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Weighting Function and State Equations 
of Linear Discrete-Time-Varying System 

VACLAV SOUKUP 

A linear nonstationary discrete-time system is considered in this work. The ways are presented 
for determination of system state equations if the weighting function is known. 

State equations of a linear discrete-time system can be obtained from its input-
output difference equation in stationary [1] as well as in nonstationary case [2]. It 
is the purpose of this paper to show the direct transformation of the system weight
ing function into the state space description. 

I. FUNDAMENTAL RELATIONS 

A single-input, single-output, linear discrete-time system can be described on 
definite time interval N by the state equations 

(la) x(n + 1) = A(n) x(n) + b(n) u(n), 

(lb) y(n) = c(n) x(n) + d(n) u(n) 

where a system input and output are denoted by u(n) and y(n) respectively, x(n) is 
an s-vector of state variables; A(n), b(n), c(n) and d(n) are parameters of proper 
dimensions. The action period is assumed here to be T = 1 for simplicity, i.e., 
discrete values of time ranges over integers neN = [n0, n : ] . 

Solving the equation (la) we get [1] 

(2) x(n) = *(n, n0) *(«o) + I *(» , k + 1) b(k) u(k) 
k = ito 

where the system transition (fundamental) matrix 

(3) #(n, k) = A(n - 1) A(n - 2)...A(k) (n > k) 



468 satisfies the equation 

(4) <P(n + 1, k) - A(n) * (« , fc) = 0 

under the initial condition 

(5) <P(k, k) = t 

(identity matrix). 

The transition matrix possesses the following properties: 

(6) a) <P(n, n) = J ; 

(7) b) &(n, fc) = &(n, I) $(l, fc) ; n ^ l ^ k ; 

(8) c) $(k,n) = $-1(n,k) = A-1(k)A-i(k + l)...A-i(n-l) 

provided the inverses of A(n) exist. 
Using the equations (2) and (lb) the output can be expressed as 

(9) y(n) = e(n) *(n, n0) x(n0) + c(n) £ *(« , fc + 1) b(fc) u(fc) + d(n) u(n). 
k — no 

Let us now consider the system weighting function (weighting sequence, impulse 
response) g(n, k). It can be defined as the response of initially relaxed system (1) to 
the discrete-time equivalent of Dirac impulse signal determined [3] by the relation 

fm\ < , \ ( 0 ; n + fc, 
(10) a(n-k) = \ 

(1 ; n = fc. 

Obviously with respect to physical realizability of the system 

(11) g(n, fc) = 0 for n < fc. 

Assuming a system that is fully relaxed at n < n0, the output y(n) resulting from 
any input u(n), n 2; n0, is determined by the summation 

(12) y(n) = £ g(n, fc) u(k). 
k = no 

Comparing the relations (12) and (9) with x(n0) = 0 we have 

(13) g(n, fc) = c(n) <P(n, k + l) b(k) ; n0 ^ fc < n 

and 

(14) g(n, n) = d(n) . 



The weighting function of linear, finite-dimensional, discrete-time system can 469 
always be written in the form 

(15) g(n, k) = q(n) h(k) 

where 

(16) q(n) = [qi(n)q2(n)...qs(n)] 

is an (l x s) row vector and 

(17) h(k) = [hl(k)h2(k)...hs(k)Y 

is an (s x l) column vector. 

The order s of minimal system realization results directly from the form (15) of 
the weighting function. 

If we compare the equations (13) and (15) and respect the above properties of 
$(n, k), the following relations are valid: 

(18) 

and 

(19) 

q(n) = c(n) Ф(n, 0) 

h(k) = Ф(0, k + 1) b(k). 

II. DETERMINATION OF THE STATE EQUATIONS 

Using the relations (14) —(19) the weighting function can be found from the state 
equations (l) provided that the transition matrix $(n, k) is available. 

We shall investigate the converted problem here, i.e., the formulation of state 
equations from given weighting function. A system described by its weighting function 
can be represented, of course, in variety of equivalent state-space forms. Only d(n) 
is given unambiguously by the equation (14) while we must always choose s2 elements 
to determine all other parameters. 

Now several convenient ways will be given for obtaining the state equations of 
linear discrete-time-varying system represented by its weighting function g(n, k). 

1. Writing g(n, k) in the form (15) and choosing 

(20) 

Ф(n, 0) = 

"ŰI(И) 0 0 . . . 0 

0 q2(n) 0 . . . 0 

0 0 Õ . . . qs(n) 

we have from the equation (18) 

(21) c(„) = c = [ l 1 . . . 1 ] . 



According to (4) we determine 

(22) A(n) = 0(n + 1, 0) $-\n, 0) 

having the diagonal structure 

~qi(n + 1) 

n.(n M 1s, 

0 . . . 0 
(23) A(n) = 

0 0 

and at last from the equation (19) we get 

0 0 . . . 0 

" ( » ) q2(n + 1) 

Чг{n) 

0 Ф + i) 
<L(«) 

(24) b(n) = $ _ 1 ( 0 , n + 1) h(n) = #(n + 1, 0) h(n) = 

2. The matrix A(n) can be taken in the diagonal form as 

(25) A = 

~qx(n + 1) h^nf 
fl2(n + 1) h2(n) 

qs(n + І) hs(n) 

Яц 0 0 . . 0 

0 Я2 0 . . 0 

0 0 0 . • к 
where all Xt are arbitrary real constants. 

