practice when an input component affects just the correspond-
ing output component and no others. Such a system, in fact, acts as the direct sum
of single-input single-output subsystems.

Given a system & which is a minimal realization of

S = BA;' = 4]'B, e‘,},,m{z”} .
Write
By = [B,, 0]
and let rank By, = I. Denote

b,; = greatest common divisor of the j-th column of adj B, ,

a,; = greatest common divisor of the i-th row of adj 4,

and

det By, det A4
0j = ————, doj = ——.

bij a;

Further let !
D e {z7'}, DyeF{z7"}
be diagonal matrices and
M e &:.I{Zﬂ} , Nye 3’:1{2—1} 5
MyeFndz7}, Me, . {z7"}
be matrices satisfying the equations
(6.43) BM, + NA, =1,
AN, + M,B, =1,
A:M, = M,A,,
BN, = N;B;,
(6.44) diag {boy, ..., boi} Dy + D, diag {ae;. ..., aq)} =1,
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and

(6.45) M, = (adj B,,) diag {El_ -1-} D,

11 bll

N; = D, diag {—1—, ,—L

a1 a

M, = [Mu:l.
M,
All controllers # which stably decouple the closed-loop system are given by
Theorem 6.5 as minimal realizations of

}(adel),

where

(6.46) R=M,N{*=N;'M,.
The degrees of freedom in the controllers # can be utilized for optimization. The

problem is to find appropriate D, and D, so that an optimality criterion may be
minimized. We denote

(6.47) D.D;* = diag {S—‘ 2, ., i’} )

rr "
where s; and r,, i = 1,2, ..., I, are polynomials coprime in F[z~*]. Then
SR = BiA;'M,N; ' = B A; 4, M A7 'N; Y = By My AT N =

= diag{b_%i, Efﬁ}

»
oy T'y aor Ty

by (6.46), (6.43) and (6.45), (6.47).

We have seen that the a,; and by, need not be coprime polynomials. Thus denote

[ TR

after cancelling the common factors. In fact, only stable factors may cancel since
otherwise the closed-loop system could not have been stably decoupled. Hence

SR = diag {215 bis
Ay ¥y ary
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and

. bys b
K, = SR(I, + SR)™! = diag { —215t 2% L
a;ry + bys; ajr; + b,

The above formulas can be interpreted as follows. The closed-loop system, as far
as its input-output properties are concerned, acts as the direct sum of [ single-input
single-output closed-loop systems, each containing a virtual system %, to be controlled
given by

S, =2t i=1,2,...,1,

and a virtual controller #; given by

s
R, ==, i

i
I

1,2,....1.

Therefore, the system & itself can be viewed as the direct sum of the virtual systems
& ; and the optimal control of the decoupled closed-loop system can be obtained by
working separately on each & ;. For this purpose the theory developed in [30; 31;
32; 33; 34] can be used.

It should be stressed that & can be viewed as the direct sum of the above virtual
subsystems .#; only relative to the external properties of the closed-loop system.
The internal behavior of the closed-loop system cannot be described by the virtual
subsystems &, and the methods developed in Chapter 4 for general multivariable
systems have to be applied.

For example, the pseudocharacteristic polynomial ¢ of the decoupled system is not
equal to the product of the pseudocharacteristic polynomials ¢; of the individual
virtual closed loops. Example: Given an § valuated by ¥~ and a minimal realization of

S=[1—-2z10 “fz7to 0
0 1 -zt 0 z'o

over &, then a minimal realization of

stably decouples the closed-loop system for any stable (with respect to ¥~ ) polynomial

te §lz~'] Indeed,
K, =[z1t0
0 z7!
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and the decoupled system consists of two virtual systems with pseudocharacteristic

polynomials ¢, = 1, ¢, = 1.
The pseudocharacteristic polynomial ¢, however, is given by (4.26) as

c=det|t O|=1¢.
01

When synthesizing the optimal controls we need not know the pseudocharacteristic

polynomial as such, it is sufficient to know that it is stable.
The purpose of this section is to show that the decoupling imposes certain restric-

tions on the existence and attainable performance of the optimal controls and also
to show how the optimal controller should be found.

Given a reference input sequence

W = %58'1,1{2—1} s

for the decoupling purposes we shall partition the Q as

0 =4,
g2
9
and let
wo=2=0 o,
p b

after cancelling the common factors, i.e. (p;, ¢;) = |

For convenience, let
(ai’Pi) =d;, i=12,..,1,
and write
a; = aod;,
P = dipio -

The error sequence E can be conformably partitioned as

E=|e
€2
i
o
e SN
| ‘\\“
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