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A Convergence Theorem on the Iterative 
Solution of Nonlinear Two-Point 
Boundary-Value Systems 

NGUYEN CANH 

The nonlinear two-point boundary value problem occurs quite naturally in studies in many 
diverse science branches. For obtaining the approaching solution of the nonlinear problem 
we often replace the nonlinear problem with a sequence of linear problems in such a manner 
that the sequence of solutions to the linear problems approach in a limiting sense the solution 
of the nonlinear problem. The convergence theorem proved here establishes the applying of the 
modified Newton's method for solving the nonlinear two-point boundary-value problem. 

INTRODUCTION 

Consider the following nonlinear equation: 

(i) . . y=m 
the equation (1) may be rewritten as 

(2) . F(x) = j - / ( x ) = 0 . 

For given y and an approximate solution x = x0 we wish to find x such that this 

equation is satisfied. 

Starting with x0, we replace F(x) by 

(3) F(x0) + F'(x0) (x - x0), 

setting this relation to zero we solve the resulting linear equation for xx and so forth. 

Generally we have 

(4) F(xn) + F'(xn) (xn+l - x„) -» 0 , n = 0,1 . . . , 

or 

Fix.) 
(5) * . + . - x - - - - - . 

F'(Xn) 



SO Each x„ is an approximate solution of Eq. (l) and under appropriate condition the 
sequence {x„} converges to a solution of Eq. (l). 

The method setting the sequence {x„} as above is called the original Newton's 
method. 

If the sequence {x„} converges to the solution x* and x0 is selected sufficiently 
near x*, then, since the continuous of E'(x„) then F'(x0) and E'(x„) are different only 
a little . therefore we may replace E'(x„) with F'(x0). 

The sequence (4) then becomes 

(6) F(x„) + F'(x0)(x„+ 1 - x „ ) = 0 

or 

(7) x - x F ( X n ) 
v) xn+i - *» - „,, r-

F(x0) 

The method setting this sequence {x„} is called the modified Newton's method. 

Note. If x is an n-dimensional vector (x = (x 1 , . . . , x")) then / and F are n-dimen-
sional vectors and 

F'(x) = [dFjdx1-] . 

We now turn our attention to the study of nonlinear second order differential 
equation with nonhomogeneous boundary conditions: 

(8) F(v", v', v, x) = 0 , v(a) = va, v(b) = v„. 

Let v0(x) is an approximate solution for the nonlinear equation. By analogy with 
the previous case we obtain: 

(9) F(v"n v'n, vn, x) + Fv(v"n, v'n, v„, x) [vn+1(x) - vn(xj] + 

+ Fv.(vl v'n, vn, x) [v'n+1(x) - v'n(x)J + 

+ Fv.{v'n, v'n, vn, x) [v'n+1(x) - vn(x)] = 0 , 

n = 0, 1, . . . 

Suppose the original equation may be written as 

(10) F(v", v', v, x) = v" - f(v', v, x) = 0 . 

Then we have Fv = —/„, Fv. = - / „ - , and Fv,. = 1, which yields 

(11) v'U t(x) = f(vn, v„, x) + fv(v'„, vn, x) [vn+ ,(x) - vn(x)] + 

+ fv.(v'„, vn, x) [v'n+i(x) - v'n(x)] 

vn(a) = va, vn(b) = vb, n = 0, 1, ... 



A convergence theorem on this iterative solution of above nonlinear two-point 
boundary-value systems was suggested by R. McGill and P. Kenneth [2]. 

By analogy with the modified Newton's method we obtain 

(12) F(vn, v'„, v„, x) + Fv(v0, v'0, v0, x) [vn+1(x) - v„(x)] + 

+ Fv,(vl, v'0, v0, x) [v'„ + 1(x) - v'„(x)] + 

+ Fv.{vl, v0, v0, x) [v:+1(x) - v'&x)] = 0 , 

n = 0 , 1 , . . . 

For the equation 

(13) F(v", v', v, x) = v" - f(v', v,x) = 0, 

we have 

(14) v"n+ x(x) = f(v'n, v„, x) + fv(v'0, v0, x) [vn + 1(x) - v„(x)~] + 

+ fv{v'0, v0, x) [v'n+1(x) - v'n(x)] , 

v„(a) = va , v„(b) = vb, n = 0, 1 , . . . 

For simplicity and clarity of presentation, we shall first consider a single equation 
of the form 

(15) v"(x)=f(v,x), 

v(a) = va , v(b) = vb. 

Now we may state the following theorem. 

Theorem. Given the nonlinear two-point boundary-value problem 

(i6) ;rl-A**). 
axz 

v(a) = va , v(b) = vb, 

with 1) f(v, x) is continuous, 2) fv(v, x) = [8f(v, x)]/3t> exists and is continuous. 

