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Periodical Coefficient Linear Systems
with Random Stationary Input

VLADIMIR KRACIK

This paper examines the problems of the transfer functions of periodic parameter systems in
relation to the computation of the correlatjon function of the output process at the stationary
input. These systems are described by systems of difference, differential and differential- dif-
ference equations.

1. SYSTEMS OF DIFFERENCE EQUATIONS IN DISCRETE CASE
Let the system of difference equations be given

(1) Yi = A1 + Bix,,
where A, B,, y,, X, are matrices of the dimensions m x m, m x I, m x r, I x r,
respectively.

Let Ay, = Ay, B, = B, be valid; let us write A,,,; = A
n=012,...

Let us further define the matrices in the following way:

» Bups; = B for

Yup X(n—l)p+1
Yo = | Ynpt1 > Xm-1)p+2
. , x, =] :
Yup+p—1 Xnp
Xnp+1
Xup+p—1
[A,JAP_1.. A1] 0, , 0
A [AIAOAp—l Az]y 0,...0

0, 0, [Ap-1A, s ... Ag]
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[Ah,—; ... A;B,), [AoA,—, ... AsB,] ..., [AB, ], By, O, ..... , O
0, [AA; ... AB,], [AA, .. AB,], ... [A;B], By, 0, ... 0

If we express by a successive application of the recurrent relation (1) y, depending
on y,_,, then the given system with periodical coefficients may be transferred to the
system with constant coefficients, if we write

)] Ys = Ay._, + Bx,

This system is stable if all eigenvalues of the matrix A i.c. all eigenvalues of the matrix
[A,-1A,_; ... Aj] lie inside the unit circle. The transfer function of the system (2)
using z-transformation is

Yx(z“,l) =(E~z"'A)"'B;

1

let us write for convenience z7*' = s.

Let there further {x,} be a stationary sequence (x, is a matrix of the dimension
(2p — 1) I x r) with the correlation matrix K, (k) = M[x,x;.,] and the matrix of the

spectral density S,(s) = Y K,(k) s*, then
-
1
) $,5) = Yx 1) 59 Y365

(indeed, let us write Yy(s) = (;i W, s*; W, is the weighting scquer.lce of the system;
W, = YP(0)/k!, then y, = ;Z”ij,,_j and therefore

Ky(k) = M{gw,.x,,_i(;w,.xm_j)T} = Z‘;W;Kx(k —j+i) W};
M is the mean value operator, T is the symbol of transposition; further Sy(s) =
= i K (k) s* hence there follows (3)).

For the correlation function of the output matrix we obtain*

. K,(l) = - f Y, (3) S.09) Yi(s) s~ %2,
' 2ni Jy s s
where k is the unit circle.

* Some remarks concerning numerical computation of this integral see in Section 3.



If there is given a higher order difference equation or a system of such equations,
then it is not necessary to do the transformation to the form (1) but the periodical
transfer function may be calculated directly as is shown in the following example:

(4) Vo G1Yu-1 + A3z = bopX, + BipXy—y s

let there be a;, = @ju43, by, = by,43 and let the equation (4) be stable in the sense
of the stability of the system (2).

Let {w,}2o be for every n the weighting sequence of the system (4) (i.e. w, is the
response of the system at the step » to the unite impulse in the step n — k) so that
generally y, = Z WX, - Evidently W..k = W, 134 holds. If the input has the form
X, =z"= s’",k the output is ) z Wz Tk i Wz ¥ = Z Wysk =
= 57" Yx(n, 5), where Yx(n, s) = Z w,,,s is the penodlml transfer functlon If we

substitute into (4) s~" for the i mput and Yx(n, s) s~ for the output we get

Ye(n, s)s™" + a;,Yy(n — 1,5)s707Y 4 a5 Yy(n — 2,5) s =
= bo,s ™" + by,sT"TY
and therefore

; _ 2
A\ ntX LIRS 2nt X Ry A On no
(5) Yuln, s) + a,Yy(n — 1,5) s + a5, Yy(n = 2,5) s = by, + by,s

By substituting into (5) n = 0, 1, 2 we get a system of linear algebraic equations for
Yx(0, 5), Ya(1, 5), Y¢(2, 5).
If further ny = 3k, + h, n, = 3k, + j, it may be easily shown:

1 na—m 45
Ky(nl,nz):%J‘ (s)Y,\<h )Yx(},s)sz ‘?

