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Data Compression in Discriminating 
Stochastic Processes* 

ALBERT PEREZ 

In discriminating stochastic processes there arises a need of observation data reduction con­
cerning the length of the realization to be considered as well as the variety (alphabet) of the in­
stantaneous process states to be identified. In the paper a method for such data compression 
is given based on the theory of asymptotic discernibility of two stationary random processes 
as developed by the author for processes with memory. 

1. INTRODUCTION 

Let {£„, n — 0, + 1 , ±2 , ...} be a sequence of abstract valued random variables 
representing in every "instant" n the state of a stochastic system evolving according 
to a stationary discrete-time random process. 

Let either P or Q be the probability measure induced by the above sequence on the 
corresponding infinite product space generated by the (measurable) space-alphabet 
of values of the £„'s. In other words, the stochatic system above may evolve either 
according to the stationary probability law P or according to the stationary probabil­
ity law Q. 

Let us denote by HP and HQ the respective statistical hypotheses occurring with 
the a priori probabilities p and q, p + q — 1, provided that these probabilities exist. 
Note that if p and q are both positive, their exact values are irrelevant for the asympto­
tic behaviour of the probability of error e„(P, Q) in discriminating HP and HQ on the 
base of a growing number n of observed successive random variables of the above 
sequence. For the sake of simplicity it is, thus, possible to take in the sequel p = q = 
= 1/2 and restrict us to the study of the maximum likelihood error probabilities 
epn{P> Q) a n d eQ„(P, Q) corresponding to the statistical hypotheses HP and HQ, 

* This paper is an extended version of our communication presented at the Second Seminar 
on Experimental Modelling and Solution of Probability Problems — Liblice near Prague, May 
28 - June 1, 1973. 



respectively. If, now, p and q exist and p = q = 1/2, then the minimal error probabil­
ity en(P, Q) is given by the mean value of the maximum likelihood error probabilities. 

In his 1952 paper [1] Herman Chernoff has determined the asymptotic rate of con­
vergence to zero of the above error probabilities for the case of a sequence of mutually 
independent and identically distributed random variables f„, i.e. under the assump­
tion that P and Q are stationary memoryless random processes. If P0 and eo a r e 

their one-dimensional restrictions, it namely holds 

(1.1) lira - log e„(P, Q) = lira - log ePn(P, Q) = 
n n n n 

= lim - log eQn(P, Q) = log HjP0, Q0) , 
n n 

where 

(1-2) Hao(P0, Q0) = min Ha(P0, Q0) , 
OSctg 1 

and 

(1.3) Ha(P0, Co) = alpha-entropy of P0 with respect to Q0 = 

= f^y^y-w, 
}\dwj \dwj 

with W a. measure dominating P0 and Q0. In the case a = 0 (resp. a = 1) it is neces­
sary to consider the definition (1.3) as the limit for a J. 0 (resp. for a f l). 

In the case the sequence of the £„'s above represents a Markov chain stationary 
and ergodic with finite state-space (1, 2, ..., s) and with transition probabilities 
{Pij}> i,j = 1, 2, ..-, s, under the statistical hypothesis HP and {#.;}, i,j = 1, 2, .., s, 
under the statistical hypothesis HQ, Koopmans [2] derived that the limits in (1.1) 
exist and are equal to log r0 where 

(1.4) r0 = inf ra 
0 < a < l 

with ra = maximal eigenvalue of the matrix (pa
ijqlj~'*)ij=it...<s-

This result was proved by Koopmans under the assumption that all the p . / s 
and tjy's are positive. However, the weaker assumption of ergodicity is sufficient 
and may be further weakened on the base of our result in paper [4]. 

In our paper [3] are obtained a lower bound ?j and an upper bound f2 of r0, 
namely, 

(1-5) r2 = max. min Ha({pi})j= t , {qij}J=1 s) = 
l<i<sOgail 

= max min Hjf) , 
l g i g s Ogc tg l 

(1.6) rt = min £ wf Ha(i) , 
O S a S l i = l 



where {Wi°!)},_1>„>>. is the stationary distribution of a Markov chain with transition 
probabilities of the type ru = p^qjfJH^i). 

In paper [4] we give a generalization of the above results to the case of P and Q 
stationary processes not necessarily memoryless (as in the Chernoff's case) or of the 
Markov type (as in the Koopmans case). 

