KYBERNETIKA --- VOLUME // (1975), NUMBER 3

A Note on the Exponential Stability of a Matrix Riccati Equation of Stochastic Control

JERZY ZABCZYK

A general matrix Riccati equation of stochastic control is considered. It is proved by a new method that, under certain assumptions, the solution of such equation tends to the equilibrium point exponentially fast.

1. INTRODUCTION

The object of this paper is to prove a theorem concerning the asymptotic behaviour of the solution of the following matrix Riccati equation

(1)
$$\frac{\mathrm{d}P}{\mathrm{d}t} = A^*P + PA + \pi_1(P) + Q - PB[R + \pi_2(P)]^{-1} B^*P, \quad t \ge 0,$$

with the initial condition $P_0 \ge 0$. Here π_1, π_2 are linear and monotonic transformations, which map the space \mathscr{E}_n of all symmetric $n \times n$ matrices into the spaces \mathscr{E}_n and \mathscr{E}_m respectively of all $n \times n$ and $m \times m$ symmetric matrices. A and B are respectively $n \times n$ and $n \times m$ matrices. We shall assume that $n \times n$ matrix Q and $m \times m$ matrix R are positive definite. This assumption is rather restrictive (see, for instance, the appropriate theorems in [1]), but the aim of the paper is to present a new method rather than to prove the strongest theorem. The point (b) of the Theorem below is new.

2. STATEMENT AND PROOF OF THE BASIC RESULT

Let \mathscr{K}_n denote the cone of all positive semi-definite $n \times n$ matrices and let S be a transformation $S: \mathscr{K}_n \to \mathscr{E}_n$ given by the following formula:

$$S(P) = A^*P + PA + \pi_1(P) + Q - PB[R + \pi_2(P)]^{-1} B^*P$$

We are going to prove the following theorem:

Theorem. Let Q > 0, R > 0.

a) There exists at least one solution $\overline{P} > 0$ of the equation:

$$S(P) = 0$$

b) If $\overline{P} > 0$ is the solution to (2) and $P_0 > 0$ then the solution $\{P_i, t \ge 0\}$ of (1) tends to \overline{P} exponentially fast as $t \to +\infty$.

Remark 1. The point a) of Theorem is a special case of well known results (see [1]), it is also a consequence of b), therefore it remains to prove the point b).

Lemma 1. Thre transformation S is concave.

Proof. We have to prove that if $\alpha \ge 0$, $\beta \ge 0$, $\alpha + \beta = 1$, $U \ge 0$, $V \ge 0$, then

$$S(\alpha U + \beta V) \ge \alpha S(U) + \beta S(V).$$

For any $m \times n$ matrix K let us define the transformation $\Psi_K : \mathscr{E}_n \to \mathscr{E}_n$ by the following formula:

$$\Psi_{K}(P) = (A - BK)^{*} P + P(A - BK) + Q + \pi_{1}(P) + K^{*}[R + \pi_{2}(P)]K.$$

Then, see [1, identity 3.2],

$$S(P) = \Psi_{K}(P) - (K - K_{P})^{*} [R + \pi_{2}(P)] (K - K_{P}),$$

where

$$K_P = [R + \pi_2(P)]^{-1} B^*P.$$

From this we obtain that for all K and $P \ge 0$: $S(P) \le \Psi_{K}(P)$, and that $S(P) = = \Psi_{K_{P}}(P)$. Thus

$$\begin{split} S(\alpha U + \beta V) &= \Psi_{K_{\alpha U + \beta V}}(\alpha U + \beta V) = \alpha \Psi_{K_{\alpha U + \beta V}}(U) + \beta \Psi_{K_{\alpha U + \beta V}}(V) \geq \\ &\geq \alpha \Psi_{K_{U}}(U) + \beta \Psi_{K_{V}}(V) \geq \alpha S(U) + \beta S(V) \,. \end{split}$$

Remark 2. A special case of the above lemma $(\pi_1 \equiv 0, \pi_2 \equiv 0)$ has been proved by many authors (see for instance [2]) but by different methods.

The proof of the lemma below was given (implicitely) in [1].

Lemma 2. If $P_0^1 \ge P_0^2 \ge 0$, then the solutions $\{P_t^1; t \ge 0\}$, $\{P_t^2; t \ge 0\}$ of (1) subject to the initial conditions P_0^1 , P_0^2 satisfy

$$P_t^1 \ge P_t^2 \ge 0 \quad \text{for all} \quad t \ge 0$$
.

