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Fuzzy Metrics and Statistical Metric Spaces 

IVAN KRAMOSIL, JIŘÍ MICHÁLEK 

The aim of this paper is to use the notion of fuzzy set and other notions derived from this one 
in order to define, in a natural and intuitively justifiable way, the notion of fuzzy metric. The 
notion is then compared with that of statistical metric space and both the conceptions are proved 
to be equivalent in certain sense. 

The adjective "fuzzy" seems to be a very popular and very frequent one in the 
contemporary studies concerning the logical and set-theoretical foundations of 
mathematics. The main reason of this quick development is, in our opinion, easy to 
be understood. The surrounding us world is full of uncertainty, the information we 
obtain from the environment, the notions we use and the data resulting from our 
observation or measurement are, in general, vague and incorrect. So every formal 
description of the real world or some of its aspects is, in every case, only an approxima
tion and an idealization of the actual state. The notions like fuzzy sets, fuzzy orderings, 
fuzzy languages etc. enable to handle and to study the degree of uncertainty mentioned 
above in a purely mathematic and formal way. A very brief survey of the most interest
ing results and applications concerning the notion of fuzzy set and the related ones 
can be found in [l]. 

The aim of this paper is to apply the concept of fuzziness to the clasical notions 
of metric and metric spaces and to compare the obtained notions with those resulting 
from some other, namely probabilistic statistical, generalizations of metric spaces. 
Our aim is to write this paper on a quite self-explanatory level the references being 
necessary only for the reader wanting to study these matters in more details. 

Definition 1. Let I be a non-empty set. A fuzzy set A in X is a pair <X,/X> 
where fA is a function defined on X and taking its values in the set <0, 1> of reals. 

Intuitively speaking a fuzzy set is defined, supposing a set X is given and to every 
element of this set a real non-negative, not greater than 1, is ascribed expressing the 



degree or the likelihood of the membership of this element in the considered fuzzy 
set. The sets in the "classical" sense can be considered as a special case of fuzzy sets, 
especially those for which fA takes only values 0 or 1, as in this case fA reduces to 
a characteristic function defining a subset of the set X. Therefore fA is usually called 
the (generalized) characteristic function of the fuzzy set A in X. 

In the following the basic set X is considered to be fixed, so instead "fuzzy set 
in X" only the term "fuzzy set" will be used, fA being an exhaustive characteristic 
of the fuzzy set A. 

Definition 2. The binary relations of equality ( = ) and inclusion ( c ) , unary 
operation of forming the complement and binary operations of forming the union 
and intersection (u , n ) for fuzzy sets are defined as follows: 

(1) A = B, if for all x e X fA(x) = fB(x), 

(2) Li°M = * - LtW for all xeX, 

(3) A c B, if fA(x) = fB(x) for all xeX , 

(4) jxU*) = M a x (L i (4 jB(X>) ^ all xeX, 

(5) f*nB(x) = Mm(fA(x),fB(x)) for all xeX. 

Clearly, these relations and operations are a generalization of those set-theoretic 
ones and reduce to them supposing fA, fB take only the values 0 or 1. As an illustra
tion, the well-known de Morgan laws are valid even for fuzzy sets. Actually, 

(A u B)c = Ac nBc, 

as 

1 - Max (fA,fB) = Min (1 - fA, 1 - fB) 

and 

(A n B)c = AcuBc 

as 

1 - Min (fA,fB) = Max (1 - fA, 1 - f B ) . 

Lemma 1. Let A, B be fuzzy sets. Then A = B if and only if the systems of sets 

STA = {{x: x e X,fA(x) < a}, a e (0, 1>} , 

9>B = {{x:xeX,fB(x) < a } , a e ( 0 , 1>} 

are identical for every a e (0, 1>. 



338 Proof. If A = B, then for all x e X,fA(a) = fB(x), so for a e (0, 1> 

{x: x E I , / A ( X ) < a} = {x: xeX,fB(x) < a} , 

which implies the identity of SP
A and S"B. In the opposite direction equality y A = yB 

assures fA(x) = /f l(x) for all xeX, hence A = B. Q. E. D. 
This assertion enables to characterize a fuzzy set A up to relation of equality of 

fuzzy sets by the system S"A of classical sets. 
The notion of fuzzy set can be directly extended in such a way that the notions of 

fuzzy relation and fuzzy function will be obtained. A "classical" n-ary relation R 
defined on the set X is clearly defined by a subset of the Cartesian product X", namely 
by the subset of those n-tuples of elements of X, for which relation R(xt, x2,..., x„) 
holds. 