It concerns conditions for the validity of the following statement (throughout 
en(P, 8) may be replaced by the maximum likelihood error probabilities ePn(P, Q) 
and eQn(P, Q) as well as by their sum): The limits below exist and are equal, 

(1 -7) lim - log e„(P, Q) = lira - log tf JP 0 >„, Q0,„), 
n n n n 

where P 0 „ and Q0i„ are the n-dimensional restrictions of the stationary probability 
measures P and Q, respectively, and 

(1.8) H j P 0 , „ , Q0J = H<£ = min tf,(P0>„, Q0,n), n = 1, 2, ... . 
0_<x_l 

The right-hand limit figuring in (1.7) is what we call minimal alpha-entropy rate 
of the random process P with respect to the random process Q. In the sequel it will 
be denoted by ha(P, Q). In the Chernoff's case this rate is, of course, equal to 
log Hao(P0, Q0) (cf. (1.1)) and in the Markov case this rate is equal to log r0 (cf. (1.4)). 
Due to Koopmans we, thus, have in the Markov case a closed procedure for the 
calculation of the minimal alpha-entropy rate. 

The equality (1.7) holds for general abstract alphabet stationary processes P and Q 
provided that they satisfy some general condition GC introduced in [4]. For the 
sake of brevity, we give here a simpler condition implying the condition GC and, 
thus, the equality (1.7). 

Let pP(F\x_„ 0) and pe(p/x_„ j0) be the conditional probabilities corresponding 
to P and Q, respectively, that £ t e F given that <̂ 0 = x0, £_, = x_, , ..., £_„ = x_„, 
where by x_„ i0 we denote the sequence x0, x_. , ..., x_„. Ws assume that: 

(1) pP(-\x-n 0) and pQ(-/x_„0) are regular, i.e. they represent probability measures 
on the one-dimensional a-algebra of subsets F of the state-space (alphabet) Xx of £, x 

for every x _ „ o e X _ „ 0 = X0 x X _ t x . . . x X_„, where the X ( 's are all equal 
to A, the common alphabet of the £t's; 

(2) limpP(F/x_B>0) = pP(F/x_00>0) and 

limJpe(F/x_n>0) = pQ(FJx_Xi0) 

exist uniformly in logarithmic sense for every F and for every x_ o o 0 £___„, 0 . 

Assumptions (l) and (2) represent the condition mentioned above under which the 
statement contained in (l .7) holds. 



It is obvious that for Markov processes of arbitrary order this condition is fulfiled. 
As to the method used for proving the above statement (1.7), we restrict us to two 

basic inequalities. The first inequality represents only a slight generalization of the 
Chernoff's one. However, the second inequality is completely new and is derived 
by applying our generalized Shannon-McMillan's limit theorem for entropy densities 
(cf. [5]). These two basic inequalities are: 

(1-9) ePn(P, Q) + eQn(P, Q) = #a„(P0,„, Q0,„), 

(1.10) lim - log e„(P, Q) ^ min { - h(R, P) , - h(R, Q)} , 
— n 

where R is .an ergodic probability measure such that, for every n = 1,2,..., the 
n-dimensional restriction R0 „ of R is dominated by P0,„ and Q0 „ and h(R, P) and 
h(R, Q) are the Shannon entropy rates of R with respect to P and to Q. 

Let us recall that h(R, P) is defined as follows: 

(1-H) KR> p) = l i m - H(R0t„ P0,„) 
n n 

where H(R0n, P 0 „) is the Shannon (generalized) entropy of R0 „ with respect to P 0 „ 
given by 

(1-12) tf(R0,„,P0,„) = f l O g ^ d R 0 > n . 
J dP 0 „ 

Similarly is defined h(R, Q). 

2. DATA COMPRESSION 

In discriminating two stochastic processes P and Q on the base of a growing number 
of observations there arises a need of data compression concerning the length of the 
realization to be considered, i.e. the number of the successive £;'s of the underlying 
random sequence (cf. Introduction) to be observed, as well as the alphabet A of their 
possible values or states to be identified, i.e. the accuracy with which the realized 
values (in general, abstract) of the observed £;'s are measured. Both these types 
of compression, imposed by the boundedness of the capabilities (memory, time, 
capacities, etc.) at our disposal, imply in general a loss of discernibility of the statisti­
cal hypotheses HP and HQ. In particular, they lead to an increment of the maximum 
likelihood error probabilities eP„(P, Q) and eQn(P, Q) as well as of the minimal error 
probability e„(P, Q) in the case it has a sense. 

