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Algebraic Theory of Discrete Optimal Control 
for Single-Variable Systems II 
Open-Loop Control 

VLADIMIR KUCERA 

This is a continuation of paper [4] on the algebraic theory of discrete optimal control for single-
variable systems, Part I: Preliminaries. Having established mathematical machinery there, we are 
in the position to solve optimal control problems. This Part II is concerned with the open-loop 
control defined in the Introduction to Part I. 

To recall, given a system * we seek for a control u which makes the system output y follow 
a given reference signal win a prescribed fashion. The system configuration is shown in Fig. 1. 
We reiterate that this control is of feedforward type, i.e., no attempt is made to neutralize the 
effect of disturbances. 

Two basic criteria are considered here, namely, the time optimal control and the least squares 
control [2], [3], [7], [8]. For rigorous definitions see the respective sections. 

The theorems, examples, equations, etc. are numbered separately in each part of the tripaper. 
The usual system of references is used within this paper whereas cross-references are followed 
by a slash and the respective part number. The notation introduced in Part I is consistently adhered 
to throughout. 

INTRODUCTION 

The open-loop control problems are simplest and basic problems of control. 
The underlying idea is that of commanding the given system to produce a required 
output. Hence this type of control should be used whenever we are just to control, not 
to counteract disturbances, as will be discussed later. True, the actual system is almost 
always contaminated by disturbances but they can be eliminated in some other way, 
e.g. using an internal feedback. Another reason for developing the open-loop control 
theory is to compare the properties of the open-loop and the closed-loop controls. 
The comparison is instructive and will be done in Part III. 

OPEN-LOOP OUTPUT TIME OPTIMAL CONTROL 

In this problem the discrete system output is to exactly follow a given reference 
signal in the shortest time possible. The formal statement follows. 



Given the configuration shown in Fig. 1, where 207 
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S = — , W = - : 
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the polynomials being arbitrary elements of $ [ ( ] but d > 0, (a, [b) = 1, (£>, £) = U 

(p> C*0 = 1- Find a stable control 

so as to zero the error e in a minimum time £„,,„• 

Fig. 1. Open-loop control system. 
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The solution of the problem is given in 

Theorem 1. The open-loop output time optimal control problem has a solution 
if and only if p~ | a. The solution is unique and is given by 

v = a0$>, 

u = p0b
 + 

where x and y is such solution of the Diophantine equation 

px + C"b~y = q 

that 

dx = min . 

Moreover, e = x and kmin = 1 + dx. 

Proof. Fig. 1 yields 

e = w — su. 

The e is to be zeroed in a finite time and hence it must be a polynomial, say x. Then 

_ q Cdbv _ q [db v 

p a u p0w a0w u 

on taking (14/1) into account. 
Having in mind that the degree of x is to be minimal so that e may vanish in 



208 a minimum time kmin, the u and v should alter the common denominator to p0w 
and u should reduce (db as much as possible and still remain stable. Hence 

v = a0y , 

u = pob'' , 

and the above expression is converted into the equation 

px + Cdb"y = q . 

It follows that e = x, where 8x = min, and kmin = 1 + ex. 

The « is stable if and only if p0 is stable, i.e., if p~~ | a. This condition implies 

(p, £db~) = 1 and hence the Diophantine equation has a solution. • 

Remark 1, In case * originated from a continuous system by the process of sam
pling, the error need not be zero in between sampling points. However, it is stable. 

Example 1. Consider 

s _ C(l - 2-5C + C2) w_ 1 

1 - 5C + 4C2 ' 1 - C 

over SR and find the open-loop output time optimal control. 

We have 

a0 = 1 - 4C, p 0 - 1 , 

b+ = 1 - 0-5C, 6 " = 1 - 2 C . 

Thus we are to solve the equation 

(1 - C) x + C(l - 2C) y - 1 . 

According to (9/1) we obtain 

1 - C C - 2 C 2 1 - C - i 

0 1 + 2C - 1 + C 

1 0 1 - 1 + C 

0 1 1 + 2C - C + 2C2 

and hence 

x = 1 + 2 C + ( - C + 2 C 2 ) t , 

y = - l - ( - l + C) t -

The condition dx = min yields 

x = 1 + 2~, 

y= - l , 



and, by Theorem J, 

— 1 + 4£ 
« = 1 - i , e = 1 + 2C, /cmin = 2 . 