Let 

j^,*)=&^ . 
dv V=V0 

Vab(x) = — • [(vb - va) x + bva - avb~] . 
b - a 

Define the following sequence of linear differential equations 

6^=fv(vo,x)[vn + l-vn-\+f(vn,x) 
dx2 

v„(a) = va, v„(b) = vb, n = 0,1,... , 



52 and v0(x) is an arbitrary continuous function on [a, b] such that 

max \v0(x) - vab(x)\ ^ L. 
*e[ a,6] 

Then for a sufficiently small interval [a, b] f/ie nonlinear equation (16) bas a unique 
solution and 

— tlie sequence {v„(x)} converges to it; 
— the convergence speed of the sequence {vn(x)} to the solution of equation (16) 

is given by the inequality 

Q(v„, v*) g -~a— Q(V\, v0) ; 
1 - a 

— a bound on the error is given by 

max u„ + 1 — v*\ rg max \vn+1 — t>„ 
xe[a,b] 1 — a XE[O,6] 

where a is a positive number given below and v*(x) is the solution of equation (16). 

Proof. It follows from the hypotheses in the theorem that there exist M1 and 
M 2 > 0 such that \f(v, x)\ g Mu \fv(v, x)| g M 2 . Let m = max {M 1 ; M 2 } . 

Define the following complete metric space S: 

S = {v(x) | v(x) continuous on [a, b], u(a) = va, v(b) = vb, g(v, vab) ^ L] 

where 

Q(VU v2) = max ^ ( x ) - v2(x)\ . 
xtlaM 

Define the operator P on 5: 

P(v(x)) = vab(x) - CK(X, S) {fv(v0, s) [P(v(s)) - v(s)] + f(v, s)} ds 

where K(x, s) is the Green's function, 

b- s 

K(x, s) = -

.b - a 

Firstly we shall show that, the Green's function 

b - a 

a — s 

(x — a) for x ş; s , 

(x — b) for x Ş: s . 

\K(x, s)\ S \(b - a) . 



It means that: 

a) For x g s implies 

\b — a 
_ ł(Ь - a) . 

In fact, we get 

From that we have 

(x - a) = ð(b - a), 0 < ð < 1, 

Ь - s = rj(b - a), 0 < ц й 1 ~ <5 • 

^ - ^ - - L Ą , 
(ft - a) 2 

<5»/ < 5(1 - 5) = 5 - 52 ; 

when <5 = J the product 5?/ achieves the maximum value and <5>/ <. i-, which is 
obvious. Finally we have 

(17) b - s 
b - a 

(x - a) < l(b - a). 

b) For x ^ s, by the similar proof, implies that 

(18) 
b - a 

(x-b)Ыì(b-a). 

Combining the both relations (17), (18) implies that 

\K(x,s)\Si(b~a). 

The operator equation Pv = v has a unique solution in S. P maps S into S, for 
arbitrary v e S we have 

Q(PV, vab) = max \P v(x) - vjx)\^(b - a)2 [Q(PV, V) + 1] < 

<^(b-ay[e(Pv,vab) + o(v,vab) + l] 

o(Pv - ) < (Ҷ4)(b-aУ(L+l) 
в { P V ' V в b ) ѓ í-(mІ4)(b-aУ ѓ L ' 

or (ft — a) sufficiently small. This implies P v(x) e S. For two arbitrary elements v. 



54 t)2e S we have 

P», - P»2 - f i-(x5 s) {/„(»„, s) [P »2(s) - »2(s)] -

- /„(»0, s) [P »x(s) - »1(s)] - [f(vu s) - f(v2, s)]} ds , 

P«i - P»2 = \ K(x, s) {fv(v0, s) [P v2(s) - P Vl(s) + Vl(s) -

- i_(s)] - f(vu s) + f(v2, s)} ds . 

f(vu s) - f(v2, s) is replaced by /„(», s) (vl — v2) where »(s) is such that 

Q(V, V2) g ^(t?!, »2) . 

It follows that 

e(p.„ Pi>_) s - ( l - <•)' [e(P _, íЧ) + -_•(., .)] 

ŕ(p„„p0г)Sгí^+Æ-Ф„„2). 
1 - (m/4)(_> - a) 2 

From which we see that when the condition 

=(.-«)>/[i - = (.-.)>]-..<_ 

is satisfied, it means that (£> — a) is sufficiently small, then P is a contraction mapping. 
From the theorem 1 Chapter 14 [3] that the operator equation Pv = v has a unique 

solution »* in 5, »* may be obtained as limit of the sequence {»„} 

v*(x) = lim »„(x) , 

where vn+1(x) = P vn(x) and v0 is an arbitrary element in S. Part 1 of the theorem 

is proved. 

