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Periodical Coefficient Linear Systems 
with Random Stationary Input 

VLADIMÍR KRACÍK 

This paper examines the problems of the transfer functions of periodic parameter systems in 
relation to the computation of the correlation function of the output process at the stationary 
input. These systems are described by systems of difference, differential and differential- dif­
ference equations. 

1. SYSTEMS OF DIFFERENCE EQUATIONS IN DISCRETE CASE 

Let the system of difference equations be given 

(1) Yk= \Yk-i + Bkxk, 

where Ak, Bk, yk, xk are matrices of the dimensions m x m, m x J, m X r, I x- r, 
respectively. 

Let Ak+p = Ak, Bk+p = Bk be valid; let us write A„p+J = Ap B„p+j = Bj for 
n = 0 , 1 , 2 , . . . 

Let us further define the matrices in the following way: 

Yn = 
Ynp 

Уnp+1 

Уnp + p - 1 

Xtn-(n- l )p+l 
Xi„-

A = 

l V , - i - л , ] , o . 
o, 

(я-l)p + 2 

L x и P + p - i J 

..., 0 

[•Mo.Vi.-A], o, ..., o 

o, [ V 1 V 2 - A I 



M - i - W [ M , - i . . . A 3 B 2 ] , . . . . , [ A V i ] . B0, 0, ,0-
0, [^/\0...A3B2], [4.4o....A4B,], ..., [4!B0], Bu 0, ..., 0 

B = 

0, , 0, [ V i - * . f l o ] , [ V i - ^ a B i ] , » . . [ V i U B P - J 

If we express by a successive application of the recurrent relation (l) y„ depending 
on yn-p, then the given system with periodical coefficients may be transferred to the 
system with constant coefficients, if we write 

(2) y„ = Ay„_l + Bx„ 

This system is stable if all eigenvalues of the matrix A i.e. all eigenvalues of the matrix 
[A__jAp_2 ... A0~] lie inside the unit circle. The transfer function of the system (2) 
using z-transformation is 

Y x ( z - 1 ) = ( E - z - 1 A ) ^ B ; 

let us write for convenience z'1 = s. 

Let there further {x„} be a stationary sequence (x„ is a matrix of the dimension 
(2p — 1) / x r) with the correlation matrix Kx(fc) = M[x„xJ+t] and the matrix of the 

spectral density Sx(s) = £ Kx(fc) sk, then 
- o o 

(3) Sy(s) = YxQS x(s)Yx(s) 

(indeed, let us write Yx(s) = £ Wks*; Wk is the weighting sequence of the system; 
o 

W t = Y«(0)/fc!, then y„ = £ W;x„_ . and therefore 
o 

Ky(fc) = M E W , x , . , E W y x B + ) t _ / ) __ £ £W ,Kx(fc - j + 0 WJ ; 
i J i i 

M is the mean value operator, T is the symbol of transposition; further Sy(s) = 

= £ Ky(fc) sk hence there follows (3)). 

For the correlation function of the output matrix we obtain* 

; K ' « ^ Y * ( j ) S - ( s ) Y M s ~ 7 ' 

where k is the unit circle. 

* Some remarks concerning numerical computation of this integral see in Section 3. 



If there is given a higher order difference equation or a system of such equations, 315 
then it is not necessary to do the transformation to the form (1) but the periodical 
transfer function may be calculated directly as is shown in the following example: 

(4) y\ + ~uy«-i + a2„y„-2 = b0„x„ + blnx„.i -, 

let there be ain = ain+3, bin = bin + 3 and let the equation (4) be stable in the sense 
of the stability of the system (2). 

Let {wnk}~l0 be for every n the weighting sequence of the system (4) (i.e. wnk is the 
response of the system at the step n to the unite impulse in the step n — k) so that 

00 

generally yn = £ wnkxn_k. Evidently w„k = wn + 3k holds. If the input has the form 
k = 0 X 00 00 

x„ = z" = s~", the output is y„ = £ wnkz"'k = z" Y, wnkz~k = s~" £ w„ks
k = 

oo * = 0 k = 0 k = 0 

= s~" Yx(n, s), where Yx(n, s) = V, wnksk is t n e periodical transfer function. If we 
k = 0 

substitute into (4) s~" for the. input and Yx(n, s) s~" for the output we get 

Yx(n, s) s~" + alnYx(n - 1, s) s~{"~l) + a2nYx(n - 2, s) s~^n~2) = 

= b0ns~" + blns-in~iy 

and therefore 

(5) Yx(n, s) + alnYx(n - 1, s) s + a2nYx(n - 2, s) s2 = b0n + blns . 