Tt is further possible to solve easily the inverse problem: to determine the corres-
ponding difference equation to the given Y4(0, s), Yy(1, s). Yx(2, 5). According to (5)
the transfer function are rational functions with common denominator, hence
Yx(j, s) = Pj/'Q; let us denote the highest degree of polynoms P;, Q by m.

The difference equation with unknown coefficients is

() Gonln + Bipyt + oo F QYo = bon + o+ DXy -
If we substitute in (6) s™" for x,, Yy(n, 5) s ™" for y, we get

(1) a0oPo + 5a1oP; + ... + 5"@noPs-n = (boo + sbio + ... + $"buo) Q,
@01Py + 50 Py + ... + "8 Py_pnsy = (boy + sbyi + .o + b)) Q,
402Ps + 5a1,Py + ...+ 578 Ps_ s = (boy + b1y + -+ 5"hy) Q.

315
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Each of identities in “s” (7) represents a homogeneous linear system of equations
for the corresponding coefficients a, b.

2. DIFFERENCE EQUATIONS SYSTEM IN CONTINUOUS CASE

Let us consider a difference equations system in the form
® Y0 = % €0 y(t = T[0) + B() X0,
i=
where C(t), Tj(t), B(f) are periodical with the period length T, C,(1), B(2), y(r), x(f)
being matrices of the dimensions m x m, m x I, m x r, I x r respectively. The
difference equation for the transfer function Y,(ic, 7) (the response to the input x(f) =

= e 0OTHNE js ¥, (iw, y) €°"T*7; the dimensions of the matrices E or Y,(iw, y) are
1 x Ior m x I respectively) is obtained by substituting the input and output into (8):

Yx(ia), V) eim(nT+y) = Z Cj("/) Yx(iw, y — TJ{V) eito(nT‘(“;‘)‘T}(}’) + B(Y) eim(nr+y)
i=1
and finally
©) Vi, 7) = 3, €0) Yxlio, v = T3)) 7T + B(y).
i=

In some simpler case the equation (9) for the transfer function may be solved expli-
citely.

Example. There is given the equation
y(nT +9) = kyy(nT — 0) + x(nT +v), 0Ly <T..
According to (8), (9)

Yy(io, y) = kyYy(io, T — 0y ™7 + 1

hence
Yyliow, T — 0) = kT¥yiw, T — 0)e ™7 + 1,
Y (io, T — 0) = —1———, ciel — g,
1 — kTs

and finally

’ . ke~ teT
1 . Yiliw, y) = —— + 1
(1) i) = T

(the equation (10) is stable for {kT| < 1).



From (11) we see:

(12) y(nT +9) = x(nT +9) + ky Y, (kTY x(nT — jT).
j=o0
((12) may be also attained directly from the recurrent relation (10)). If e.g.
Kx(r) = e"a“’l !
© —~aT —aT
Sy (s) = e—a[nT‘Sn:I_,__g___b__i__e______,
rals) Ea 1—eTs s—e T
the mean square output value in the phase y is
1 s ds 1
M[y2] =1 + k*p? | - — S (5) — + 2kye” " ———— —— |
5] ! fkl—lcTss—kT TdS) T e
3. DIFFERENTIAL EQUATIONS SYSTEM
Let there be given a differential equations system
dy(t
) D — a0 ) + 8 (0.

where A(f), B(t) are periodical with the period length T, the dimensions of A(t), B(t),
y(t), x(t) being m x m, m x I, m x r, | x r respectively; as regards the correlation
function of the process x(f) without loss of generality let us suppose

K (7) = M[x(z + ) x*()] = 6(r) E.

Here the symbol * designates the operations of transposition and complex conjuga-
tion. Let further W(, 7) be the weighting function (transition matrix) of the system

9 dzhi’) = Q) y(0) + x(0)

(the dimension of x(f) is m x r).
Then for the output from the system (13) the following relation holds

MIyit) y*()] = M f :W(ti, o) B(t, — ) x{t, — <) dr f :x*(tz — ).