The according to the relations (3) and (6) 

~Xi~* 0 0 . . . 0 

(26) $(n, fc) = .4" * = . . 2 . 

o o o ... rs 

Using the equations (18) and (19) we obtain 

(27) e(n) = q(n) 0~\n, 0) = [^(n) Ar"; a2(n) ^J"; ...; qs(n) i ; " ] 

and 

> ! + 1 fcl(»)" 

(28) fa(n') = 0(n + 1, 0) h(n) = 
A"2

+1 h2(n) 

Aï+1 Й S («) 

respectively. 



3. The special case of the previous way may be formed by putting 

(29) A = / . 

Then obviously 

(30) #(«, k) = I, 

(31) c(n) = q(n) 

and 

(32) b(n) = h(n). 

The following theorem summarizes these results. 

Theorem. Every linear, finite-dimensional, discrete-time system, given by the 
weighting function g(n, k) = q(n) h(k), can be described in the state-space form 

(33) x(n + 1) = x(n) + h(n) u(n) , 

y(n) = q(n) x(n) + g(n, n) u(n) . 

The system matrix A(n) and the transition matrix _>(n, k) are unit matrices. 

Note. The analogous form with A(t) = 0 and <I>(t, £) = / given for continuous-
time system by Kalman [4] is called the normalized canonical form. 

4. The widely used canonical form of state equations possesses the parameters 

(34) 

and 

(35) 

A(n) = 

... 0 

. . . 0 

0 0 0 . . . 1 
_a0(n) ai(n) a2(n) ... _,_!(«)_ 

b = 

Obviously just s2 elements are fixed in advance by the relations (34) and (35) 
provided a vector 

(36) a(n) = [a0(n) fll(n) ...«,_..(..)] 

is required to be stated. 



Substituting (34) into the equation (4) we get 

(37) <P(n + 1, 0) = 

> i ( в + 1) 
<p2(n + 1) 

<Ps-i(n + 1) 
<ps(n + 1) 

<Pг(n) 

<Pг(n) 

<Ps(n) 
_a(n) Ф(n, 0) 

where <Pj(n) is the j'-th row of 4>(n, 0). 

Simply writing <p(n) instead of <Pi(n) it follows from (37) 

(38) Ф(n, 0) = 

~ę(n) 
ę(n + 1) 

<p(n + s — 1) 

and 

(39) <p(n + s) = a(n) $(n, 0 ) . 

In accordance with (19) we can write 

(40) <P(n + 1 + i, 0) h(n + i) = b(n + i) = b 

where i = 0, 1, ..., s — 1 and b stands in (35). 

Then substituting (38) into (40) the following equations are valid for the rows 
of <P(n, 0): 

(41) <p(n + i) = [1 0 ... 0] H'l(n - s + i), 

i = 0, 1, ..., s . 

The (s x s) matrix 

(42) H(n) = [h(n); h(rc + 1); ...; h(n + s - 1)] 

is always nonsingular if minimal s in (16) and (17) is taken. 
Then <P(n, 0) is stated and we obtain 

(43) a(n) = <p(n + s)d>-l(n, 0) 

according to (39) and using (18) 

(44) c(n) = q(n)®-1(n,0). 

EXAMPLE 

We want to formulate state equations of a system characterized by the weighting function 

g(n, k) = 1 - m-V-V . , 



Using (15)-(17) we put at first 

«i(n) = 1, q2(n) = -ne~2n, 

K(k) = l, h2(k)= e*. 

According to (14) we have 

d(n) = 1 - m~n . 

The other parameters will be gradually found by applying all above derived equivalent ways. 
1. Substituting determined qt and ht into the relations (20)—(24) we get 

Ф(n, 0) = 

c(n) = [ l l ] , 

1 0 

0 - n e ~ 2 л 

2. If we choose 

A(n) = 

b(n) = 

A = 

o !Ĺ±1*'> 

- ( n + l ) e - ( и + 2 ) 

e " 1 0 

0 e" 

e " я 0 

0 e" 

the remaining parameters are determined by (26)—(28) as 

* ( n , 0) = 

c(n) = [en; - n ] 

b(n) = 

and 

3. Choosing iA = / the normalized canonical form of state equations is given by (33): 

x(n + 1) = x(n) + •00. 

y(n) m [1; - n e - 2 n ] x(n) + (1 - ne"") u(n) . 

4. In accordance with (42) 

" 0 0 -
1 1 

e" e" 



474 and 

H-Ҷв) -
e - 1 

e — e 

- 1 e - " 
Then using (41), (38), (43) and (44) 

ę(n + 2) = [e; - e "] , 
e - 1 

Ф(n, 0) = 
e - 1 

and 

a(n) = a = [-Є _ 1 ; 1 + e _ 1 ] 

c(n) = [e-Ҷne-" - 1); 1 - ne-(" + 1 )] 
respectively. 

The results are completed by 

A(n) = A = 

and 

Ь = 

0 1 
— e 1 + e~\ 

01 
1 • 
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