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Weighting Function and State Equations
of Linear Discrete-Time-Varying System

'VACLAV SOUKUP

A linear nonstationary discrete-time system is considered in this work. The ways are presented
for determination of system state equations if the weighting function is known.

State equations of a linear discrete-time system can be obtained from its input-
output difference equation in stationary [1] as well as in nonstationary case [2] 1t
is the purpose of this paper to show the direct transformation of the system weight-
ing function into the state space description.

I. FUNDAMENTAL RELATIONS

A single-input, single-output, linear discrete-time system can be described on
definite time interval N by the state equations

(1a) x(n + 1) = A(n) x(n) + b(n) u(r),
(1b) y(n) = ¢(n) x(n) + d(n) u(n)

where a system input and output are denoted by u(n) and y(n) respectively, x(n) is
an s-vector of state variables; A(n), b(n), ¢(n) and d(n) are parameters of proper
dimensions. The action period is assumed here to be T = 1 for simplicity, i.e.,
discrete values of time ranges over integers ne N = [no, n,].

Solving the equation (1a) we get [1]

5 x(n) = B(n, ng) x(no) +:§_;(P(n, k + 1) b(k) u(k)

where the system transition (fundamental) matrix

G) B(n, k) = A(n — 1) A(n — 2) ... A(K) (n > k)
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satisfies the equation

4 B(n + 1, k) — A(n) @(n, k) =0
under the initial condition
(5) ®(k, k) =1

(identity matrix).
The transition matrix possesses the following properties:

(6) a) P(n,n)=1I;
(7 b) B(nk)=®dn NP1 k); nzlzk;
(8) ) ®(k,n) =o' (nk)y=A"K)Ak+1)...A(n—-1)

provided-the inverses of A(n) exist.
Using the equations (2) and (1b) the output can be expressed as

) ¥(n) = c(n) D(n, ny) x(ne) + c(n):g':tﬁ(n, k + 1) b(k) u(k) + d(n)u(n) .

Let us now consider the system weighting function (weighting sequence, impulse
response) g(n, k). It can be defined as the response of initially relaxed system (1) to
the discrete-time equivalent of Dirac impulse signal determined [3] by the relation

0; n=+k,
(10) a(n—k):{I; ey
Obviously with respect to physical realizability of the system
(11) g(n,k)=0 for n<k.
Assuming a system that is fully relaxed at n < n,, the output y(n) resulting from

any input u(n), n Z ny, is determined by the summation

12) ) = ¥ g ) ulk).

k=np

Comparing the relations (12) and (9) with x(n,) = 0 we have

(13) g(n, k) = c(n) B(n, k + 1) b(k); no S k<n

and

(14 g(n, n) = d(n).



The weighting function of linear, finite-dimensional, discrete-time system can
always be written in the form

(15) g(n, k) = q(n) h(k)

where

(16) q(n) = [q:(n) q2(n) ... ¢,(n)]

is an (1 x s) row vector and

(17) h(k) = [h,(k) hy(k) ... h(k)]"

is an (s x 1) column vector.

The order s of minimal system realization results directly from the form (15) of
the weighting function.

If we compare the equations (13) and (15) and respect the above properties of
®(n, k), the following relations are valid:

(18) a(n) = <(n) 9(n, 0)
and

(19) h(k) = &(0, k + 1) b(k) .
II. DETERMINATION OF THE STATE EQUATIONS

Using the relations (14)—(19) the weighting function can be found from the state
equations (1) provided that the transition matrix &(n, k) is available.

We shall investigate the converted problem here, i.e., the formulation of state
equations from given weighting function. A system described by its weighting function
can be represented, of course, in variety of equivalent state-space forms. Only d(n)
is given unambiguously by the equation (14) while we must always choose s elements
to determine all other parameters.

Now several convenient ways will be given for obtaining the state equations of
linear discrete-time-varying system represented by its weighting function g(n, k).

1. Writing g(n, k) in the form (15) and choosing

(20) q1(n) 0 0...0
o(n,0)= |0 B0 0

0 0  0.. gn)
we have from the equation (18)

(21) ‘ eny=c=[11...1].
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470 According to (4) we determine
(22) A(n) = ®(n + 1,0) &~ (n, 0)

having the diagonal structure

th('_’;ij) 0 0
q1(11) ‘Zz(fi‘_l) L 0
(23) Ay =| el o
6 0 O N qn + 1)J
an)

and at last from the equation (19) we get
qy(n + 1) hy(n)
(24)  b(n) = ®7(0,n + 1) h(n) = B(n + 1,0) h(n) = ‘\"2(" * f) ha(m) |
Lan + 1) hs(n)_

2. The matrix A(n) can be taken in the diagonal form as

400...0
3 a_ |0 0 0
000... 4

where all 1; are arbitrary real constants.
The according to the relations (3) and (6)

\'/1';"‘0 0...0

(26) B(n )= ar = [0 A0 0
Ls oo ]
Using the equations (18) and (19) we obtain
1) ) = a() 270, 0) = L) %5 4x(m) 257 5 ) A7)
and

22 hy(n)]
(28) b(n) = ®(n + 1, 0) h(n) = i 72(")
2 hyn)

respectively.