If, thus, such data compression are inevitable, our aim is to perform the compres­
sion conformly to the capabilities at our disposal in such a way that the loss of dis-



cernibility connected with as compared to the unreduced case (i.e. with respect 
to an ideal observer) to be minimal or, at least, admissible, provided that the admis­
sibility criterion may be satisfied in the frame of the existing capabilities. In this 
context, the question arises how to balance the two types of data reduction mentioned 
above. 

In order to be more definite, let us assume, for instance, that the £j's are vector 
valued with components utl, uii2, ..., «,-,„, and with alphabet A = A1 x A2 x ... 
. . . x A,„ so that the component uiA takes its values on At, the component uiX 

on A2, • •., the component uim takes its values on Am. 
As said in the Introduction, the validity of the two conditions (l) and (2) concerning 

the two alternative probability laws P and Q of the stationary random sequence 
under consideration implies the validity of the statement contained in (1.7). Let 
ha(P, Q) be the minimal alpha-entropy rate of the random process P with respect 
to the random process Q (i.e. the limit figuring on the right-hand side of (1.7)) and 
suppose that hJyP, Q) is different from zero, i.e. strictly negative. According to (1.7), 
it asymptotically holds 

(2.1) e„(P, Q) s exp [nha(P, Q) + no(l)] = HjP0i„, Q0,„), 

where " ^ " may be always replaced by " < ; " and e„(P, Q) by every of the maximum 
likelihood error probabilities ePn(P, Q) or eQn(P, Q) or by their sum eP„(P, Q) + 
+ eQn(P,Q)(cf.(l.9)). 

Let us now suppose that instead of observing in every "instant" i = 1, 2, ..., the 
value taken by the corresponding £; = (ui:1, ui2, •••, ut,m), we restrict us to observe 
the values only of certain of its components by rejecting the others. Let, thus, denote 
by £,Jt the random variable resulting from £,• by rejecting the component ut,}- (j = 
= 1,2,..., in). Similarly, let us denote by £*' the random variable resulting from £. 
by rejecting botlvthe components ui} and uik (j =j= k;j, k = 1,2,..., m), and so on. 
The corresponding reduced alphabets will be denoted by AJ, AJk, and so on. The cor­
responding restrictions of P and Q will be denoted by PJ, QJ, PJk, QJk, pJiJ*-Jr, 
Qjui-jr^ t r i e i a t t e r j n t r i e c a s e 0f r rejected components, r < m;juj2, •••,j, (all dif­
ferent) = 1, 2, ..., m. 

It is possible to see that if the conditions (1) and (2) above are verified for P and Q, 
the same holds for their restrictions pJl-J\ QJu'Jr and, thus, the corresponding 
statement contained in (1.7) remains valid (cf. (2.1)): 

(2.2) e„(PJi-Jr, QJ'"Jr) =j exp e\nK(Ph "Jr, QJl-Jr) + no(l)~] = 

= HaMl...jJPJ/-Jr,QtJ':), 

where hJyP
Jl"Jr, QJ1-Jr) is the minimal alpha-entropy rate of the reduced process 

pji-jr with respect to the reduced process QJl"Jr and an(ju ..., jr) is the a minimizing 
the alpha-entropy of their n-dimensional restrictions. 



Due to the concavity of the function z* for z nonnegative and a fixed between 0 and 
1, the a-entropy after reduction is greater than or equal to the a-entropy before 
reduction. As a consequence, the same is the case for the minimal alpha-entropies 
and, thus, also for the minimal alpha-entropy rates, i.e. 

(2.3) K(P, Q) S K(PJi, Qh) ^ ••• S K(Ph"Jr, QJl-Jr). 