By substituting into (5) n = 0, 1, 2 we get a system of linear algebraic equations for 
Yx(0, s), Yx(\, s), Yx(2, s). 

If further nx = 3/q + h, n2 = ~k2 + j , it may be easily shown: 

Ky(nu n2) - i f Sx(s) Yx (h, i ) Yx(j, s) s"-" ' ^ . 

It is further possible to solve easily the inverse problem: to determine the corres­
ponding difference equation to the given Yx(0, s), Yx(l, s). Yx(2, s). According to (5) 
the transfer function are rational functions with common denominator, hence 
Yx(j, s) = PjlQ; let us denote the highest degree of polynoms Pp Q by m. 

The difference equation with unknown coefficients is 

( 6 ) aOn)'n + alnyn-\ + ••• + am„yn-m = b0n + . . . + b„„Xn-.,n . 

If we substitute in (6) s~" for x„, Yx(n, s) s~" for y„ we get 

(7) a00P0 + sa10P2 + ... + smam0P3-m = (V> + sb10 + ... + smbm0) Q , 

a01Pl + saltP0 + ... + smamlP3-m+i = (boi + A i + ••• + smbml) Q , 

a02P2 + sa^P, + ... + smam2P3-m+2 = (b02 + sbi2 + ... + s*bm2) Q . 



Each of identities in " s " (7) represents a homogeneous linear system of equations 
for the corresponding coefficients a, b. 

2. DIFFERENCE EQUATIONS SYSTEM IN CONTINUOUS CASE 

Let us consider a difference equations system in the form 

(8) Y(t) = iCj(t)y(t-Tj(t)) + B(t)X(t), 
j = i 

where C/t), Tj(t), B(t) are periodical with the period length T, Cj(t), B(t), y(r), x(t) 
being matrices of the dimensions m x m, m x I, m x r, I x r respectively. The 
difference equation for the transfer function Yx(ico, y) (the response to the input x(t) = 
= e

l0>("r+y}£ is Yx(ico, y) e
1<a("r+>'); the dimensions of the matrices E or Yx(ico, y) are 

I x l o r m x I respectively) is obtained by substituting the input and output into (8): 

Yx(ko, y) eiro<"^> = t Cj(y) Yx(ico, y - Tj(y) e « ^ v ) - r , W + B{y) ^ c r + v ) 
J = I 

and finally 

(9) Yx(io>, y) - I C/y) Yx(ico, y - T/y)) e^™ + B(y). 

In some simpler case the equation (9) for the transfer function may be solved expli-
citely. 

Example. There is given the equation 

y(nT + y) = kyy(nT - 0) + x(nT + y), 0 = y < T. 

According to (8), (9) 

Yx(ito, y) = kyYx(ico, T - 0) s~io>v + 1 

hence 

Yx(ico, T - 0) = fcTYx(ioj, T - 0) e" i r a r + 1 , 

YJito, T - 0) = , e - i r a r = s , 
V ' 1 - kTs 

and finally 

<") ^ ' ) = r ^ + 1 

(the equation (10) is stable for \kT\ < 1). 



From (11) we see: 

(12) y(nT + y) = x(nT + y) + ky £ (kT)J x(nT - jT). 
j=o 

((12) may be also attained directly from the recurrent relation (10)). If e.g. 

Kx(x) = B - 1 1 , 

°° o~aTv p-"T 

5 г » = i e - i ^ s - = i + . :aт + 
1 — e s s — e 

the mean square output value in the phase y is 

M|>„2] = 1 + k2y2 f 1 — S r x(s) - + 2*76"" -
L yJ J* 1 - fcr« s - fcT ' V s 1 - e -* 

г/cT 

3. DIFFERENTIAL EQUATIONS SYSTEM 

Let there be given a differential equations system 

(13) AM = A(t)y(t) + B(t)x(t), 
at 

where A(t), B(t) are periodical with the period length T, the dimensions of A(t), B(t), 
y(t), x(t) being m x m, m x /, m x r, I x r respectively; as regards the correlation 
function of the process x(f) without loss of generality let us suppose 

K X (T) = M[x(t + T) x*(t)] = 5(r) £ . 