1 - 0-5C 

Example 2. Obtain the open-loop output time optimal control for the finite automaton 

C2 1 
w = 

1 + 2C 1 + C 

defined over ^3> 'he field of residue classes modulo 3. The Diophantine equation to be solved 
becomes 

(l + C) x + C2y = l . 

The solution is obtained by the use of the table 

l + C C2 l + C l 

0 2 + c 1 + C 

i o i i + c 

o l 2 + c C2 

as 

x = 1 + 2C + C 2 t , 

y = 1 - ( 1 + C ) t . 

Remember that all computations are carried out in the modulo 3 arithmetics. 

The solution 

x = 1 + 2C, 

y = 1 

satisfies the condition Sx = min. Hence 

« = 1 ~ ^ . e= 1 +2C, kmin = 2 . 

l + c 
Observe that the control is not stable sincep~ does not divide a. Nonetheless the solution may 

bs acceptable for the engineer. 

OPEN-LOOP STATE TIME OPTIMAL CONTROL 

In contrast to the preceding problem we want not only polynomial e but polyno

mial u, too. This is equivalent to reaching equilibrium state in a finite time. 

More formally, given the configuration shown in Fig. 1, where 

C"b q 
s = — , w = - , 

a p 



210 the polynomials being arbitrary elements of g[£] but d > 0, (a, £b) = 1, (b, £) = 1, 
(p, £q) = 1; generate such a finite control 

that the error e vanish in a minimum time kmin. 
We claim 

Theorem 2. The open-loop state time optimal control problem has a solution if 
and only if p\ a. The solution is unique and is given by 

v = a0y 

where x and j> is such solution of the Diophantine equation 

px + C"by = q 

that ex = min. 

Moreover, e = x and kmin = 1 + 3A-. 

Proof. In a like manner, 

(i) . _ „ , _ . _ _ : . , _ _ £ _ _ _ _ _ ? _ _ - . 
P a a0wp0 

By letting 

v = a0y 

we reduce expression (1) as much as possible and convert it into the equation 

wp0x + p0C
dby = q . 

Since p0 does not divide q, this equation has a solution if and only if p0 = 1 or p | a 
by (14/1). Then 

px + Cdby = q 

and e = x, kmin = 1 + dx, where dx = min. 

This Diophantine equation has a solution since p | a implies (p, £db) = 1. • 

Remark 2. It is worth noting that the equilibrium state need not be achieved in 
kmin time units, in general. This situation occurs when dv > dJc, i.e., when the control 
time exceeds the follow-up time. See Example 4. 

Example 3. Consider again 

, = ^ ~ 2 ^ + ^ ) ,-_- l 

1 - 5C + 4C2 ' 1 - C 

over 9t and find the open-loop state time optimal control. 



The respective Diophantine equation reads 

(1 - C) x + C(l - 2-5C + C2) v = 1 

and the desired solution is 

x = 1 + 3C - 2C2 , 

y= - 2 . 
Hence 

« = - 2 + 8C, e = 1 + 3C - 2C2 , Amin = 3 . 

Example 4. Consider a continuous system over jR represented by its Laplace transform 
(s + 2)js1 and sampled at k = 0, 1, . . . We get 

2C 

(1 - 02 

l - c' 

Then the open-loop state time optimal control problem leads to 

(1 - C) x + 2CJ = 1 , dx = min , 

the solution being 

x = 1 , 

v = 0-5 . 
Hence 

» = 0-5 - 0-5C, e = 1 , /vmin = 1 . 

Note that it may well happen that kmin < n, the dimension of the given system. The equilibrium 
state, however, is reached at k = n. 

OPEN-LOOP LEAST SQUARES CONTROL 

This sort of control problems was introduced as those involving minimization of 
a quadratic functional. 

More formally, given the configuration shown in Fig. 1, where 

s = £ * w = * 
a ' p ' 

the polynomials being arbitrary elements of g[C] but d > 0, (a, C&) = 1, (b, C) = L 
(p. C<?) = 1J find a stable control 

v 
u = -

u 



212 so as to minimize the cost functional 

9 = I 4 i 
Jt = 0 

where , 

6 = 60 + 8 ^ + e2C
2 + . . . . 