Proof of Theorem, b). Let us fix a number \overline{i} , $0 < \overline{i} < 1$ and let $\{\widetilde{P}_i: t \ge 0\}$ be the solution to (1) with the initial condition: $\widetilde{P}_0 = \overline{i}\overline{P}$. Let us define the function ϱ $\varrho: [0, +\infty) \to [0, 1]$ by the formula:

$$\varrho(t) = \sup \{s : s\overline{P} \leq \widetilde{P}_t\}, t \geq 0.$$

Evidently ϱ is a continuous function, and $\varrho(0) = \overline{i}$. Moreover the function $\lambda = 1 - \varrho$ satisfies the differential inequality (4) below. Namely let $t \ge 0$, and let $\{P_{t,u}; u \ge 0\}$ be the solution of (1) subject to the initial condition $\varrho(t)\overline{P}$. That means

$$P_{t,u} = \varrho(t) \overline{P} + \int_0^u S(P_{t,v}) \,\mathrm{d}v \,.$$

Since $\tilde{P}_t \ge P_{t,0}$ we have (see Lemma 2) that

(3)
$$\tilde{P}_{t+u} \ge P_{t,u} = \varrho(t)\bar{P} + \int_0^u S(P_{t,v}) \,\mathrm{d}v$$

The concavity of the function S implies:

$$S(\varrho(t)\overline{P}) = S(\varrho(t)\overline{P} + (1 - \varrho(t))0) \ge \varrho(t)S(\overline{P}) + (1 - \varrho(t))S(0) \ge$$
$$\ge (1 - \varrho(t))Q \ge (1 - \varrho(t))\gamma\overline{P},$$

where γ is a positive number such that $Q \ge \gamma \overline{P}$. From (3)

$$\frac{1}{u}\left(\tilde{P}_{t+u}-\varrho(t)\,\overline{P}\right)\geq \frac{1}{u}\int_0^u S(P_{t,v})\,\mathrm{d}v\,.$$

But

$$\frac{1}{u} \int_{0}^{u} S(P_{t,v}) \, \mathrm{d}v \to S(\varrho(t) \,\overline{P}) \ge (1 - \varrho(t)) \, \gamma \overline{P} \quad \text{as} \quad u \downarrow 0.$$

Therefore, for sufficiently small u > 0 .

$$\frac{1}{u} \int_0^u S(P_{t,v}) \, \mathrm{d}v \ge (1 - \varrho(t)) \, \bar{\gamma} \overline{P}$$

where $0 < \bar{\gamma} < \gamma$.

Thus for small u > 0

$$\tilde{P}_{t+u} - \varrho(t) \,\bar{P} \ge u(1 - \varrho(t)) \,\bar{\gamma} \bar{P}$$

and the definition of the function ρ implies

$$\varrho(t+u) \geq \varrho(t) + u\bar{\gamma}(1-\varrho(t))$$

Consequently

(4)
$$\lim_{u \downarrow 0} \frac{\lambda(t+u) - \lambda(t)}{u} \leq -\bar{\gamma} \lambda(t)$$

and Theorem 4.1 together with Remark 2 of the monograph [3] imply

$$1-\varrho(t) \leq (1-\bar{t}) e^{-\bar{\gamma}t}, t \geq 0$$

Applying the same method as above we obtain that if $\bar{s} > 1$, $\{\hat{P}_t; t \ge 0\}$ is the solution to (1) with the initial condition $\bar{s}\bar{P}$ and $\mu(t) = \inf\{s; \hat{P}_t \le s\bar{P}\}$ then

$$\mu(t) - 1 \leq (s - 1) e^{-st}, t \geq 0$$

To finish the proof let $P_0 > 0$ and let \overline{i} , \overline{s} be numbers such that $\overline{i}\overline{P} < P_0 < \overline{s}\overline{P}$, $0 < \overline{i} < 1$, $1 < \overline{s}$. Then

$$0 \leq \tilde{P}_t \leq P_t \leq \hat{P}_t \quad \text{for all} \quad t > 0 \,,$$

because of Lemma 2, and

$$\begin{split} |P_t - \overline{P}| &\leq |\hat{P}_t - \widetilde{P}_t| \leq |\overline{P} - \widetilde{P}_t| + |\hat{P}_t - \overline{P}| \leq \\ &\leq \left[(1 - \overline{t}) + (\overline{s} - 1) \right] |\overline{P}| e^{-\overline{\gamma}t} \,. \end{split}$$

This completes the proof of Theorem.

Remark 3. The analogous method of the proof was applied first in the paper [4], in which discrete time systems were considered. The definitions of the functions ρ and μ , were borrowed from [5, Theorem 6.7]

Remark 4. For the different proof valid only in the case $\pi_1 \equiv 0$, $\pi_2 \equiv 0$ and based on the method of Liapunov function, we refer to [6, pp. 73–74].

Remark 5. The Theorem is true in the case of infinite dimensions under the condition that A is a bounded operator (the same proof as above).

(Received July 30, 1974.)

REFERENCES

W. M. Wonham: On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968), 681-697.

^[2] I. M. Rodriguez-Canabal: The geometry of the Riccati equation. Ph. D. dissertation, University of Southern California, June 1972.

[3] P. Hartman: Ordinary Differential Equations. John Wiley and Sons, New York 1964.

,

.

- [4] J. Zabczyk: On stochastic control of discrete time systems in Hilbert space. SIAM J. Control (to appear).
- [5] M. A. Krasnosel'skii: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen 1964.

.

,

[6] R. S. Bucy, P. D. Joseph: Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York-London 1968.

Dr. Jerzy Zabczyk; Institute of Mathematics - Polish Academy of Sciences, Sniadeckich 8, 00-950 Warsaw. Poland.