The case of equality, unfortunately only exceptional, is the more favorable since 
if it holds for some alphabet reduction, it is possible to obtain the same asymptotic 
discernibility of the statistical hypotheses HP and HQ, i.e. the same rate of conver­
gence to zero of the error probabilities as before reduction. In the sequel we shall 
assume that between the first and the last member of (2.3) a strict inequality holds 
so that, in order to obtain (asymptotically) the same level of the error probability 
in discriminating between HP and HQ after reduction as before reduction, it will be 
necessary to observe a sequence of random variables {Zh'"Jr}\Z"i of length n' 
sufficiently greater than the length n of the sequence {^;}J"" to be observed before 
reduction, namely, 

(2.4) nK(P, Q) = n'K(Ph-Jr, QJl-Jr), 

where we suppose that not only ha(P, Q) but also K(PJl-Jr, Qil-Jr) is strictly nega­
tive, (cf. (2.1) and (2.2)). 

3. COMPARISON OF TWO VERSIONS OF ALPFIABET REDUCTION 

Let us consider two versions of the decision problem of discriminating the two 
statistical hypotheses HP and HQ: 

In the first version the discrimination is based on the observation of the sequence 
of random variables {%h'"Jr}\Z"i • 

In the second version the discrimination is based on the observation of the se­
quence of random variables {£i'"'!'s}J=f • 

We shall assume that both versions are admissible from the point of view of our 
capabilities (cf. section 2) and, moreover, that the error probability level in discri­
minating between HP and HQ is in both versions the same, say, to that given by the 
left-hand member of (2.4). This in particular means that between n' and n" the fol­
lowing relation holds: 

^ ^ ( p * , - ^ Q*.•••».) 

<• * > n» ha(P
Jl-Jr, QJl-Jr)' 

In order to compare these two versions of our decision problem, let us introduce 
a cost function including namely "costs" of identifying, memorising, processing 
and waiting connected with the observed sequence of random variables. 



For the sake of simplicity, we shall assume that the costs are proportional to the 193 
sequence length, i.e. 

(3.2) c({?rJ'}\Z) = n'C(ju...,jr), 

(3.3) c ( { e - ^ ; z O = n"C(ki,...,ks), 

where C(ji, •••,jr) and C(ku ..., ks) are respectively the costs corresponding to one 
random variable of the type £J

i
1—Jr or £*'"k*. These costs will be supposed positive. 

If the cost (3.2) is smaller than the cost (3.3), that is (taking account of (3.1)) 
if the inequality 

-K{pl>~irtQU...Jr)^ - f t t ( p - . - * % 6 ~ - - . ) 

cOi,-,jr) c(ku...,ks) 

holds we shall prefer the first version of the decision problem. Otherwise, we shall 

prefer the second version. 

It is natural to suppose that 

(3.5) C(0) ^ C(ii) ^ C(j\, J2)£...Z C(ii, j 2 , . . . , j m _ i) , 

where by C(0) we denote the cost corresponding to one unreduced random variable, 
i.e. of the type £.. The sign of equality in (3.5) will be only exceptional (cf. (2.3)). 

We repeat that the preference relation (3.4) concerns the comparison of two ad­
missible (i.e. compatible with the capabilities at our disposal) versions of the decision 
problem with the same level of error probability. Under these constraints, our aim 
is to choose such version of the alphabet compression, i.e. to reject such set of com­
ponents indexed by (j\,j2, •••,jr), which maximalizes the ratio figuring at the left-
hand side of (3.4) denoted by R(ju •••,jr), 

C(ji,...,Jr) 

If the number m of components is relatively large (cf. section 4), the maximalization 
of R(jv, ..., jr) by considering all the admissible versions of (ju ..., jr) may be practi­
cally impossible because of the extremely large number of these versions with respect 
to the computing capacities. This situation leads us to apply the following approxi­
mate method: 

We consider, in the first step, all the admissible versions of the type (;'.), i.e. re­
jecting one component, and we definitely reject the component indexed by j°t for 
which R(jT) is maximum. In the second step, we consider all the admissible versions 
of the type (j\, j 2 ) , i.e. rejecting the component indexed by j° and a further compo­
nent, and we definitely reject a second component indexed by j°2 for which R(j\, j2) 
is maximum ... In the r-th step, we consider all the admissible versions of the type 
(ji,j2> •••tJr)-uJr)> i-e- r eJ e c t i ng the components indexed by j°i,j°,---,j°-i and 



a further component, and we definitely reject a r-th component indexed by j° for 
which R(j°i,J2, •••>7r-i,7r) is maximum. We continue in this way up to the r ^ 
5" m — 1 for which there exists at least one admissible version. Finally, we choose 
a version (;*?, ..., j°0) for which R(j1,..., j " ) is maximum in the set of all the R's 
obtained above including, eventually, R(0) if the case with no compression is ad­
missible too. 