Theorem 3. The open-loop output least squares control problem has a solution if 
and only if p~ \a and 6~/((x, _p), b~) is stable. The solution is unique and is given 
as 

v = a0y 

u = p0b* 

where x and y is such solution of the Diophantine equation 

px + {db~y = b~q 

that dx = min. 

Moreover 

x 
e = ¥ 

and 

{[f)~(ř-
Proof. Write 

e = e0 + e,C + e2C
2 + . . . , 

e = e0 + gjC' 1 + e 2 C - 2 + ... , 

then 
(p = <ee> 

provided e is stable. 
We will manipulate the expression for q> in such a way as to make the minimizing 

choice of « obvious. Rewrite 

"'{K^')\^P' 

,--«-£*•. 
By inspection of Fig. 1, 

e = 
p a u 

Therefore 

(2) f—î -̂  
idb~ Cdb-p au 



and consider the decomposition 

b~q = ___ + _ 

Cdb-p i"b- p 

of the first term in (2), so that x and y are coupled by the Diophantine equation 

(3) px + ?b~y = b-q . 

Collecting the terms gives us 

b- x ^ 
—— e = — 1- a 
Cdb- Cdb-

where 

(4) a = *- - — = a°yu ~ Pofc*tJ 

p au p0wa0u 

Hence on substituting 

<5) '-ffifch <»*<&) 
Further we refine (5) be setting 

(6) x = x + C"b-t, dx < 8£db- . 

The key observation is that 

( x \ _ _*_ rew-et 
cdb-J B-

is divisible by C due to (6). Hence 

and also 

x ~ « \ = 0 

a ) . 

as long division into positive powers of £ shows. 

Thus (5) becomes 

(7) cp = /f±J{±\\ + <«a> + 2<_r> + <»> . 

The first term in (7) cannot be further reduced. The best we can do to minimize cp is 
to set a = 0, t = 0 and the theorem follows. 



214 Indeed, v = a0p, u — p0b* by virtue of (4) and dx = min in (6). 

Moreover 

c _ q ?b a0p = (b~q - Cdb~y) b+
 = ^ 

p a p0b* pb* b~ 

by (3). Note that e is stable if and only if b~ j(x, b~) is stable, and that u will be stable 
if and only if b~\(y, b~) is stable and p0 is stable, that is, p~ | a. Hence both e and « 
will be stable if and only if p~ | a and b~ j((x, y), b~) is stable. 

Now p~ | a guarantees that (p, £db~) = 1 and, in turn, (3) has a solution. ~~ 

Remark 3. Caution! q> — <ee> if and only if e is stable, as the example 

e - ^ - ^ - 2 + 3C + 6C2 + 12C3 + . . . 

demonstrates. Indeed, <ee} = 1 whereas q> -+ co. 

Remark 4. For a minimum-phase system (£>" = 1) we have b - b+ = £>*. As 
a result the open-loop output time optimal and least squares controls turn out to be 
the same. However, they may equal in other cases as well, see Example 7. 

Example 5. Let ~ = 3ft and 

C 1 -2C 
s = , w — . 

l - C i - c 

To find the open-loop least squares control, we realize that b~ = b* = b+ = 1 and solve 

(1 - 0 x + (y - 1 - 2C. 

The respective table reads 

1 --C C 1 

- 1 l - C 
1 - 1 1 - c 
0 1 C 

whence 

x = 1 - 2C + Ct 

y «- i - 2C - (1 - C) t, 

The condition 6x = min results in 

* = 1 , 

v = - 1 



and thus, by Theorem 3, 

u = — 1 , e = 1 and q>min = 1 . 

Example 6. Consider the running example 

y _ C ( l - 2 - 5 C + C2) ) w = _±_ 
1 - 5C + 4C2 1 - C 

and g = 2ft. Obtain the open-loop least squares control. 

It is seen that 

a0 = 1 - 4C , p 0 = 1 

b + = 1 - 0-5C, fc~ = 1 - 2 C . 

The Diophantine equation to be solved reads 

(1 - C) x + C(l - 2C) j> = C - 2 . 