Since 
»B+1(x) = P V„(x), »_(x) = P »„_ ,(x) , 

and 
^ P P , , ? . , . , ) ^ . ^ ! ) , . , ) 

or 

'-K»»+l. »n) ^ <-_.(»_. »„-_)• 

By using continuously the similar inequalities, we have 

ff(»n + JJ, »„) ^ <?(»„+„, P.+ . - J ) + . . . + Q(vn+U »„) _g 

<c(an+P-i + .. . + «") e(w„ »0) . 



Finally we have 

and 

v* = lim v„ 

Q(v„,v*) = t?(»i,»0). 
1 - a 

Part 2 of the theorem is proved. 

We now consider the expression 

í"к(x,s){fv(v0,s)[vл + 1(s)-vn(s)] + \v„+i(x)~v*(x)\ = 

+ [f(vn,s)-f(v*,s)]}ds\. 

By the mean value theorem, it follows that 

|»-+i(*) - v*(x)\ = [ЬK(x,s){fv(v0,s)[vл+1(s)-vл(s) + 

where v(s) is such that 

therefore we have 

\v„+i(x) - v*(x)\ = 

+ fv(v, s) [vn(s) - v*(s)]ds\, 

Q(V, v*) ;£ Q(V„, V*) , 

j \ ( x , s) {fv(v0, s) [vn+l(s) - v*(s) + v*(s) - v„(s)] + 

+ fv(v, s) [vn(s) - v*(s)]} ds 

e(vn+1, v*) ^ ~ ( b - a)2 [e(vn+1, v*) + 2&(vn, v*)] 

and 

(19) Q(v„+i,v*) = aQ(vn,v*). 

We now observe that 

Q(v„+i,vn) g a ^ . c , . , ) 

аnd 

Q(v„+P, V„) й Q(v„, vn+1) + Q(VП+U vn + 2) + ... + Q(VЛ + P_U vn+p), 

(vл + p, vл) ^ Q(VП, vn+1) (1 + a + a 2 + ... + ap) , 



56 when p intends to oo we have 

lim v„ + T, = D " 

and 

Q(V„,V*) <; -——Q(V„ + 1,V„). 
1 - a 

This inequality together with the inequality (19) imply 

Q(V„+1,V*) g Q(V„+1,V„). 
1 — a 

The theorem is completely proved. 

We now extend the above results to the system of equations. Consider the system 
of equations 

d2V 
—• = F(V, x), 

dx2 K ' 

V(a) = Va, V(b) = Vb, 

where 

(f\v\...,vN,x)\ 

\'fN(v\ '..'.', v\x)j 

t h e / ' are defined on the N + 1 dimensional closed domain D, which is given by 

\v' - v'ab\ ^ L, x e [A, b\ , i = \,...,N, 

and 

v'ab(x) = " [H ~ va)x + bva - avb\ . 
b — a 

The complete metric space S is defined as 

S = {V(x) | v'(x) continuous on [a, b~\, v'(a) = v'a, 

v'(b) = v[, max \v\x) - vab(x)\ = L, i = 1,...,N) 

with the distance function Q(VX, V2) given by 

JV 

Q(VU V2) = X! max \v[(x) - v2(x)\ 



and 

J(V0, x) = 

'fv\(v1

0,...,v
N,x),...,fv

1

N(vl,...,vN,x) 

_fv

N

i(vl-,vNo,x),...,fvl(v0,...,v
N

0,x) 

We may now state and proof the following theorem. 

Theorem. Given the system of nonlinear differential equations with two-point 
boundary conditions 

d2V 
(20) 

dx : 
= Ғ(V,x), V(a) = Va, V(b) = V„, 

where the f'(vl, ..., vN, x), i = \,...,N, have the following properties on D: 

1) /'(v1, ..., vN, x) are continuous; 

2) fvj(vl, ..., vN, x) = \dfl(vl,..., vN, x)]/dij exist and are continuous. 

Define the following sequence of system of linear differential equations 

d2Vn+1 

dx2 
= J(V0,x)[Vn + ł(x)-V„(x)]+F(Vп,x), 

Vn(a) = Va, V„(b) = Vb, n = 0, 1,... , 

and V0(x) is such that v'0(x), i = 1, ..., N, are continuous on [a, fo] and 

max \v0(x) - v'ab(x)\ g L, i = 1, ..., N . 

Then for a sufficiently small interval [a, b] the unique solution to system (20) 
exists and 

— the sequence {V„(x)} converges to it; 
— the convergence speed of the sequence {Vn(x)} to the solution of (20) is given 

by the inequality 

Q(V„, V*) ѓ 

— a bound on the error is given by 

ß" 
1 - / 3 

<?(VЛ + 1,V*).Ş ß 
1 -

Q(Vu V0) ; 

:Є(Vn+1,V*) 

where V*(x) is the solution of system (20) and the number /3 is defined below. 