Analogue considerations may be applied if the alphabet A is finite, having say m 
points, instead of being of the Cartesian product type corresponding to m compo­
nents as before; the rejection of components in the process of compression is here 
replaced by the fusion of points. However, we shall not consider in this paper this 
case. Also we shall not consider the case of compression, i.e. suitable finite partition, 
of more general alphabets. 

4. SPECIAL CASES 

For the sake of simplicity, we shall assume in the sequel that the cost function 
C(ji, • ••,jr) depends only on r = 0, 1, . . . , m — 1, i.e. 

(4.1) C(ju...,jr) = K(r), 

where, according to (3.5), K(r) is a positive decreasing function of the number 
of rejected components r. 

The maximal admissible level of the logarithm of the error probability in discri­
minating the statistical hypotheses HP and HQ will be given in terms of /)a(P, Q) 
(i.e. of the minimal alpha-entropy rate of the process P with respect to the process Q) 
by nha(P, Q) (cf. (2.1) and (2.4)). 

The maximal admissible observation delay, i.e. the maximal admissible length 
of the observed sequence of random variables will be denoted by N. Obviously, 
if N is smaller than n it is impossible to obtain an admissible level of the error prob­
ability (in an asymptotic sense, of course) provided that P and Q satisfy the as­
sumptions (1) and (2) of the Introduction so that the statement contained in (1.7) 
holds, what is assumed throughout the paper. 

Case 1. The components uiA, uU2, •••, uUm of the vector valued random variables 
£; are supposed to be mutually independent and equally distributed. The cost func­
tion K(r) is assumed to be linear, 

(4.2) K(r) = k.(m-r), 

k being the cost corresponding to one component. 
Let us denote by ha(j) the minimal alpha-entropy rate of P with respect to Q as 

restricted to have the alphabet A} of the j-fh component, i.e. 

(4.3) K(j) = ^ ( p i - J - i J + - - * fii..J-iJ+i..--) . 



Our assumption of the mutual independence of the components (the probability i95 

low being either P or Q) implies that 

(4.4) /ia(P, Q) = n,(l) + h,(2) + .. . + h(m) . 

Our second assumption that the components are equally distributed implies more­
over that /.a(l) = /ia(2) = .. . = /ia(m), so that from (4.4) it follows that 

(4.5) /ia(P, Q) = m/ra(l) , 

h(Ph-Jr, QJi-Jr) = (m - r) ha(l) . 

On the base of (4.2) and (4.5) we obtain (cf. (3.6)) 

(46) «C / , . - . J , ) - - <" - , ) > f ' ) - r ¥ a -
k . (m - r) k 

whatever be the index set (jt, ..., jr) of the rejected components. 

However, from the admissibility point of view (delay bounded from above by N, 
level of the logarithm of the error probability bounded from above by n/ia(P, Q)), 
the number of rejected components is bounded from above by the inequality 

(4.7) N . (m - r) . /ia(l) ^ n/ia(P, Q) = nmha(l) , 

(note that, by assumption, /ia(P, Q) and, thus, also /ia(l) are strictly negative), i.e. 

(4.8) ' • S ' " ' ( 1 - i ) ' 

Case 2. As in Case 1, the components uiA, uif2, • •., uim are supposed to be mutually 
independent (both with respect to P and to Q) but not necessarily equally distribut­
ed. The cost function K(r) is again assumed to be of the type (4.2). 

It is not a restriction to assume that 

(4.9) h(l)£h(2)S...Sh(m). 

Since, by the independence hypothesis, (4.4) remains valid and, moreover, for 
r = 0, 1, ..., m — 1, the equality 

(4Ao) h(PJl"u, Qh-ir) = «a(/,+i) + ••• + h(L) 

holds, it follows that 

(4.1D R(A. ....,.) - - * A » ) ; - + w. 
k . (m — r) 



196 On the base of (4.9) and (4.11) one obtains that 

(4+2) max R(jv ...,jr) = R(m - r + 1, m - r + 2 , . . . , m) 
Ul,-Jr) 

fca(l) + • . . + fi.(wi - r ) 

k . (m — r) 

Obviously, R(m — r + 1), m — r + 2 , . . . , m) is an increasing (non-decreasing) 
function of r. Thus, its absolute maximum is obtained for r maximum, i.e. for r = 
= m — 1, and equals —ha(l)jk. It is obtained by rejecting all the components ex­
cept the first one. 