Consult Example 1 to get 

x = (l + 2 C ) ( C - 2 ) + (2C2-C)t, 

y = 2 - c - (C - i ) t • 

The condition dx = min produces 

* = - 2 - 2C, 

y = i 
and by Theorem 3 

1 - 4C 2 + 2C 
, e = : , ^min = 4 • 

(1 -0-5C)(C-2) 2 - C 

For effective computation of q>min see Example 9. 

Example 7. Given g - 31, 

s _ _ j + O2 „, _ 2 + 2C2 + C3 

3 - C ' 2 - C ' 

compute the open-loop least squares control. 

Evidently the Diophantine equation 

(2 - C) x + C(i + C)2 y = (l + C)2 (2 + 2C2 + C3) 

is to be solved. We obtain 

x = (1 + C)2 , 

J) = (l + C)2 



3 - C 
" = > e = I , 0„;„ = 1 

2 - ~ 

by Theorem 3. 

There are two points about this example. Firstly it illustrates that it is b~/((i, y), b~), not 6~ 
itself, that determines the system stability and secondly the obtained control is identical to the 
output time optimal control even though b~ 4= J. 

T H E E F F E C T O F D I S T U R B A N C E S 

To determine the effect of disturbances upon the open-loop optimal control, con

sider a nonzero initial state x 0 of the system s as a typical disturbance (Fig. 2). 

*6 

Fig. 2. The effect of disturbances. 

Then 

CdЬ , g 
У = — И + -

where g e 3f[C] ' s an arbitrary polynomial of degree one less than dimension of s, 

characterizing x0, the output produced by x0. 

Computing the error e results in 

C = M> U . 

a a 

Therefore the open-loop control strategy is not the right one to handle disturbances 

because the a remains unaffected and may introduce instability. However, it is the best 

approach in the absence of uncertainty or when uncertainty is eliminated in some 

other way. 

SOME COMPUTATIONAL ASPECTS 

Synthesizing optimal controls we needed certain polynomials like m + , m~, m* etc., 

which may be nontrivial to obtain. This section presents effective methods for their 

computation and, in turn, demonstrates the power and elegance of the algebraic 

approach. 

If the system is defined over the field 3P> no stable polynomials exist save the units 



of 3P[C] and m~ = m, m+ = 1, m* = m for any m e 3 p [ ( ] . Hence no stability 217 
tests and factorizations are involved. If the ground field is Q, 5R or (E, however, some 
control problems call for the computations described below. 

A crucial role plays the computation of m*. The following ingenious algorithm is 
proposed in [6], for another refer to [9]. Given m e %[£], perform the recurrent 
division 

m(m)~ = fkqk + rk, drk < 8fk, k = 0, 1, ... 

by A) where 
r _ rdm(m)~l2 

fk = $k-i, k = 1,2,. . . 

Then qk -> m* up to a normalizing constant as k -* oo. 

Having computed m*, we can take 

+ (m, m*) 
m + = -i '- , 

(m*, m*) 

m- __ j^m-°m'^m^ m*^ _ 

Example 8. Let 

m = 2C - 3C2 - 2C3 e 9.[C] 

and apply the above iterative technique to obtain m*. 

Evidently 

m = - 2 - 3C + 2C2 , 

(m)~ = 2 - 3C - 2C2 

and hence 

m(m)~ = - 4 + 17C2 - 4 C 4 . 

Initializing wi th/ 0 = f2, we get 

q0 = 17.000 000 . (1 - 0-235 294C2), 

qi = 0-944 637 . (1 - 0-249 084C2), 

q2 = 16-941 606 . (1 - 0-249 943C2), 

q3 = 0-944 434 . (1 - 0-249 996C2), 

a4 = 16-941 379 . (1 - 0-250 OOOC2), 

qs = 0-944 433 . (1 - 0-250 OOOC2), 

etc. and, therefore, 

m* = 4 . (1 - 0-25C2) = 4 - C2 



modulo _ 1. It further follows that 

m+ = 2 + C, m- = C(l - 20 
modulo a unit of 3l[{]. 

In Part I a stable polynomial m was defined via the log division of l/m. This is very 

impractical to compute, however. A well-known check for stability is provided by the 

following algorithm [5], [7]. 

