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A Note on Grammars with Regular 
Restrictions 

JAROSLAV KRAL 

A context-free e-free grammar with regular restrictions is a context-free £-free grammar G 
over which a context-free rule r or G is applicable on a string x only if x e y(r) where y(r) is 
a regular set. It is known from [1] that the context-free £-free grammars with regular restrictions 
are as powerful as Chomsky's grammars of the type 0. It is shown, that the same result holds for 
the grammars, for which the condition x £ y(r) is replaced by the condition x e y where y is 
a regular set associated with the whole grammar (i.e. independent on the rule r to be applied). 

A context-free grammar with regular restrictions [1] is a quituple G = 
= (V U, R, 0, S), where G' = (V, U, R, S) is a context-free grammar and $ = 
= {y(r) | r is a rule of G', y(r) is a regular set}. A context-free grammar G = 
= (V, U, R, $, S) with regular restrictions is a context-free 8-free grammar with 
regular restrictions if G' = (V, U, R, S) is a context-free 8-free grammar. 

Let G be a context-free (s-free) grammar with regular restrictions. For x, ye 
e (Vu U)* we write x =>G v if there is a rule r = (u, v) e R, x = x^ux2, y = xlvx2 

and x e y(r). =>G is a transitive and reflexive closure of =>G. 
Fris proved in [1] and [2], that contex-free e-free grammars with regular restric

tions (8-CFRR grammars for short) are as powerful as Chomsky type 1 (context-
sensitive) grammars, i.e. to each context sensitive grammar G there is a s-CFRR 
grammar Gx such that L(Gt) = L(G2) and vice versa to each e-CFRR grammar G2 

there is a context sensitive grammar Gt such that L(G2) = L(Gt). 

Denote Tl= {A\A = L(G) for a context-sensitive grammar G}, Tr"' = {A | A = 
= L(G), G is a s-CFRR grammar}. A grammar is context-free e-free with weak regular 
restriction (s-CFWRR grammar for short) if it is a e-CFRR grammar G = (V, U, R, 
<P, S) where $ = {y} i.e. y(rt) = y(r2) for each two rules ru r2 of G. Let T'rest = 
- {A | A = L(G), G is a s-CFWRR grammar}. 

As noted above Tt = Trest. We shall prove the following result. 

Theorem. Tt = T'rest. 



" 0 Proof. As it obviously holds T'»*< _ r « s t = -» i t s u f f i c e s t o p r o v e t h a t r , r e s t _̂  

_ r.. 
Let G = (V, U, R, S) be a context sensitive grammar. Without loss of generality 

we can assume that all the rules r e R are of the form r = (hxAh2, hxwh2) where A is 
a nonterminal symbol. 

Let G' = (IV, U, P, 0, S) be a e-CFWRR grammar of the following properties. 
wi = {Tr | Tr is a new symbol for each r e R}, W = Wi u V. Let further P = P , u P 2 

where 

P . = {r | r = (A, tr), r = (M*a> / liw/ j2) 6 R} , 

P 2 = {r | r = (tr, oi), r = (h^Ah2, hxa>h2) e R} . 

Finally <P = {y} where 

y = (V u 17)* u lj (V u U)* Mr lhO^ <-» t7)* 
reK 

r=(fti^A2,/lio)A2) 

From this construction it follows that if D = (w0,wu ..., w„), w 0 e ( V u U ) * , 
w„ e U* is a derivation over G' then in D a rule f from P , is applied on w0 (the rules 
from P 2 are not applicable). On w± the rules from Px and the rule r from P 2 can be 
applied. If a rule q from Pi were applied on w, then a string w2 with two occurrences 
of symbols from JV, would be obtained. But w2 does not belong to y. It must be there
fore w2 = w„ which violates the assumption w„ e U*. Therefore on w, the rule r 
must be applied. It follows w2 e (U u V)*, w0 =>G w2. From it follows that if (S, ..., 
..., w„) is a derivation over G then n = 2/, S =>G w2 =>G w4 ... =>G w„ and U(G') _ 
_ L(G). Because the reverse inclusion is obvious the proof is complete. 

It is worth of mention that from the equality of generative powers of the type 1 
grammars and the e-CFRR grammars it does not follow that the grammars with 
regular restrictions (and even with context-free restriction) are not worth of study. 
One reason for it is that context-free grammars with regular restriction could generate 
non context-free languages (such as Algol 60) in a more "natural" way than context 
sensitive languages. For such grammars phrase markers seems to have almost no 
reasonable meaning. One reason for is discussed in [4]. One says that a derivation 
(w0, w 1 ; . . . , w„) over a Chomsky grammar G has the property Hk, k — 1, if each Wj 
can be expressed in the form Wj = Wj^w^ ... wjsj where the length \wjt\ of wjt is 
not greater than k and for each h = j and i = s} there is wh0hiij) such that wh0h(iJ) => 
=>G Wjt, It is clear that each derivation over a context-free grammar has the pro
perty Ht. It is shown in [4] that the set Lk(G) = {x | there is a derivation (S, ..., x) 
over G of the property Hk} is a context-free set for every Chomsky type 0 grammar and 
every k g» 1. 

It follows that in the case that L(G) is a set which is not context-free then to each k 
there is an x e L(G) such that every derivation D of x from the initial symbol contains 
a member m having a nonterminal substring y of the lengths greater then k. Moreover 



D has the property that in the subderivation D' of x from m all the parts of y are 

dependent, i.e. the subderivation from arbitrary part of y cannot be separated from 

the subderivations in another parts of y. This fact can hardly be reflected in phrase 

markers, but phrase markers are fundamental for the syntactical analysis. 
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