Here the symbol * designates the operations of transposition and complex conjuga­
tion. Let further W(t, T) be the weighting function (transition matrix) of the system 

(14) ^±=A(t)y(t) + x(t) 
at 

(the dimension of x(t) is m x r). 

Then for the output from the system (13) the following relation holds 

M[y{h) y*(t2)-\ = M r w f c , T) B(tt - %)x(h - T) dx Tx*(t2 - u). 

. B*(t2 - u) W*(t2, u) du = 

= rw(tu x + tv- t2) B(t2 - x) B*(t2 - x) W*(t2, T) dr , 



318 specially 

M[y(i) y*(f)] = I W(t, T) B(t - T) B*(* - T) W*(t, x) dx . 

If we denote W(tu x) B(tt - x) = W(fl5 T), is 

(15) M[y(tl) y*(t2)] = f w ^ , x + h - t2) W*(.2 , T) dx, 

(16) M[y(f) y*(i)] = P w ^ , x) W*(/, T) dT . 

As it is known, W(t, x) satisfies the equation (the dimension of £ being m x m) 

- W(t, t) = A(f) W(f, T); W(. - T, T) = £ 

and the adjoined equation 

(17) — W*(t, x) = A*(t - x) W*(t, x) , W*(t, 0) = £ . 
dx 

From the periodicity of A(t) there follows also the periodicity of W(t, x) with respect 
to t. Then W(t, x) = W(y, T) where 0 <S y < T, r = nT + y. Further for t j < T2 

with respect to what has been said above the following relations are valid 

W*(t, X2) = W*(t - Tls T2 - T l) W*(t, X,) 

and specially 

W*(t, x + T) = W*(. - T t) W*(<, T) = W*(y, x) W*(y, T) 

and hence by the induction 

W*(t, x + nT) = W*(y, T) [W*(y, T)]". 

Hence also 

W*(r, T + nT) = W*(y, T) [W*(y, T)]" . 

If further t± — t2 = mT + a, it is possible to write 

W*( 7 l , x + ti-t2)= W*( 7 l , x + a) [W*(y i , T)f . 

Thus from (15) we get the output correlation function in the following form 

(18) M[y( . . )y- ( f 2 ) ] -* 



and specially the mean square output value in phase y is 319 

(18a) M[y(y) y*(y)] = £ [_W(y, T)]» I" f W(y, t) W*(y, r) d t l [W*(y, T)]«. 

The expressions (18), (18a) may be also transcribed in the form 

(19) M[y(r1), y\t2)] = 

= ± J [£ - -W(y., T)]"1 [W(7l, T)]» [Twtf., * + «) W*(^ t) dtl x 

x T E - i w ^ T j T 1 ^ , 

(19a) M[y(y) y*(y)] = 

= h f[£ ~zW(y'T)]' I T ^ T) w*(y' T) dTl [£ ~; w*(7, r ) l* 7 
where z is a complex variable. 

Some remarks concerning numerical computation. We can use the relations 

(20) W*(y, T) = W*(0, T + T - y) W*-J(0, T - y) for 0 < T < y 

(21) W*(y, T) = W*(0, T - y) W*(0, T) W*_1(0, T - y) for y < x < T 

so that it is not necessary to compute W* (y, T), 0 < T < T for each y separately. 
Then e.g. the inner integral of (18a) or (19a) becomes 

f W(y, T) W*(y, T) dr = W" -(Oj T - y) I" W(0, T) f [ W(0, w) W*(0, «) d iA . 

. W*(0, T) + f W(0, u) W*(0, u) dwl W-!*(0, T - y). 

Similarly it is possible to express the inner integral of (18) or (19) in a more com­
plicated manner. 

