A Note on the Exponential Stability of a Matrix Riccati Equation of Stochastic Control

Jerzy Zabczyk

Abstract

A general matrix Riccati equation of stochastic control is considered. It is proved by a new method that, under certain assumptions, the solution of such equation tends to the equilibrium point exponentially fast.

1. INTRODUCTION

The object of this paper is to prove a theorem concerning the asymptotic behaviour of the solution of the following matrix Riccati equation
(1) $\frac{\mathrm{d} P}{\mathrm{~d} t}=A^{*} P+P A+\pi_{1}(P)+Q-P B\left[R+\pi_{2}(P)\right]^{-1} B^{*} P, \quad t \geqq 0$,
with the initial condition $P_{0} \geqq \mathrm{O}$. Here π_{1}, π_{2} are linear and monotonic transformations, which map the space \mathscr{E}_{n} of all symmetric $n \times n$ matrices into the spaces \mathscr{E}_{n} and \mathscr{E}_{m} respectively of all $n \times n$ and $m \times m$ symmetric matrices. A and B are respectively $n \times n$ and $n \times m$ matrices. We shall assume that $n \times n$ matrix Q and $m \times m$ matrix R are positive definite. This assumption is rather restrictive (see, for instance, the appropriate theorems in [1]), but the aim of the paper is to present a new method rather than to prove the strongest theorem. The point (b) of the Theorem below is new.

2. STATEMENT AND PROOF OF THE BASIC RESULT

Let \mathscr{K}_{n} denote the cone of all positive semi-definite $n \times n$ matrices and let S be a transformation $S: \mathscr{K}_{n} \rightarrow \mathscr{E}_{n}$ given by the following formula:

$$
S(P)=A^{*} P+P A+\pi_{1}(P)+Q-P B\left[R+\pi_{2}(P)\right]^{-1} B^{*} P
$$

Theorem. Let $Q>0, R>0$.
a) There exists at least one solution $\bar{P}>0$ of the equation:

$$
\begin{equation*}
S(P)=0 \tag{2}
\end{equation*}
$$

b) If $\bar{P}>0$ is the solution to (2) and $P_{0}>0$ then the solution $\left\{P_{t} ; t \geqq 0\right\}$ of (1) tends to \bar{P} exponentially fast as $t \rightarrow+\infty$.

Remark 1. The point a) of Theorem is a special case of well known results (see [1]), it is also a consequence of b), therefore it remains to prove the point b).

Lemma 1. Thre transformation S is concave.
Proof. We have to prove that if $\alpha \geqq 0, \beta \geqq 0, \alpha+\beta=1, U \geqq 0, V \geqq 0$, then

$$
S(\alpha U+\beta V) \geqq \alpha S(U)+\beta S(V)
$$

For any $m \times n$ matrix K let us define the transformation $\Psi_{K}: \mathscr{E}_{n} \rightarrow \mathscr{E}_{n}$ by the following formula:

$$
\Psi_{K}(P)=(A-B K)^{*} P+P(A-B K)+Q+\pi_{1}(P)+K^{*}\left[R+\pi_{2}(P)\right] K
$$

Then, see [1, identity 3.2],

$$
S(P)=\Psi_{K}(P)-\left(K-K_{P}\right)^{*}\left[R+\pi_{2}(P)\right]\left(K-K_{P}\right)
$$

where

$$
K_{P}=\left[R+\pi_{2}(P)\right]^{-1} B^{*} P
$$

From this we obtain that for all K and $P \geqq 0: S(P) \leqq \Psi_{K}(P)$, and that $S(P)=$ $=\Psi_{K_{P}}(P)$. Thus

$$
\begin{aligned}
S(\alpha U+\beta V) & =\Psi_{K_{\alpha U+\beta V}}(\alpha U+\beta V)=\alpha \Psi_{K_{\alpha U+\beta V}}(U)+\beta \Psi_{K_{\alpha U+\beta V}}(V) \geqq \\
& \geqq \alpha \Psi_{K_{V}}(U)+\beta \Psi_{K_{V}}(V) \geqq \alpha S(U)+\beta S(V)
\end{aligned}
$$

Remark 2. A special case of the above lemma $\left(\pi_{1} \equiv 0, \pi_{2} \equiv 0\right)$ has been proved by many authors (see for instance [2]) but by different methods.

The proof of the lemma below was given (implicitely) in [1].
Lemma 2. If $P_{0}^{1} \geqq P_{0}^{2} \geqq 0$, then the solutions $\left\{P_{t}^{1} ; t \geqq 0\right\},\left\{P_{t}^{2} ; t \geqq 0\right\}$ of (1) subject to the initial conditions P_{0}^{1}, P_{0}^{2} satisfy

$$
P_{t}^{1} \geqq P_{t}^{2} \geqq 0 \quad \text { for all } t \geqq 0
$$

Proof of Theorem, b). Let us fix a number $\bar{t}, 0<\bar{t}<1$ and let $\left\{\widetilde{P}_{t} ; t \geqq 0\right\}$ be the solution to (1) with the initial condition: $\tilde{P}_{0}=\bar{t} \bar{P}$. Let us define the function ϱ $\varrho:[0,+\infty) \rightarrow[0,1]$ by the formula:

$$
\varrho(t)=\sup \left\{s: s \bar{P} \leqq \widetilde{P}_{t}\right\}, \quad t \geqq 0
$$