Proof. It follows from the hypotheses of the theorem above that there exist the 
numbers Qh Rip U; such that 

|/'(»1.-.^.*)l = fii. 



58 and 

Let 

\f\v\, ..., ví, x) -f(v\,..., vl x)\ < U; X \v\ - 4 | 

m = max {Ru, Qh UJ . 
І = 1 , . . . , N 

J = l « 

Define the operator P on S, 

py = УM) - ГIФ, s) да, s) [p ns) - n-)] + ғ ( v ' $ љ 

where 

therefore 

K(x,s) = 

(Ъ - s 

b - a 

a - s 

b - a 

(x — a) for x < s , 

(x - b) for x ï; s , 

\K(x,s)\^i(b-a). 

Firstly we shall show that the operator equation PV = V has a unique solution 
on S. P maps S into S, for arbitrary V e S we have: 

Q(PV, Vat) = £ max | / V - t&| ^N-(b~af [Q(PV, V) + 1] ^ 
i=i ^ 4 

<; N 2 (ft _ a ) 2 [Q(PV, Vab) + e(V, Vab) + 1] < 

^ N - (6 - a)2 UPV, Vo6) + NL + 1] 
4 

or 

^ p y V 1 < N(ml4)(b-a)2(NL+l) ' 
0{PV' V"b) ~ 1 - N(ml4)(b - af ~ L 

for (b — a) sufficiently small. This implies PV e S. Furthermore, for two arbitrary 
elements Vl and V2 in S, we have 

PV, ~ PVi = ("K(X, S) {J(V0, S) [PV2 - V2] - J(V0, s) [PV, - V,] -

~F(V1,s) + F(V2,s)}ds = 

= !"K(X, S) {J(V0, s) [PV2 - PV, + V, - V2] -

- F(VU s) + F(V2, s)} ds . 



We replace F(V2, s) - F(VU s) by J(V, s)(V2 - Vt), Ve(VuV2), i.e., Q(V, V2) < 59 
< Q(Vu V2). 

It follows that 

Q(PVU PV2) = £ max |ft,J - P,2 | < At - (6 - a)2 [Q(PVU PV2) + 2Q(VU V2)] , 
i = l x 4 

1 - N(mj4)(b - a)2 

from which we see that when the condition 

N(mj2)(b-a)2 _ 
1 - iV(m/4) (6 - a)2 

is satisfied i.e., (b — a) is sufficiently small, then P is a contraction mapping of S 
into S. Therefore the operator equation PV = V has a unique solution Vin S, and 
the sequence {V„(x)} converges to it, i.e., 

V*(x) = lim Vn(x), 

where the Vn(x) are calculated by the equation Vn+1 = PV„, n = 0, 1,..., and V0 has 
satisfied the condition defined above. 

Since P is a contraction mapping of S into S and from the contraction mapping 
principle we easy to see that 

Q(Vn,V*)igJ~Q(VuV0). 

We now consider the expression 

fVB+1 - V*| = \CK(X, S) {J(V0, S) [Vn+1(s) - V„(s)] + [F(V„, s) - F(V*, ,)]} <L 

By the mean value theorem for functions of several variables, we may replace every 
component of F(V„, s) - F(V*, s) by the following form 

f\vl, ..., vN, s) - f>(v*\ ..., v*N, s) = fj>(JV,..., W, s) 

K - v*1] + ...+ fJ*(Jv\ ..., JvN, s) [vN - v*N] , j - 1,...,N 

where for each s e [a, b], J'V is a vector on the line segment joining V* to V„. After 
some calculation we obtain 

e(vn+1, v*) < ^Lz^L [{evn+u Vn) + 2Q(Vn, V*)] 
4 



60 or 

(21) e(vn+u v ) g - N{™\2)^(h
a)\2 e(va, v*) = p e(vn, v*) 

1 - N(mj4) [b - a)2 

And from the contraction mapping principle we have 

Q(yn,v*)^~^Q(yB+uV„). 

This inequality together with the inequality (21) implies 

e(vn + 1 ,v t*)^- iX- e(vn + 1 )vn) . 

The theorem is completely proved. 

CONCLUSIONS 

In this paper we have presented a convergence proof for a proposed method 
of obtaining numerical solutions to systems of nonlinear differential equations with 
two-point boundary conditions. By this method some computational effort may 
be saved, but the convergence will necessary be slower than the method which is base 
on the original Newton's method. 

(Received April 14, 1973.) 
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