L BX(t, — u) WH(t,, u) du =

- J' Wity + 1y — 1) B(t, — 7) BX(t, — 7) W*(ty, ) dr
[} ~

3
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specially
My(0) y*()] = f W(1, 7) B(t — 1) B*(1 — ) W*(t, 7) dz .
0
If we denote W(r,, 7) B(t; — ) = W(1,, 1), is

(15) M{y(t,) y*(r2)] = rw(h» T = 1) Wi, 7) da,

(16) ML) yo] = [ Wee ) We(e 9 e
0
As it is known, W(z, 1) satisfies the equation (the dimension of E being m x m)
aﬁw(t, W) = A(t) W(r,<); W(t — 1.7) = E
t

and the adjoined equation
(17) 61 WH(1, 7) = A%t — 1) W(t,7), W¥(1,0) = E.
T

From the periodicity of A(f) there follows also the periodicity of W(z, t) with respect
to 1. Then W(r, ) = W(y, 1) where 0 <y < T, t = nT + y. Further for 7, <1,
with respect to what has been said above the following relations are valid

WH(t, 1,) = WH(t — 1,1, — ;) WH(1, 7))
and specially
We(t, T+ T) = WH(t = T,5) (i, T) = We(y, ©) We(y. T)
and hence by the induction

Wx(t, T + nT) = WXy, 1) [W(y, T)]".
Hence also
WH(t, 7 + nT) = W¥(y, 1) [W¥(3, T)]".

If further t; — t, = mT + w, it is possible to write
WH(y,, © + 1, = 1) = WXy, 7 + o) [WH(yy, T)]". v
Thus from (15) we get the output correlation function in the following form
(18) M[y(t)) y*(t)] =
= 5, W 1 (WO 7| [ Wor e+ 2 Weon 9 dc| [ T



and specially the mean square output value in phase y is 319

089 MIy6) )] = 516, [ [ W) Wt | wet
The expressions (18), (18a) may be also transcribed in the form
(19) M[y(1,), y*t)] =

-L €~ =Wl T [Wow T U:wm, ¢+ o) W, 1) df] x

[ twnn]
(192) M[y(y) y*(»)] =
1

- ~L[E — WG T)] 1UTw<y, 9 W (1, 0 df] [E - e, T)]“ dz

2mi 0 z

where z is a complex variable.

Some remarks concerning numerical computation. We can use the relations
(20) Wiy, 1) = WHO0, T+ 17— ) W0, T —y) for 0Z7=y
(21) Wiy, 1) = WH0,7 — y) WHO, ) W*" (0, T —y) for y<t<T

so that it is not necessary to compute W* (y, 1), 0 £ 7 < T for each y separately.
Then e.g. the inner integral of (18a) or (19a) becomes

'Ew@, ) WH(p, 7) de = W10, T — y)[W(O, 1) (J "

o

yW(O, u) W*(0, u) du) .
W0, T) + f W0, u) WO, 1) du] W10, T — ).

Similarly it is possible to express the inner integral of (18) or (19) in a more com-
plicated manner.

If the spectra of the matrix W(0, T') are known (W(y, T) being mutually similar
for different y-see (21)), the external integral of (19), (19a) can be computed by means
or residues. Generally it is convenient to use (18), (18a).

If we denote

R = [Wr,, T)I" j Wiy, © + o) WGy, 1) e,
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it is easily seen that for the sequence Q, of partial sums of (18) the following relation

is valid:
Q,:1 =R+ W('Vna T) an*(yz, T), Q,=0.

Further we suppose that for some norm |. |
W T)|sa<1, 0Sy<T
is valid. Then lim Q, exists and
n—oo
lim Q, = Q = M(y(t,) y*(t2))
n-+co

and
MZ"

e, -Ql=fe -~ Qo!{If‘_zlz = IRl 7

Further it follows that Q satisfies the following matrix equation
(22) Q=R+ W, T)QWy,, T).
In case o is near to 1, it is convenient to solve directly the equation (22).

If we know the periodical transfer function (p is a complex variable):
w T
(23)  Yi(y, p) =J W(y, 1) e "™ dr = (E — ™" W(y, T))“l‘[ W(y, 1) e " dr
0 0

we may express analogously to the discrete case

1 -
MIy(s) y¥()] = - j Y710 ) i) Yilrar £) e~ dp
Im

and specially

M[y(y) y*(»)] = f Yx(7. p) S(p) Yx(v. p) dp.

1
2mi J
Here the path of integration is the imaginary axis, S (iw) = S, (p) is the matrix of
spectral densities of the process x(1), i.e.

K@) = M[x(t + 9 x*()] . S.fie0) = j K (c)c™ ™" de .
The periodical transfer function may not be generally obtained in an explicit form.