Definition 3. An n-ary fuzzy relation R in the set X is a fuzzy set in the set X", 
i.e. it is a pair < Z " , / R > , where fR maps the n-tuples of elements of X into <0, 1>. 

Again, considering only the function on X", the values of which are only 0 or 1, 
the notion of fuzzy relation reduces to that of "classical" relation. 

Now, it is the very time for us to concern our attention to the notion of metric and 
metric spaces. We shall start from the well-known definition of usual metric. 

Definition 4. Metric Q on the set X is a function defined on the Cartesian product 
X x X and taking its values in the set £ . of reals such that the following conditions 
are valid: 

(1) Q(X, y) 2: 0 for all x, y e X (positivity), 

(2) Q(X, y) = 0 if and only if x = y, x, y e X (identity), 

(3) Q(X, y) = g(y, x) for all x,yeX (symmetry), 

(4) Q(X, Z) ^ Q(X, y) + g(y, z) for all x, y, z eX (triangle inequality). 

It is well-known fact that in practice when measuring a distance we are not able, in 
general, to measure it precisely. This can be explicitly seen from the fact that mea
suring several times the same distance the results may differ. Usually the average 
value is taken as an appropriate approximation in such a case. There are at least 
two approaches enabling to describe and to handle somehow this situation. The 
first, probabilistic and statistical approach has been developed already for many 
years; a brief survey can be found in [2]. The other, fuzzy approach, will be explained 
later, it seems to be, as far as the authors know, an original one. 

The probabilistic approach is based on the idea that the distance d(x, y) of two 
points x, y is an actually existing real number, however, it is, in general, beyond our 



powers and abilities to obtain its precise value. Our attempts to measure this distance 339 
are, from probabilistic point of view, nothing else than random experiment that can 
be formally described by random variables. If some conditions are satisfied (e.g. if 
these random experiments are independent and can be repeated potentially infinite 
many times) we are able, for every positive e, 8, to obtain a real d0 such that the 
sentence "with a probability at least 1 — e the distance d(x, y) differs from d0 by 
less than 5 "will be valid. And the sentence of this type is the maximum we are able 
to obtain, no other information concerning the value d(x, y) is obtainable. 

From this intuitive explanation follows that any actually obtained value re
presenting, in some measure, the value d(x, y) is, in fact, a value taken by a random 
variable and can be, therefore, characterized by its distribution function. So the 
following definition seems to be quite understandable. 

Definition 5. A statistical metric space over the set X is a pair <X, J^) where J5" 
is a mapping ascribing to every pair x, y of elements from X a distribution function 
!F(x, y) (.) (denoted also Fxy(.)) under the condition that the following is valid: 

(1) Fxy(k) = 1 for all k > 0 if and only if x = y, x, y e X , 

(2) Fxy(0) = 0 for all x,yeX, 

(3) Fxy(k) = Fyx(k) for all x, y e X, k e (- oo, oo), 

(4) If Fxy(k) = 1 and Fyz(fi) = 1, then Fxz(k + p) = 1 . 

Considering the value Fxy(k) as the probability that the obtained value of distance 
is smaller than k the conditions (l) — (3) of the foregoing definition can be seen to 
be direct generalizations of positivity, identity and symmetry conditions in the de
finition of "usual" metric. As far as the triangle inequality is considered the situation 
is not so simple. Condition (4) expresses the weakest request, namely: if we are sure 
that d(x, y) is smaller than k and if we are sure, at the same time, that d(y, z) is 
smaller than /., then we can be sure that d(x, z) is smaller than k + \i. Clearly, a 
demand of such a type must be admitted as its ommiting could lead to a contradiction 
with the usual definition of metric, which ought to be embeddable in our definition 
of statistical metric spaces supposing the distributions Fxy are those concentrated 
in one point. For more details concerning this case see [3]. 

However, from the other side there are many reasons supporting the opinion that 
this extension of the triangle inequality is too weak to lead to some interesting results. 
Some discussion concerning this problem can be found in [2]. Probably, the most 
serious objection concerns the fact, that the triangle inequality generalized in such 
a way does not bring any limitation for those values of A, for which Fxy(k) < 1, being 
for this case vacuously satisfied. If, e.g., Fxy(k) < 1 for any x, y e X, k e ( — oo, oo) 
(and this is, in general, the case), then triangle inequality is an empty, tautological, 



condition. In the paper [3] it is proved that for every statistical metric space there 
exists a function TF defined by the following equality: 

TF(a, b) = M(Fxy(X + n) : FXZ(X) = a, Fyz(n) = b). 

