
K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 4 

A Connection between Controlled Markov 
Chains and Martingales 

PETR MANDL 

A finite controlled Markov chain is considered. It is assumed that its control converges to 
a stationary one. The law of large numbers and the central limit theorem for the reward are 
obtained from the theory of martingales. 

1. INTRODUCTION 

The mathematical model studied in the present paper consists of two sequences 
of random variables {X„, Z„, n = 0, 1, . . . } . The state variables X„, n = 0, 1, ..., 
take on values from a finite set /. The control variables are functions of the observed 
state variables 

Z„ = z„(X0, ...,X„), n=Q, 1, . . . 

The values of Z„ belong to Z(X„), n = 0 , 1 , . . . , where the sets Z(j), j e /, are supposed 
to be closed and bounded in Rs. The functions {z„(j0, •••,]„), n = 0, 1,...} constitute 
the controler's policy, briefly the control. The control is called stationary if 
z„(j0, ...,j„) = z(j„), n = 0, 1, ... We make the hypothesis that the double sequence 
[X„, Z„, n = 0, 1, ...} is a controlled Markov chain, i.e. that 

(1) P(Xn+1 = k\X„, Z„,X„- [ X0,Z0) = p(X„,k; Z„) , ke I, n = 0, 1, ... , 

where p(j, k; z), z e Z(j), j , he I, are the transition probabilities from state j into 
state k, when the control parameter equals z. The performance of the system is 
measured by the quantity 

M - l 

CM= E c ( X „ , Z „ + 1 ; Z n ) , M = l , 2 , . . . , 



238 called the reward from the chain up to time M. We assume that the functions 

p(j, k; z), c(j, k; z), z e Z(j),j, kel, 

are continuous on Z(j), j e /. 

Let 0 be a real number. We shall study the properties of CM — M0 for M -> oo. 
To do this, we add to CM — MO a correcting term in order to obtain a martingale. 
We introduce auxiliary constants wp j e /, and set 

<Kfz) = XKf fc;z) Kj. fe;z) + wk~] - Wj - 0, j-i,ze z(j), 
k 

Y„ = c(X„, Xn+l;Zn) - 0 + wXn+, - wXn - <p(X„, Z„) , n = 0, 1,... 

According to (1) 

E{Yn\X0,...,Xn} = 0, n = 0, 1, ... 

Hence, 

(2) BM = tYn = CM-M0 + wXM-Wxo-Z cp(Xn,Zn), M = l,2,..., 
n=0 n=0 

is a martingale with respect to the observed state variables {X0, Xu ..., XM}, M — 
= 1,2,... Using a system of equations widely employed in the theory of controlled 
Markov chains we shall determine the constants 0 and Wj,j e I, so that the correcting 
term will become asymptotically negligible. In this manner we obtain from the law 
of large numbers and from the central limit theorem for martingales the corresponding 
results for controlled Markov chain. 

2. LAW OF LARGE NUMBERS 

It holds 

£{Y„2 | X0,..., X„} = c2(Xn, Z„) - cp(Xn, Z„)2 , n = 0, 1,... , 

with 

(3) c2(j, z) = I X / , k; z) [c(j, k;z)-0 + wk- Wjf , j e I, z e Z(j), 
k 

because of 

E{(c(X„, Xtt+i; Z„)-0 + wXnti - wXn) p(XB, Z„) I X0, ..., X„} = cp(X„, Z„)2 . 

The functions c2(j, ') and <p(j, z) are bounded. Consequently, 

f, n~2EY2 = E n~2E(c2(X„, Z„) - (p(Xn, Z„)2) < oo . 



The strong law of large numbers for martingales (see e.g. [4], §29-1) then implies -39 

M - l 

(4) 0 = lim M~ lBM = lim M~ \CM - M0 - £ <p(X„, Z„)) 

M-oo M->oo n = 0 

almost surely. 

Consider a function z(j) mapping j into Z(j),jel, with the following property: 

Property 1. The states j e /, which are recurrent for a Markov chain with transi
tion matrix \\p(j, k; z(j))\jkslform only one irreducible set. 