If the spectra of the matrix W(0, T) are known (W(y, T) being mutually similar 
for different y-see (21)), the external integral of (19), (19a) can be computed by means 
or residues. Generally it is convenient to use (18), (18a). 

If we denote 

R = [ W ( ľ l , T)]m Ґ w ( y , т + a) W*(y2, т) dт , 



320 it is easily seen that for the sequence Q„ of partial sums of (18) the following relation 
is valid: 

Q»+i = R + W(Yl, T) QnW*(y2, T), Q0 = 0 . 

Further we suppose that for some norm [[. [[ 

\\W(y, T)\\ g « < l , 0 ^ y < T 

is valid. Then lim Q„ exists and 

lim Qn = Q = M(Y(h) y*(t2)) 
n-»oo 

and 

lQ.-QUlQi-Q.lrA-1*1 1 - a2 " " 1 - a2 

Further it follows that Q satisfies the following matrix equation 

(22) Q=R+ W(yuT)QW*(y2,T). 

In case a is near to 1, it is convenient to solve directly the equation (22). 

If we know the periodical transfer function (p is a complex variable): 

(23) Yx(y, p) = P w f y , -) e"pr dT = (£ - e~ p r W(y, T))_1 f W(y, T) e"p t dT 

we may express analogously to the discrete case 

M W ' i ) Y*(h)l = ~ - f rx(Yl, p) Sx(p) Y*(y2, p) e p ' " - ' ^ dp 
27C' J Im 

and specially 

M[y(y) Y*(y)] - " - - : f Yx(y, p) sx(p) Yx(y, P ) dp . 
27ClJIm 

Here the path of integration is the imaginary axis, Sx(ico) = Sx(p) is the matrix of 
spectral densities of the process x(t), i.e. 

K^T) = M[x(/ + T) x*(*)] , Sx(ia) = r Kx(x) e^"" dT . 

The periodical transfer function may not be generally obtained in an explicit form. 
Generally the problem of finding the periodical transfer function leads to a difference 
infinite order equation with non-constant coefficients [1], [2]. 



Here we give a simple method for approximate determination of the periodical 321 
transfer function for the event of A(t) having a finite number of "small" harmonics. 

Let 

s#e = ) A(p) : Re p; < c < 0; p; are singularities of A(p); 

~ f A(p) A*(p) dp\ < ool. 

Let us introduce the norm ||A(p)||p = s](^M) where XM is the maximum eigenvalue 
of the matrix l/2xci JIm A(p) A*(p) dp. (The given norm is that of the operator A(p) 
induced by the norm in the n-dimensional Euclidean space.) ||C|] is the radical from 
the maximum eigenvalue of the matrix CC*. It can be shown that for the "scalar 
product" 

(A(p),B(p)) = ±,[ A(P)B*(p)dp 

an analogue of Schwarz's inequality holds: 

||(A(p))B(p))|^||A(p)lP|B(p)|p. 

Let us now consider the equation (the period length is 2K) 

(24) M O = (Ao + fo V * ( ) y ( ( ) + ( B Q + £o B ^ x ( ( ) . Sx{p) , £ . 
dt k=-n k=-n 

Y,° denotes the sum with omitted index 0. 
According to (23) 

Yx(y, P) = JS?[W(y, T)] = JSf[W(y, T) B(y - T) ] ; 

W*(y, T) is the solution of the equation (17) and hence for 

Y%y, P) = (&[W(y, T)])* = P W*(7, T) e~>>« dT 

we get 

P*Y*x(y, p) = (A*0 + £° Afe-'^D*) ^(y, p) + - , 

where DF(p) = F(p + i) ; hence it follows 

Y*x(y, P) = (P*Z - A*0)-
1 [( t° Ate-ik?D«) Yx(y, p) + E] 
k=-n 

or 

(25) yx(y, p) = [t° D\Yx(y, p)) Ake
l* + E] (pE - A0)-' ; 



322 For the operator 

H = [£°D*(-)V*J](pE-*o)-1 

k= - n 

the following relation holds 

\\H\\p^\\(pE-A0)-%i°\\Ak\\ = « 
k=-n 

(obviously |D[|P = 1). 
As D represents a shift in the direction of the imaginary axis, the operator H maps 

the set s?c into. If then a < 1 the sequence {Y(x\y, p)}m = o: 

(26) y r ^ y , p) = HYj?>(y, P) + (P* ~ Ao)'1 '> Y(
x°\y, p) = 0 

is fundamental. Let further Yx(y, p) exists and Yx(y, p) ~ •&'c
 f o r e v e r y 7- T h e r t 

obviously 
Km Y('"\y, p) = Yx(y, p) , 

Yx(y, p) is the solution of the equation (25) and 

em = \\Nm(y, P)\\, = pf\y,p) - Yx(y, p)\\, = 

</^\Yy-Y^\\p = ^-\m\p. 