Generally the problem of finding the periodical transfer function leads to a difference
infinite order equation with non-constant coefficients [1], [2].



Here we give a simple method for approximate determination of the periodical
transfer function for the event of A(r) having a finite number of “small” harmonics.
Let
A, = {A(p) :Re p; £ ¢ < 0; p; are singularities of A(p);
1 I
I— 1 A(p) A*(p) dp| < ol.
127 1o i

Let us introduce the norm | A(p)||, = /(%) where A, is the maximum cigenvalue
of the matrix 1/2ni [1,, A(p) A*(p) dp. (The given norm is that of the operator A(p)
induced by the norm in the n-dimensional Euclidean space.) ||C] is the radical from
the maximum eigenvalue of the matrix CC*. It can be shown that for the “scalar
product”

(e 8) = 5 [ 40 87(r) a0

Tm

an analogue of Schwarz’s inequality holds:

I(A(p). B(R))]| = || AR)]- [B(P)], -

Let us now consider the equation (the period length is 2r)

i) DD (a4 T2 ac ) + (B + 50 B x5 S0) = £

t =-n

3% denotes the sum with omitted index 0.
According to (23)

Y(y, p) = Z[W(y,7)] = Z[W(r,7) B(y — 7)];

W(y, 1) is the solution of the equation (17) and hence for

1) = (LW, 9D = | Wen e de
JO
we get
n
Py, p) = (A5 + X° Afe™"DY) Yi(v. p) + E,
k=-—n
where DF(p) = F(p + i) ; hence it follows
Yi(n p) = (p*E — A3)"H[( 1° Ate™"D") Y3(1, p) + E]
k=-n

or

(25) Yx(% P) = Ei: Dk(Yx()’, P)) Akeiky + E] (PE - Ao)_l H

321
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For the operator
H = [ 37 D) Ac™] (E = 4"
the following relation holds -
[, = (8 ~ 40711, 32 14 = =

(obviously |D[, = 1).
As D represents a shift in the direction of the imaginary axis, the operator H maps

the set /. into. If then o < 1 the sequence {Y$(y, P)}m=o°
(26) YEO(y, p) = HYY(y, p) + (pE — A)™'5 Y (r.p) =0

is fundamental. Let further Yy(y, p) exists and Yx(y, p) € &, for every y. Then
obviously :
lim YZ(y, p) = Yx(» p) »

Yx(7, p) is the solution of the equation (25) and
& = [N D, = Y0 p) = Y0, )l =

o o
S 0=l =,

From (26) it follows that
Y = YO+ HYY + L+ HYYED,
Let us remark that Y§ = (pE — Ag)™! is the “basic” transfer function for the system
with constant matrix Ay, the further members being successive corrections depending,
however, on y.
For Yx(y, p) we get further

Yu(y, p) = €¥x(7, p) »

where
n
N =3 ¢¥D() B;

k=-n

N.(3, p) = Y3'(3, p) — Yx(», ») = CN.(7, p),
o= NG, 5 2l 5 o0 5 B
Let us remark that || Yx(y, p)|, in the unidimensional case is rms ( (7)) where y(1)

is the output of the system (24), similarly &,(y) = rms (y,(7) — ¥(¥)) where y,(7)
is the output from the system with the estimated transfer function Yim, Specially



[ 7P|, is rms (¥(2)), where y(f) is the output at the basic transfer function (4(f) = 4,,
B(r) = 1).

For the error &,(t,, t,) in norm of the correlation function M[y(t,), y*(t,)] when
Y is used the relation

Eultis 12) 2 &00) Y02 D)o + &) [P0 D)5 + Enl1) 2(2)
holds.
Example.
(27) Iiy,:l _ Ii~2, Acos t] [}'1] + [xl] :
Vs Asint, —3 V2 0
x,(1) is a white noise. The equation (27) is transcribed

? = (A + At + ALe™) y(1) + By x(1)

where x(t) is a two-dimensional white noise,

A0: -2 O,Bu= I’O’Alzé O,I’A_lzé(),l,
0, -3 0, 0 21-1, 0 214, 0

R

W =" L = max (V) =

1] RN

> b 13

N

3

HYD = (DY(YQ)) Aje'” + DY) A_e™ ™) Y =

! 0
|z 0 gy
2 0 1 -, 0
T p+i+3
SR
p-i+2 ey -
0 1 i, 0 x
T p—i+3
0 (p + 2)cosy +siny

_ (P+3)[(p+2?+1]
(p + 3)siny — cosy 0 ’
(p+2)[(p+37F+1]

323



324 Y = HYD + YD,

_ L0
p+2
2 (p + 3)siny — cos y

(p+2)[(p+372+1]°

a= (32 1Ad) = 2

Y = (HYP + V) B, =

9]
= =l s 222w (B s

,_
{
[SEEN

as |Bo| = 1, then also

so that e, g.