Property 1 implies that the constants 0, wp j e I, can be chosen so that 

(5) cp(j,z(j)) = 0, j e l . 

(See e.g. Bellman's original paper [1] in a slightly less general setting.) We interpret 
the function z(j), j e /, as a stationary control possessing certain desirable qualities 
and assume that the actual control variables {Z„, n — 0, 1,...} approach this station
ary control for n -» co. 

Theorem 1. Let (5) hold. If 

(6) Z„ - z(Xn) -+ 0 , for n -> oo , 

in probability [almost surely~\, then 

(1) lim M-1CJW = 0 
M->oo 

in probability [almost surely]. 

Proof. From the validity of (6) in probability, from (5) and from the continuity 
and boundedness of cp(j, z) follows 

lim E\<p(Xn, Z„)| = lim E\q>(X„, Z„) - <p(Xn, z(Xn))\ = 0 . 

Hence, 

M - l M - l 

(8) 0 = lim M-1 X E\(p(X„, Z„)\ = lim E|M-J £ cp(X„, Z„)| k 0 
M-oo n = 0 M-oo n = 0 

(8) implies 

M - 1 

(9) lim M - 1 £ > ( * , , , Z„) = 0 

in probability. From this and from (4) we get (7) in probability. Similarly, from (6) 
almost surely follows (9) almost surely and hence, (7) from (4). 



3. CENTRAL LIMIT THEOREM 

We assume that (5) is fulfilled and that (6) holds in probability. We have 

M - 1 M - 1 M - 1 
M - - £ E{y„2 \X0,...,X„} = M-1YJ c2(Xn, Z„) - M - 1 £ <H*„, znf. 

n=0 n=0 n=0 

As in the proof of Theorem 1, (6) implies that the second term on the right-hand side 
tends to zero in probability. Moreover, according to Theorem 1, 

M - l 

\imM-1Ylc2(X„,Z„) = a2 

M-oo n = 0 

in probability, where a2 is obtainable (together with auxiliary constants w2J, j e I), 
from the equations 

(10) Y>(j, k; z (j))[c2(j, z(j)) + w2t] - w2, - a2 = 0 , j e l . 
k 

(10) can be somewhat simplified. Namely, inserting z(j) into (3) and using (5), we get 

c2(j, -CO) = I K f k; z(j)) [(c(j, k; z(j)) - 0f + 
k 

+ 2(c(j, k; z(j)) -0)wk + w2] - w),j e I. 

Hence (10) is equivalent to 

(11) £p(j , k; z(j)) [(c(j, k; z(j)) - 0f + (2(c(j, k; z(j)) - 0) wk + w'2k] -
k 

- w'2J - a2 = 0 , jel, 

where w'2j = w2J + w], j 6 /. (11) is the system of equations for the variance derived 
in [5]. 

Let us apply now the central limit theorem for martingales ([2], [3]). Suppose 
a2 > 0. Since the variables Y„, n = 0, 1, ..., are bounded, the above established 
relation 

M - l 

lim M- * X E{Y2 \X0,..., X„} = a2 

M-oo n = 0 

in probability implies the validity of the central limit theorem, i.e. BM\^JM has for 
M -> oo asymptotically normal distribution JV(0, a2). Thus, with regard to (2), we 
get the following result. 

Theorem 2. Let (5) and (11) hold with a2 > 0. / / 

lim (Z„ - z(Xn)) = 0 = lim £ <p(Xn, Zn)jjM 



in probability, then (CM — M0)jci *JM has for M —> oo asymptotically normal 

distribution N(0, 1). 

A direct proof of a similar assertion was given in [6]. 

Remark. Suppose that Property 1 holds for all stationary controls. Then 0, wp 

j e I, can be determined so that 

max q>(j, z) = 0 , j e / . 
ieZ(i) 

(Bellman's equations for the maximal mean reward [1].) From (4) we conclude that 

A f - l 

lim sup M~1CM = 0 + lim sup M~1 £ cp(Xn, Z„) S 0 , 
M->oo M-»oo n = 0 

almost surely for arbitrary {Z„, n = 0, 1,...}. 

The paper was stimulated by the discussions which the author had with G. K. Eagleson in 
Cambridge. 
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