1 — a 1 — a 

From (26) it follows that 

K$o = y</> + HYg> + ... + H " - 1 ^ 1 ' . 

Let us remark that Yx
l) = (pE — A0)~

1 is the "basic" transfer function for the system: 
with constant matrix A0, the further members being successive corrections depending,, 
however, on y. 

For Yx(y, p) we get further 
Yx(y> P) = CYx(y> P) < 

where 

N = £ e^D-Q Bk ; 
* = - n 

Nm(y, p) = Y(
x
m\y, P) - Yx(y, p) = CNm(y, p), 

em = \\"m(y,P)lSem\\c\\p<emijBk\\. 

Let us remark that || Yx(y, p)\\p in the unidimensional case is rms (y(y)) where y(t) 
is the output of the system (24), similarly em(y) = rms (ym(y) — y(y)) where ym(y) 
is the output from the system with the estimated transfer function Y^m\ Specially 



H Y x ' l l p i s r m s CKO)> where y(t) is the output at the basic transfer function (A(.) = A0, 323 
B(t) = 1). 

For the error sm(tu t2) in norm of the correlation function M[y(fi), y*(t2)] when 
Yx"

) is used the relation 

am(tu t2) __ em(7l) ||Y_7>(ya, p)\\p + em(y2) || Y™(y., p)||_ + em( 7 l) em(y2) 

holds. 

Example. 

Xj(/) is a white noise. The equation (27) is transcribed 

_M_) _, ( A o + A i C» + A _ i e - " ) y(r) + Box(0 
dr 

where x(f) is a two-dimensional white noise, 

0 
nад = 

i 

p + 2 

0 , 

; ||Vx1)||P = max(Vi ,Vé) = i ; 

P + 3J , 

H Y ^ = ( D 1 ^ ) . V + D-^ l* 1 ' ) A_lQ-iy) Y$> = 

0 

1 

1 

p + i + 2 

0 
p + i + Зj 

[-.3* + 

p - i + 2 

0 
P - i + ЗJ 

P:3 e _ , y У ^ = 

= Я 
(p + 3) sin y — cos y 

(p + 2) cos y + sin y 

(p + 3) [(p + 2) 2 + 1] 

Цp + 2)[(p + 3)2 + l ] 



YJř-HY^ + Yÿ), 

үg) = (ңүÿ> + Yÿ>) ß0 = 

1 
p + 2 

. (p + 3) sin y — cos y 
L CP + 2)[(p + 3)a + l ] 

A 

«-^кгы)-^. 

= IІYv2) - Yv 

2 
2/ 2 - A 

as II B0|| = 1, then also 

ř, á 
2/ 2 - A 

so that e. g. 

|Yř)|,-вaá|Y,Ьá|YÍ?,|, + ł»-
In a unidimensional case when there is given an equation of a general order it is 

not necessary to do the conversion to the system of first order equations. For the 
sake of simplicity we shall illustrate this fact on an second order equation. 

Let there be given the equation Q]° denotes a finite sum with omitted index 0): 
* 

y+(a0 + X V " " ) y + (b0 + ^ V ) y = (c„ + 1° cfce"") x(t) , 
k k k 

where x(f) is white noise. The weighting function w(y, x) is the solution of the adjoined 
equation: 

"V. + [(-o + E V ^ ' M + (*o + S0^ i* (y" t )) w = <5(T) 

and for Yx(y, p) = S?(w(y, x)) we get 

(28) p2Yx + aoPYx + b0Yx + p £° ate^D*Yx + £° &*eU"D*Yx = 1 • 
k k 

We transcribe the relation (28) into the form 

1 Yv= -
P2 + <*oP + b0 k 

[p X0 ak^DkYx + Y?Ъké
kiЪkYx - 1] . 