However, for the same admissibility reasons as in Case 1, the number of rejected 
components is bounded from above by the inequality 

(4.13) N . (/ia(l) + ... + K(m - r)) = nha(P, Q) . 

If r0 is the maximum r satisfying (4.13), the optimal admissible reduction is ob­
tained by rejecting all the components corresponding to the index set (m - r0 + 1, 
m — r0 + 2 , . . . . m), the indexing being that satisfying (4.9). This results from the 
fact that R(m — r + 1, . . . , m) is an increasing (non-decreasing) function of r and 
that by using a delay (sequence length) smaller than N (greater than N is not admis­
sible) the maximum r satisfying the corresponding inequality (4.13) will be smaller 
than or equal to r0. The corresponding inequality (4.13) where JV is replaced by the 
smaller delay must be satisfied as before in order to ensure an admissible level of er­
ror probability. This proves the optimality of the alphabet reduction above. It must be 
combined with the observation of a sequence of length JV. 

Obviously, in the Case 1 the inequality (4.13) reduces to (4.7) or, what is the same, 
to (4.8). Let r(N) be the maximum r satisfying (4.8) and let r(rc') be the maximum r 
satisfying the analogue of (4.8) when we replace N by n'. It is possible to see that 
(asymptotically at least) n'(m — r(n')) equals to nm for any h' = n. As a consequence, 
the total cost n'(m — r(n')) . k of discriminating the statistical hypotheses HP and HQ 

on the base of a sequence of n' random variables resulting from the initial ones 
by rejecting r(n') components (maximal admissible alphabet reduction) does not 
depend on n' and equals to nmk, i.e. the total cost corresponding to the discrimina­
tion on the base of a sequence of n unreduced random variables. Thus, from the cost 
point of view, all the versions of data reduction of the above type> (n', r{n')) are 
in the Case 1 equivalent. They are admissible for n' ;g JV and optimal. 

Remark 1. If the cost function C(ju ..., jr) is additive but more general than of the 
type K(r) = k . (m — r) as before, namely, if 

(4.14) C(ju j 2 , ..., jr) = k(jr+.) + k(jr+2) + ... + k(jm), 



where k(j) is the cost corresponding to the j'-th component, j = 1,2,..., m, and if the 
indexing is such that 

(4.15) fc(l) S k(2) g . . . ^ k(m), 

then, in the Case 1, the optimal version of data reduction is obtained by rejecting 
the greatest possible number of components in the order m,m — \,m — 2, ..., 
of decreasing (non-increasing) cost (cf. (4.15)), i.e. this version will be of the type 
(N, r(N)). 

Remark 2. In the Case 2 but with cost function of the type (4+4), the optimal ver­
sion of compression remains, obviously, the same as for a cost function of the type 
K(r) = k . (m — r) provided that, for the same indexing, (4.9) and (4.15) hold simul­
taneously. 

Remark 3. In the general case where R(j\, ..., jr) is given by (3.6), if the number m 
of components is relatively large, the maximization of R(ju ..-,jr) by considering 
all the admissible versions of (ju ...,jr) becomes practically impossible as compared 
with the computing capacities at our disposal. Indeed, the total number of these 
versions in passing from m components t o m - r components is given by 

(4-16) Wm>m_r 

Moreover, since the optimal admissible number, r0, of rejected components is 
a priori unknown, it will be, in general, necessary to test the situation for - = 1,2, . . . 
..., r', where r' may attain the value m. — 1. Thus, in the exhaustive case the total 
number of alternatives to be considered in the process of optimization will be of the 
order 

(4-17) Zm>m.r. = Wm<m-t + W m , m _ 2 + ... + Wm<m-r. . 

As said in Section 3, this situation leads us to proceed approximately by applying 
non-exhaustive methods as that described there. The total number of alternatives 
to be considered in this case is of the order 

(4+8) Qmm_r, = ^n-r~^iy, 

where r' has the same meaning as before. 

Paper [6] studies in more detail this question of comparison of the numbers 
of alternatives to be considered in the exhaustive and non-exhaustive case, and the 
analogue question arising in reducing finite alphabets (cf. end of section 3). 

(Received December 27, 1973.) 
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