Yl = 22 = [Yul, = Y5O, + 2

In a unidimensional case when there is given an equation of a general order it is
not necessary to do the conversion to the system of first order equations. For the
sake of simplicity we shall illustrate this fact on an second order equation.

Let there be given the equation (}.° denotes a finite sum with omitted index 0):
E
7+ (a0 + Y'a,e™) 5 + (bo + Y.he™) y = (co + Y0 ™) x(1),
k k k

where x(r) is white noise. The weighting function w(y, t) is the solution of the adjoined
equation:

wee + [(ao + F;oake“‘“’_”w], + (bo + Xklobke"‘“’_')) w = §(7)
and for Yy(y, p) = L(w(y, 1)) we get
(28) P?Yy + aopYy + boYy + ka° 4,e™ DYy + ;0 b DYy = 1.
We transcribe the relation (28) into the form

1

Y=~ 5—r
p°+ aop + by

[p Zk" a,eM DYy + Z;,ObkeikVDka -1].



For the norm of the operator 325

1
H= 0,6 DF 4 Ob iky Y&
p Pt + agp + by [pz w z ¢ ]
the following relation holds
[, —’»—— X [ai] + ! l 2] = 2.
IP + aop + boll, ¥ ‘p"

The iteration may be done in an analogous way (if « < 1); finally

(. p) = 2aDYi(7. p) -
Example.
(29) F+ 7+ (12— cost) y = x(1),
x(t) is white noise.

Let us transcribe the equation (29):

AT+ (12~ 4" — 27 y = (1),

1
Yo = . Ly yw d
X P rip+ 12 “n \/( .Lm X (P) X ( ) P) \/168

(2) 1 e'? i
x =3 - N - +
P+Ip+12[2(p+i+3)(p+i+4)

7 1 +1]_
2 (p+3-i)(p+4-i)

= [(p+3)(p+4) —1]cosy +(2p + T)siny 4 1

@+ + 1)+ + 1 +4P+1] P+Tp+12]
(I oL
TP aop + +ap+b(,,,(lb|+|b D T /168

and therefore
' 11
6 < 168 /168 _ 1
1 168(,/(168) — 1)

T /168
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so that e.g.
V(E Res Yy, D) YL, —p) = &2 = M) <
piel

= V(X Res Y@y, p) YP(y, —p)) + &2

pieL

(here p; are poles, Lis the left halfplanc).

4. SYSTEM OF DIFFERENTIAL-DIFFERENCE EQUATIONS

The results of the paragraph 3. may be formally extended also to differential
equations with delay.

Let us consider the equation (the dimensions are analogous as in Section 3)
(30) 9%(? = A y() + C(1) y(t — T) + B(t) x(1),

where again the matrices A(f), B(t), C(1) are periodical, the delay Tequals the period
length. The case when the ratio of the period length and of the delay is rational may
be converted into the forme (30) ([S]). The relation (30) can be written in the fol-
lowing way

(31) %Zt = (A() + € 2" y(t) + B x(1),
where Z is operator defined by
Z(f() = f(t + T).
Let us further denote the product integral
(32) Jim [E + 46(t,_ )] [E + 4G(t,-,)] ... [E + 4G(1,)] =
= EXP :FG(t) de,

where a =ty <t; <...<t,=b, d =1t —t,_, for k =1,...,n The operator
EXP { bas similar properties as exp [ e.g. (see [6]):

EXP J[CG(t) dt = (EXP Jf:G(z) dt) (EXP ](bG(t) dt) for a<b<ec,

a a

EXP JC:(G(t) + H()dt = (EXP Jfbc(z) dt) (EXP J[bHs(t) dt) :

a
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H(i) = F-(i) H(1) F(t), F(i) = EXP ]f'c;(u) du.

If for every t,, ¢, the relation G(1,) G(t,) = G(t,) G(t,) holds (which occurs specially
in one-dimensional case), then

EXP :{:ubG(z) dr = exp (be(t) dt) .