For the norm of the operator 325 

H = -
p2 + a0p + b0 k 

the following relation holds 

P 

[pZ°aké
kУDk + _ V U * D - ] 

H < 
p2 + a0p + b0 

гы + 
1 

P2 + a0p + b0 
ГN-«. 

The iteration may be done in an analogous way (if a < 1); finally 

Y*(y, P) = ^ckU
kYx(y, p). 

k 

Example. 

(29) y + ly + (12 - cos t) y = x(t), 

x(t) is white noise. 

Let us transcribe the equation (29): 

y + ly + (12 - i e i ( - ^~u) y = x(t) , 

Y(1> = 
P2 + ІP 

Y(2> = 
1 Гe i y 1 

p2 + Ip + 12 L 2 (p + i + 3) (p + i + 4) 

2 (p + 3 - i) (p + 4 - i) ]-+ 1 = 

[(p + 3) (p + 4) - 1] cos y + (2p + 1) sin y 1 

~ (p 2 + 7p + 12) [(p + Ъf + 1] [(p + 4) 2 + 1] р 2 + 7p + 12 

1 

and therefore 

p2 + a0p + b0 

1 1 

M + |ь-iD-
V168 

168 ^168 _ 1 
= j _ _____ ~ 168(^/(168) - 1) 

V168 



326 so that e.g. 

V( £ Res Y'x
2\y, p) Y^(y, -p) - s2 rg N/M(y2(y)) < 

PitL 

^j(Z^Y«Xy,p)Y<x
2Xy,-p)) + e2 

PieL 

(here pt are poles, Lis the left halfplane). 

4. SYSTEM OF DIFFERENTIAL-DIFFERENCE EQUATIONS 

The results of the paragraph 3. may be formally extended also to differential 
equations with delay. 

Let us consider the equation (the dimensions are analogous as in Section 3.) 

( 3 0 ) ^ 1 = A(t) y(t) + C(t) y(t - T) + B(t) X(t) , 
at 

where again the matrices A(t), B(t), C(j) are periodical, the delay Tequals the period 
length. The case when the ratio of the period length and of the delay is rational may 
be converted into the forme (30) ([5]). The relation (30) can be written in the fol­
lowing way 

(31) ^ = (A(t) + C(t)Z^)y(t) + B(t)X(t), 
at 

where Z is operator defined by 

Z(f(0) = f(• + T). 

Let us further denote the product integral 

(32) lira [£ + AG(tn_t)-\ [£ + AG(tn_2)] . . . [ £ + AG(t0)] = 
4 - 0 

= EXP I G(t) dt, 

where a = t0 < tt < ... < t„ = b, A = tk - tk^t for k = \, ...,n. The operator 
EXP j 1 has similar properties as exp J" e.g. (see [6]): 

EXP i-CG(t) dt = ( EXP I G(t) dt\ (EXP I G(t) dt\ for a<b <c, 

EXP i (G(t) + H(t)) dt = (EX? - f G(0 dt\ T E X P - f Hs(r) dt\ , 



where 

Hs(t) = F~\t) H(t) F(t) , F(t) = EXP Í'G(U) áu . 

If for every tu t2 the relation G(ft) G(t2) = G(t2) G(f.) holds (which occurs specially 
in one-dimensional case), then 

EXP X G(í) dí = exp (fat) dЛ . 

The weighting function for the equation (31) for B(t) = £ is the solution of the 
adjoined equation 

(33) W*(y, T) = (A*(y - x) + C*(y - x)Z~1) W*(y, x) ; 

W*(y, T) = 0 for T < 0, W* (y, 0) = £ . 

Then the following relation holds 

W*(y, nT +x) = (ViXP X [A*(y - u) + C*(y - u) Z " 1 ] du\ W*(y, nT) . 