This function TF is defined on Cartesian product <0, 1> x <0, 1> and, taking its 
values in the interval <0, 1>, satisfies the following conditions: 

(1) TF(a, b) = TF(c, d) for a = c,b = d, 

(2) TF(a, b) = TF(b, a) , 

(3) 2X1, 1) = 1, 

(4) TF(Fxz(X),Fyz(»)) = Fxy(X + n). 

This way of reasoning gave arise the concept of Menger space. 

Definition 6. Menger space is a pair {X, J*> satisfying the same conditions as 
statistical metric spaces the condition (4) being replaced by the following one: 

(4M) Fxy(X + n) = T(FXZ(X), Fyz(fi)) for all x,y,zeX, X, n e ( - oo, + oo), 

where Tis a binary real function satisfying for all a, b, c, de <0, 1> 

(a) T(a, 1) = a , T(0, 0) = 0 

(b) T(a, b) = T(c, d) for a = c, b = d 

(c) T(a, b) = T(b, a) 

(d) T(a,T(b,c)) = T(T(a,b),c). 

The fuzzy approach to the notion of distance follows from the idea that the distance 
between two points is not an actually existing real number which we have to find 
or to approximate, but that it is a fuzzy notion, i.e. the only way in which the distance 
in question can be described is to ascribe some values from <0, 1> to. various sentences 
proclaiming something concerning this distance. Namely, in the following we shall 
limit ourseselves to the assertions claiming the considering distance to be smaller 
than an a priori given real. As a justification for this limitation can serve the 
following assertion. 

Lemma 2. A metric Q on the set X is uniquely determined by the following relation 
Re <= X x X x Ex: for all x, y e X, X e Et relation Re(x, y, X) is valid if and only 
if Q(X, y) < X. 



Proof. Let QL, Q2 be two different metrics on X. Then there exists at least one 34 
pair <x, y} eX x X such that QL(X, y) 4= Q2(X, y), suppose QL(X, y) < Q2(X, y). 
Then 

(x, y, Q2(X, y)y 6 RQX , but 

<x, y, Q2(x, y)y i RQ2 , i.e. RQL 4= RQ2 . Q. E. D. 

This assertion leads directly to the following definition. 

Definition 7. Fuzzy metric R on the set X is a fuzzy set in the Cartesian product 
X x X x EL the characteristic function fR of which satisfies: 

(1) fR(x, y, X) = 0 for all x,yeX and all 1 ^ 0 , 

(2) fR(x, y, X) = 1 for A > 0 if and only if x = y , 

(3) fR(x, y, X) = fR(y, x, X) for all x, y e X and all Xe EL, 

(4) jii(x, z> A + /0 iS S(fR(x, y, X),fR(y, z, n)), where S is a measurable binary 
real function defined on <0, 1> x <0, 1> taking its values in <0, 1> and such 
that S(l, 1) = 1, 

(5) fx(x, y, X) is for every pair <x, y> e X x X a left-continuous and non-de
creasing function of X such that lim/j^x, y, X) = 1, if A —> oo. 

All the conditions mentioned in the foregoing Definition 7 seem to have a quite 
natural interpretation. Conditions (l) — (3) generalize the conditions of identity, 
non-negativity and symmetry in the usual definition of metric. These conditions 
express also the fact that the properties of identity, non-negativity and symmetry 
are generalized, but are not subjected to some fuzziness or uncertainty, only the 
values of distances are fuzzy notions. Clearly, replacing (2) by 

(2') fR(x, x,X) = l for all x e X and X > 0 

we would obtain the notion of fuzzy pseudo-metric. 

Condition (4) expresses probably the most weak form of the triangle inequality 
saying that the likelihood of the fact that the distance between x and z is smaller 
than X + fi is a function of likelihoods of the two particular assertions under the 
condition that if we are sure that Q(X, y) < X and g(y, z) < n we can be also sure 
that Q(X, z) < X + fi. Of course, this condition may be subjected to the same criticism 
as in the case of the statistical metric spaces and it is possible to modify our definition 
of fuzzy metric supposing S satisfies some more conditions. 

Finally, (5) expresses the fact that if we believe, in certain degree, that a distance 
is beyond a limit, we believe also, in the same or greater degree, that this distance 



is beyond any larger limit. Written in a slightly precized form: if the rea l j^x , y, X) 
is understood as a degree of certainty that the distance Q(X, y) is smaller than X, 
it seems to be quite natural to request that for any n 2; X the inequality fR(x, y, X) ^ 
= A(x> y> M) should be valid. Hence, for every pair <x, y} e X x X the function 

fR(x, y, X) should be a non-decreasing function of X. The set of discontinuity points 
of such a function is at most countable, in every point of this type we define the 
function fR to be a left-continuous one. Left continuity is chosen to enable to under
stand fR(x, y, X) as the degree of our belief that the distance between x and y is 
smaller than X. Clearly, it is also possible to suppose fR to be right-continuous in X 
and to interprete the value fR(x, y, X) as the degree of our belief that the distance in 
question is smaller than or equal to X. The natural assumption of finiteness of any 
distance justifies the condition concerning the limit value of jR(x, y, X). 