Evidently ϱ is a continuous function, and $\varrho(0)=\bar{t}$. Moreover the function $\lambda=1-\varrho$ satisfies the differential inequality (4) below. Namely let $t \geqq 0$, and let $\left\{P_{t, u} ; u \geqq 0\right\}$ be the solution of (1) subject to the initial condition $\varrho(t) \bar{P}$. That means

$$
P_{t, u}=\varrho(t) \bar{P}+\int_{0}^{u} S\left(P_{t, v}\right) \mathrm{d} v
$$

Since $\widetilde{P}_{t} \geqq P_{t .0}$ we have (see Lemma 2) that

$$
\begin{equation*}
\widetilde{P}_{t+u} \geqq P_{t, u}=\varrho(t) \bar{P}+\int_{0}^{u} S\left(P_{t, v}\right) \mathrm{d} v \tag{3}
\end{equation*}
$$

The concavity of the function S implies:

$$
\begin{gathered}
S(\varrho(t) \bar{P})=S(\varrho(t) \bar{P}+(1-\varrho(t)) 0) \geqq \varrho(t) S(\bar{P})+(1-\varrho(t)) S(0) \geqq \\
\geqq(1-\varrho(t)) Q \geqq(1-\varrho(t)) \gamma \bar{P},
\end{gathered}
$$

where γ is a positive number such that $Q \geqq \gamma \bar{P}$. From (3)

$$
\frac{1}{u}\left(\widetilde{P}_{t+u}-\varrho(t) \bar{P}\right) \geqq \frac{1}{u} \int_{0}^{u} S\left(P_{t, v}\right) \mathrm{d} v
$$

But

$$
\frac{1}{u} \int_{0}^{u} S\left(P_{t, v}\right) \mathrm{d} v \rightarrow S(\varrho(t) \bar{P}) \geqq(1-\varrho(t)) \gamma \bar{P} \quad \text { as } \quad u \downarrow 0
$$

Therefore, for sufficiently small $u>0$.

$$
\frac{1}{u} \int_{0}^{u} S\left(P_{t, v}\right) \mathrm{d} v \geqq(1-\varrho(t)) \bar{\gamma} \bar{P}
$$

where $0<\bar{\gamma}<\gamma$.
Thus for small $u>0$

$$
\widetilde{P}_{t+u}-\varrho(t) \bar{P} \geqq u(1-\varrho(t)) \bar{\gamma} \bar{P}
$$

$$
\varrho(t+u) \geqq \varrho(t)+u \bar{\gamma}(1-\varrho(t)) .
$$

Consequently

$$
\begin{equation*}
\overline{\lim }_{u \downarrow 0} \frac{\lambda(t+u)-\lambda(t)}{u} \leqq-\bar{\gamma} \lambda(t) \tag{4}
\end{equation*}
$$

and Theorem 4.1 together with Remark 2 of the monograph [3] imply

$$
1-\varrho(t) \leqq(1-\bar{t}) \mathrm{e}^{-\overline{\mathrm{j}} t}, \quad t \geqq 0 .
$$

Applying the same method as above we obtain that if $\bar{s}>1,\left\{\hat{P}_{t} ; t \geqq 0\right\}$ is the solution to (1) with the initial condition $\bar{s} \bar{P}$ and $\mu(t)=\inf \left\{s ; \hat{P}_{t} \leqq s \bar{P}\right\}$ then

$$
\mu(t)-1 \leqq(\bar{s}-1) \mathrm{e}^{-\hat{\mathrm{f}} t}, \quad t \geqq 0 .
$$

To finish the proof let $P_{0}>0$ and let \bar{t}, \bar{s} be numbers such that $\bar{q} \bar{P}<P_{0}<\bar{s} \bar{P}$, $0<\bar{t}<1,1<\bar{s}$. Then

$$
0 \leqq \widetilde{P}_{t} \leqq P_{t} \leqq \hat{P}_{t} \text { for all } t>0
$$

because of Lemma 2, and

$$
\begin{gathered}
\left|P_{t}-\bar{P}\right| \leqq\left|\hat{P}_{t}-\widetilde{P}_{t}\right| \leqq\left|\bar{P}-\widetilde{P}_{t}\right|+\left|\hat{P}_{t}-\bar{P}\right| \leqq \\
\leqq[(1-\bar{t})+(\bar{s}-1)]|\bar{P}| \mathrm{e}^{-\bar{\nabla} t} .
\end{gathered}
$$

This completes the proof of Theorem.
Remark 3. The analogous method of the proof was applied first in the paper [4], in which discrete time systems were considered. The definitions of the functions ϱ and μ, were borrowed from [5, Theorem 6.7]

Remark 4. For the different proof valid only in the case $\pi_{1} \equiv 0, \pi_{2} \equiv 0$ and based on the method of Liapunov function, we refer to [6, pp. 73-74].
Remark 5. The Theorem is true in the case of infinite dimensions under the condition that A is a bounded operator (the same proof as above).

> (Received July 30, 1974.)

REFERENCES
[1] W. M. Wonham: On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968), 681-697.
[2] I. M. Rodriguez-Canabal: The geometry of the Riccati equation. Ph. D. dissertation, University of Southern California, June 1972.

222 [3] P. Hartman: Ordinary Differential Equations. John Wiley and Sons, New York 1964.
[4] J. Zabczyk: On stochastic control of discrete time systems in Hilbert space. SIAM J. Control (to appear).
[5] M. A. Krasnosel'skii: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen 1964.
[6] R. S. Bucy, P. D. Joseph: Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York-London 1968.

Dr. Jerzy Zabczyk; Institute of Mathematics - Polish Academy of Sciences, Sniadeckich 8, 00-950 Warsaw. Poland.