3. The special case of the previous way may be formed by putting
(29) A=1.

Then obviously

(30) ®(n, k) =1,
(31) o(n) = q(n)
and

(32) b(n) = h(n).

The following theorem summarizes these results.

Theorem. Every linear, finite-dimensional, discrete-time system, given by the
weighting function g(n, k) = q(n) h(k), can be described in the state-space form
(33) x(n + 1) = x(n) + h(n) u(n),

y(n) = q(n) x(n) + g(n, n) u(n).
The system matrix A(n) and the transition matrix (b(n, k) are unit matrices.

Note. The analogous form with A(f) = 0 and &(t, &) = I given for continuous-
time system by Kalman [4] is called the normalized canonical form.
4. The widely used canonical form of state equations possesses the parameters

fo 1 o ..0
[0 o 1 .. 0
€ Ay = |0 :
o 0 o0 ...1
ag(n) a,(n) ay(n) ... a,~(n)
and
[0
10
(39) b=|:
0
1

Obviously just s? elements are fixed in advance by the relations (34) and (35)
provided a vector

(36) a(n) = [ao(n) ay(n) ... a,-4(n)]

is required to be stated.
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Substituting (34) into the equation (4) we get

o,(n+ 1) ©,(n)
o +1) | | oaln)

(37 on+1,0=| i =]
por(n+ )| | o)
ofn+1) | a(n) &(n, 0) |

where @ (n) is the j-th row of @(n, 0).
Simply writing ¢(n) instead of @,(n) it follows from (37)

o(n)
(38) ®(n,0) = | 1)
(p.(n +s—1)
and
39 o(n + s) = a(n) D(n, 0).
In accordance with (19) we can write
(40) D(n+1+i,0)h(n+i)=>b{n+i)=b

where i = 0,1, ...,s — 1 and b stands in (35).
Then substituting (38) into (40) the following equations are valid for the rows
of ®(n, 0):

(41) o(n+i)=[10...00H '(n —s +1i),
i=0,1,..,5.
The (s x s) matrix
(42) H(n) = [h(n); h(n + 1); ...; h(n + s — 1)]
is always nonsingular if minimal s in (16) and (17) is taken.
Then ®(n, 0) is stated and we obtain

(43) a(n) = ¢(n + s) @ *(n, 0)

according to (39) and using (18)

(44) c(n) = q(n) " (n, 0).
EXAMPLE

We want to formulate state equations of a system characterized by the weighting function

g(n, k) = 1 — pe™G=h )




Using (15)—(17) we put at first 473
2n

q(n) =1, gy(n)= ~ne™?",

hE) =1, hE)= .

According to (14) we have
dn)=1—ne™".

The other parameters will be gradually found by applying all above derived equivalent ways,
1. Substituting determined g; and k; into the relations (20)— (24) we get

1 0
20,0~ g _poe]-

o(n) =[11],

1 0
Aln) = P
L n
and _
1
b(n) = _(n+ 1) et |-
2. If we choose B
fe-10 ]
A= K e_ZJ

the remaining parameters are determined by (26)— (28) as

0 e

.—-n
®(n,0)=|° O ZJ ,
c(n) = [e"; —n]
o=t 1)
b(n) = L—(nu)} :
3. Choosing A = I the normalized canonical form of state equations is given by (33):
o+ 1) = o) + | 4],

y(n) = [1; —ne™ "] x(n) + (1 — ne™") u(n).

HO) = [} o

and

4. In accordance with (42)
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1 e —e™"
H™ (n) = .
() e—1 ‘>—1 e"‘:{

Then using (41), (38), (43) and (44) -

o(n+2) = ! ] [es —e™"],

e —
1 e~
®(n, 0) = g L —e"("“”} ,
an) =a=[-e"'; 1 +¢7']

e(n) = e *(ne™ — 1); 1 — ne”"* 1]

I

and

respectively.
The results are completed by

An) = A

il
| —
|
o O
i
——
+
[
'
-
| S—

and
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