The polynomial 

m = fi0 + nd + ... + n„C 

of degree n is stable if and only if 

l<m«>| 
(9) 

where, recursively 

<m(fc>> 
< 1 , k = 0, 1 , . . . , n - 1 

/ Й W\ 
,(*+*>_ m < * ) _ _ _ _ - m ( * > , fc_o, i , . . . , n - i , 

<m<*>> 

mv"J = m . 

If 

m « = M(ok) + M(ift)C + . . . + M ^ r - t , 

the above recursive steps can be arranged in a table as follows: 

(10) џ(o0) мì0) • •• мľЛ м ( 0 ) 

м ( 0 ) мľЛ • • • M0) 
џ(o0) 

м ( 0 ) 

M (o 0 ) 

f41} м ^ • •• м(1Л 0 

м(1Л м(1Л • •• M(oŁ) 0 м(1Л 
M (o 1 } 

л ř - i ) м ľ " 1 ' • .. 0 0 

м ( Г 1 ! 
л Г 1 } • . . 0 0 

f-Г" 

м8° 0 .. 0 0 . 

The multipliers n(klkln0

k\ k — 0 , 1 , . . . , n — 1 are those appearing in the absolute 

value in (9). 

To evaluate the performance of a least squares control we have to compute ex

pressions of the type 

ę = (ee) -ш> 



where 

/ =A0+^ + . . . + knC , 

m = fi0 + /___ + .. . + n„C 

and m is a stable polynomial. Notice that both / and m are assumed to be of same 
formal degree n. 

According to [ l ] , [5] this can effectively be done as follows: 

( ' <m«»> , t i <m<»> 

where, recursively, 

„(*+.) = -,<*> _ _____ ) f l w j . _ o, 1 , . . . . n - 1 , 
<m<*>> 

m<°> = m 

and 

W>\ j(.+ i) __ / W _ _ _ _ _ _ ^w fc _ 0 j „ _ ._ 

<m<*>> 

/<°> = I . 

These computations can be carried out simultaneously with the stability check. 
Write 

m(*> = ^ > + Mfc)C + . . . + p « _ C - \ 
p ) =A<0*> + „<*>£ + ... + ^ _ J f c C a - * . 

Then table (10) can be combined with the table below 

(12) 4 ° > 4 ° > ... A<0_>_ A<°> 

/ 4 0 ) /4°Л • .. M0) ;/(0) 

Џo 
я<°> 
џ0

0) 

Aoł) я<'> . - Є\ 0 

tfЛ /4Л • ;;(1) 

•• Џo 0 e\ 
џ(ol) 

Д--I , ^ - 1 ) .. 0 0 

лГ1' /-Г1' • .. 0 0 
Я ( » - D 

Яo 

я0"> 0 .. 0 0 

/4,и) 0 .. 0 0 



220 where the coefficients kflk and nt\ k = 0, 1,..., n are those employed in (11). 

Example 9. Check the optimal control 

„ = Liic 
- 2 + 2£ - 05£2 

and the resulting error 

2 + 2C 
2 - c 

of Example 6 for stability and compute the optimal cost ęmin-

Table (10) for « becomes 

- 2 2 ì 
2 

ì 
2 2 - 2 i ffl<-
15 
8 

3 
2 0 

3 
2 

15 
8 0 -í. ҺII<1 

27 0 0 

and hence «is stable. 

Table (10) fore reads 

2 - 1 

- 1 2 - ł 
3 
2 0 

and hence e is also stable. 

To get <pmin, we further compute 

2 2 

- 1 2 

3 0 
3 0 

- ł , l - ł l< l 

according to (12). The result is 

CONCLUSIONS 

-ÁHУ 4. 

This paper is the second part of a tripaper on the algebraic theory of discrete optimal 
control for single-variable systems. Here we have discussed the open-loop control 
problems, namely, the time optimal problems and the least squares problem. 



Certain computational techniques have been included to demonstrate the power 

and elegance of the algebraic approach. 

The section dealing with the effect of disturbances indicated that applicability of 

this type of control is practically limited to stable or prestabilized systems. We in

tended this material as a springboard to discuss more complicated closed-loop pro

blems in the remaining part of the tripaper. 

(Received June 30, 1972.) 
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