Theorem 1. Any fuzzy metric R defined on X is equivalent to a statistical metric 
space <Z, IF} in the sense that for all x, y e X and for all X e (— oo, oo) 

fR(x, y, X) = Fxy(X) . 

Proof. Let R be a fuzzy metric on X. The conditions imposed to fR imply that 
fR(x, y, X), considered for any fixed pair <x, y> e l 2 as a function of X, posesses 
all the properties which a distribution function is to posess. Hence, mapping J* 
ascribing to <x, y} the function Fxy(X) = fR(x,. y, X) defines a requested statistical 
metric space <Z, J^> on the set X. On the other side, considering a statistical metric 
space <Z, #•> and ascribing to every triple <x, y, X) from X x X x Et the value 
Fxy(X) € <0, 1> we obtain, as can be easily seen when looking at the condition (1) — (5) 
of Definition 6, a fuzzy metric. 

Corollary. Any special type of statistical metric spaces resulting from imposing 
some more conditions on the function T is equivalent, in the same sense as above, to 
the special type of fuzzy metrics resulting from imposing the same conditions on the 
function S. 

Theorem 2. Let R be a fuzzy metric on the set X satisfying the generalized triangle 
inequality in the sense of Menger 

fR(x, y,X + n) ^ T(fR(x, z, X),fR(y, z, fi)) , 

where T is continuous and enables, for every n 2: 2, to define a Lebesgue-Stieltjes 
measure on the Cartesian product <0, 1>". Then it is possible to construct a random 
function R(co, x, y) defined, for every <x, y>, on a probability space (Q, £f, P) and 
such that 

P({co : R(co, x, y) < X}) = fR(x, y, X), 



P({co : R(co, x, y) < X + /.}) ^ T(P({cw : R(co, x, z) < X}), 

P({co : R(co, y, z) < n})) 

for every x, y, z eX, X, fieEt. 

Proof. Let xu yu x2, y2, ..., x„, yn eX. For every such 2n-tuple we define the 
function 

FXiyi...Xnyn(Xt, X2, ..., X„) = Tn(Fxiyi(Xt), ..., FXnyn(Xn)) 
where 

Fxtyt(Xt} = fR(xt,yblt), . = - l , 2 , . . . , n , 
and 

Tn(at, a2, ..., an) = T(au T(a2, T(a3,..., T(a„_1; an)...))). 

The role of the basic space Q is played by the space of all real functions defined on 
X x X. The only thing which rests is to check the Kolmogorov consistency con
ditions. Q. E. D. 

The previous assertions deserve some more comment. It is a well-known fact, 
see e.g. [2], that it is possible to generalize the usual notion of convergence in such 
a way that the obtained generalization will be adequate for statistical metric spaces. 
Moreover, if T is continuous and satisfies the conditons of Menger space, then the 
covergence in the considered statistical metric space implies the Levy's convergence 
of distribution functions, see e.g. [4]. Theorem 1 and its corollary enable, hence, 
to "translate" the notion of convergence and other resulting from it topological 
notions into the language of fuzzy sets, fuzzy relations and fuzzy metrics. The authors 
feel that there is an intuitive difference between probability and fuzziness, even if 
both of these notions wish to describe some aspects of uncertainty connected with 
events and notions in surrounding us world. The further process of introducing 
fuzziness into the topological spaces theory seems to be a way enabling to achieve 
explicit results claiming this difference. 

There are, as far as the authors know, two papers dealing with fuzzy topological 
spaces. In [5] the author follows the pattern used in the process of abstract definition 
of topological spaces and investigates in which measure this pattern can be followed 
supposing that instead of "usual" sets the fuzzy sets are considered. Another idea 
is explained in [6], where sets are again the "usual" ones, however, the property of 
belonging to the closure of a set is subjected to a fuzzification, in other words, the 
closures of sets are fuzzy sets. It is proved, in [6], that this approach leads to some 
interesting results which are expressible in the terms of probability theory but which 
have not been studied or proved when some attempts to apply probability theory 
in topology were considered. 

(Received April 8, 1974.) 
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