For the sequence {W*(y, nT)}™=0 the following relation holds 

W*(y, nT) = (ViXP X [A*(y - u) + C°(y - u) Z~x] du\ Z-1W*(y, nT) ; 

W*(y, 0) = £ , 

and then the z-transformation of the sequence { W*(y, nT)}™=0 or { W*(y, nT + T)}B°L0 

is (£ - z_1G*(y, T, z))-1 or G*(y, x, z)(E - z^'G^y, T, z))" 1 respectively, where 

G*(y, x, z) = EXP V[A*(y - u) + C*(y - u) z " 1 ] dM , 

z is a complex variable. 

If we further consider B(t) 4= £, we have similarly as in Section 3: 

B*(y - x) W*(y, nT + x)~ W*(y, nT + x) ; G*(y, x, z) = B*(y - x) G*(y, x, z) . 

The z-transformation of the sequence { W*(y, nT + T)}„*L0 is 

G * ( y , T , z ) ( £ - z - 1 G * ( 7 , Tz))"1. 



328 Similarly according to (15) and (19) we get for tt — t2 = mT + a, yt and y2 being 
phases corresponding to tt and t2 respectively: 

(34) M[y(^) y*(f2)] = J - f [£ - -€(>., T, z ) ] " 1 [G(7 l , T, - ) ] " x 
2raJ» 

x ([ G( 7 l , T + a, z) G*(y2, T, z) d A [£ - r ^ G - t y - , T, z ) ] ' 1 — 

and specially 

(35) M[y(y) y*(y)] = - L f [£ - zG(y, T, z)] " J f f G(y, T, Z) G*( J , t, z) d r ) x 

x [ E - z - ' G ^ J . z ) ] - 1 - . 
z 

Remark 1. For C = 0 (see (30)) the expressions (34), (35) are reduced to the ex­
pressions (19), (19a). 

Remark 2. In a special case when A(t±), A(t2), C(t3), C(r4) are mutually commuta­
tive ( Z _ 1 being commutative with regard to the periodical matrix) EXP = exp and 
the following relation holds: 

G*(y, T, z) = [ exp A*(y - u) du ) exp [ C*(y - u) duz~1 ) . 

In a general case 

G*(y, 

where 

(y, x, z) = / ' E X P VA*(y - u) du\ / E X P i\c*(y, u) duz'1) 

C*(y, u) = [W*(7, u ) ] - 1 C*(y - u) W*0(y, u) ; 

W*(y, T) = EX? VA*(y - u) du , 

W*(y, T) of course being the weighting function for the system with zero delay 
member. 

Remark 3. In a general case the product integral may be replaced approximately 
by a product of the type (47). If e.g. C*(y - u) = K0 + Kt(y — u) where K0 is 
constant matrix and K1 is a "small" periodical matrix, it is advantageous to express 

EXP-f (C*(T - u) duz- 1 ) = exp (KQTZ"1) EXP f \Ku(y, u) d u z " 1 ) , 

where 
Kls(y, u) = exp (-K^z'1) K,(y - u) exp (K.uz'1) 



and further 

(36) EXP Г(Ku(y, u)áuz-y) = E + ( ľкís(y, u) dгЛ z~x + 

+ (ľKгs(ъ u) áu ľкu(y, v)àv\z~2 + ... 

where several first members of the series may be taken as approximation. The error 
of this approximation may be easily determined ([6]). A detailed analysis of problems 
of an approximate numerical computation which is very laborious will not be carried 
out here. 

It is also possible to use the transfer function technique as in par. 3. In case A(t), 
B(t), C(t) have again a finite number of harmonics, the transfer functional equation 
according (33) will be as follows: 

P*Y*x(ъ P) = [K + t° A í e - ^ D * + (C* + t° Ctc-ìkW) e-'*т] П(y, p) + E. 
k=-n k=-n 

If the harmonics are "small", iteration again can be made: 

Y(xm + 1)(ъ P) = H У П ľ , P) + (pE ~ K - c->TC0)-i , Y$\y, p) = 0, 

where 

H = [ t°Щ-) K^ + t° D f t(e- p T-) Q e ^ ] (pE - A 0 - e - ^ C o ) - 1 , 
k=-n k=-n 

\\И\\„ ѓ \\(pE - A 0 - c-"TC0)-%( t°(Џk\\ + \\Ck\\)). 

k=-n 

(Received October 25, 1971.) 
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