The weighting function for the equation (31) for B(r) = E is the solution of the
adjoined equation

(33 Wi 1) = (A — 1) + €y — 1) Z71) WH(y, ) ;
WH(y, 1) = 0fort < 0, W*(y,0) = E.

Then the following relation holds
Wy, nT + 1) = (EXPJ: [A*(y — u) + CHy — u) Z™*] du) W*(y, nT).
0
For the sequence { W(y, nT)},Z, the following relation holds
T
W(y, nT) = (EXP:[: [A*(y —u) + C(y — u) Z71] du) ZIWH(y, nT) ;
) ;
WH(3,0) = E,

and then the z-transformation of the sequence {W#(y, nT)}o or {W*(y,nT + )},
is (E — z7*'G*(y, T, z))* or G*(y, 7,z) (E — z1G*(y, T, z))™* respectively, where

&(.5.2) = B0 { [ty = )+ € - ) e,

z is a complex variable.
If we further consider B(t) + E, we have similarly as in Section 3:

By — 1) WH(y, nT + 1) = Wy, nT + )5 G¥(y,1,2) = B¥y — 1) G¥(3, 7, 2).
The z-transformation of the sequence { W*(y, nT + 1)}, is

Gy, 1, 2) (E — z7'G*(y, T, 2))~*.



328

Similarly according to (15) and (19) we get for t;, — 1, = mT + «, y; and y, being
phases corresponding to ¢, and ¢, respectively:

9 M) y(e)] = o [ [E = 2600 .91 (66 7T

T
x (J Gy, T+ a z) G*(y,, 7, z) dr) [E - Z—IG*('))Z, T, z)}'1 E
z

and specially
(35) Myl y*()] = i—l L[E - zG(y, T, z)] ! (f:G(y, 7,7) G*(y, 1, 2) dr) x

x [E — 271Gy, T, 2] d?

Remark 1. For C = 0 (see (30)) the expressions (34), (35) are reduced to the ex-
pressions (19), (19a).

Remark 2. In a special case when A(t,), A(t,), C(t3), C(t,) are mutually commuta-
tive (Z™! being commutative with regard to the periodical matrix) EXP = exp and
the following relation holds:

Gy 5, 2) = <exp J ;A*(y —u) du) [exp (J;c*(y —u) duz~1)].

In a general case

GHy 7, 2) = (EXP ]f'A*(y —u) du> <EXP Jf'(cj(y, ) duz’1)>

0 0
where

Cy.u) = [We(n, )] €y — u) Wiy, u) ;
Wiy, 1) = EXPJ[ A¥(y — u)du,
0
W(’}‘(y, 1) of course being the weighting function for the system with zero delay
member.

Remark 3. In a general case the product integral may be replaced approximately
by a product of the type (47). If e.g. Cf(y — u) = K, + Ki(y — u) where K, is
constant matrix and K, is a “small” periodical matrix, it is advantageous to express

EXP:;: (C¥Hy — u)duz™") = exp (Korz™Y) EXPJ (Kyo(y, w) duz™ty,
0 0

where
Ky (7, u) = exp (—Kouz ™) Ky(y — u) exp (Kouz™?)
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(36) EXP J[;(K,s(y, W)duz"?) = E + G’K,s(y, u) du) S

0

+ <J‘ Ky (7, u)du J K, (v, v) dv) zZ72 4
) 0

where several first members of the series may be taken as approximation. The error
of this approximation may be easily determined ([6]). A detailed analysis of problems
of an approximate numerical computation which is very laborious will not be carried
out here.

It is also possible to use the transfer function technique as in par. 3. In case A(f),
B(t), C(1) have again a finite number of harmonics, the transfer functional equation
according (33) will be as follows:

Y0 p) = [AS + Y0 AeTDE 4+ (€5 + 30 CleTHDY) e TP YR(y, p) + E.
k=-n

k=—n
If the harmonics are “small”, iteration again can be made:
YOG, p) = HY(p, p) + (PE — Ag = e77TC)™ ", Y (y,p) = 0,

where

H =] Y°D*:) Ae™ +k YO DHe ) Ce™] (pE — Ap — e7FTC) T,
==n

k=-n

M1, = [(E — Ao = 7€y, ( Y2 (4 + |G-

(Received October 25, 1971.)
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