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A Note on Glushkov's Algorithm of the 
Synthesis of Finite Automata 

JAN MAREŠ 

In this paper the problem of the optimaiization of one step in the synthesis of finite automata 
is solved. 

Let L be a finite language. Under the synthesis we understand here finding the 
transition function of a (finite) Moore automaton 21 that represents the language L 
by some subset of the set of its inner states. An algorithm of this synthesis is given 
in [1]. For concreteness we have in mind the algorithm mentioned on pages 101 to 
102, rules 1 to 4. In what follows, a knowledge of the algorithm is supposed. 

Let I be a finite alphabet, i.e. a finite nonempty set of arbitrary symbols. Denote 
by I* the set of all strings over I. Consider the set g of all such regular expressions 
over I which involve only operations sum (denoted by the symbol + ) and catenation 
(denoted by juxtaposition) — except symbols belonging to S and parentheses, of 
course. Every such a regular expression will be referred to as "expression". 

Each expression represents some finite language in the following sense: We say 
that an expression R represents a language L iff \R\ = L, where the operation |...| 
is defined as follows (R,, R2 are expressions): 

joej = {a} for each a. e I* , 

|R, + R2 | = |R,| U |R2| , 

|R,R2| = {a0|ae |R. | A /?e|R2|} . 

Every finite language is, of course, represented by many various expressions yield
ing, after applying the algorithm to them, automata with various numbers of states. 
Our effort will consist in searching for such an expression which yields an automaton 
21 with as few states as possible. However, this automaton 21 is not "absolutely" 
minimal (in accordance with [1], p. 135). On the other hand, there are algorithms 
that, for finite languages, construct automata which are minimal; see e.g. [3]. Thus 



the automaton S3J is "minimal" only in the set of all automata which can be obtained 
by the mentioned Glushkov's algorithm. 

We confine ourselves (obviously without loss of generality) to languages not con
taining the empty string. 

Let R be an expression. Denote by 3I(R) the automaton that is obtained by ap
plying the algorithm to the expression R. Furthermore denote by a(R) the number of 
states of 'Jl(R). Finally, if L is a language, put 

g(L) = {R € 5 | |R | = L] . 

The Formulation of the task: 

To firid, for an arbitrary/™ "re language L, its minimal form, i.e. such an expression 
RM e o(L) that 

a(RM) = Min a(R). 
KSQ(L) 

Assume R, S e ft. In what follows, by R = S we denote the fact that |R | = \S\. 
On the other hand, under the identity R = S we understand "graphical identity" 
of R, S, i.e. R and S are equal as strings over the "extended" alphabet I0 containing, 
except symbols belonging to I, symbols + , left parenthesis and right parenthesis. 

Let R = >-j, ..., ym be an expression (of course, here the symbols yt,..., ym belong 
to I0). Each expression ykyk+i, ..., v„ where 1 <j k <j t <j m, yk_t $ I or yk$I, 
and at the same time, y, $ I or yt + 1 $ Z, we call a subexpression of R. 

Assume R, S,Te g. The following identities are true. 

I. R + R = R , 

12 (R + S) + T = R + (S + T), 

13 (RS)T = R(ST), 

14 R + S = S + R, 

15 R(s + T) = Rs + RT, 

16 (R + S ) T = R T + S T . 

Moreover, these identities are complete in the following sense. If R, S e 5 , |R | = 
= |S|, then there is a sequence R,, ..., Rm such that Rt = R, Rm = S and for each i, 
1 :g i <J m — 1, Ri+1 arises from R; by applying identity Ij for suitable j , 1 ^ j g 6. 

(We say that F e 5 arises from U e 5 by applying identity I, (1 ^ i: ^ 6) iff the 
following condition is true: 

If we replace the symbols R, S, T of one side of I ; by suitable expressions in such 
a way that some subexpression U0 of U is obtained, then V arises from U by replacing 
U0 by V0, where V0 arose from the other side of 7; by the same replacing of R, S, T 
as U0 did.) 



In what follows, we shall consider (without any loss of generality) only such ex
pressions in which parentheses will be written if and only if this is necessary for the 
correct interpretation of the expression (as regards representation). Thus identities 
I2 and I3 can be omitted. 

Let R be an expression. If it is possible to apply to R I5 or I6 from left to right, 
denote the expression arisen in such a way by LR or by RR respectively. On the other 
hand, if it is possible to apply to R several times I4 and then (once)I5 o r I 6 / rom right 
to left, denote the expression obtained in such a way by 'R or by R' respectively; 
if this is not possible (i.e. after no multiple application of I4 is it possible to apply I5), 
put 'R = R or R' = R. (Of course, in general there are many expressions that can be 
denoted by 'R or R'.) 

It is easy to show that 

(1) if R, S G 5 and S arises from R by applying I4, then a(S) = <r(R) . 

If Te g, denote by £f(T) the set of all states of the automaton 2l(T). 

Now let R be an expression for which some 'R ^ R and examine the relation be
tween the numbers <r(R) and ff('R). Due to (1) we can confine ourselves to that case, 
when 'R arises from R by applying I5 only (from right to left), i.e. by replacing 
SPi + SP2 by S(T! + P2), where S, PuP2e g. Write down some places and indices 
in R and 'R . Corresponding parts have the forms 

(2) I S I P , I + I S I P 2 I , 
1 Ji 1 Ji 

(3) l - t l - ' i l + I^DI 
J Jl Jz 

where 7, Ju J2 are sets of indices. 
Consider, how (2) differs from (3), i.e. R from 'R . Let M or N be the set of all 

principal indices in the expression denoted by the first of the second occurrence of S 
from left in (2), respectively. Assume M is (at the same time) the set of all principal 
indices in the expression denoted by S in (3). 

If in (2) me M xm-follows m' e I u M and neJV x,„-follows n' e I u N, clearly 
in (3) only m xm-follows m' (index n does not occur in (3)). In such a way it is possible 
to assign to each m e M an ne N corresponding to it and vice versa (M and N have 
the same number of elements). Further J2 = J1. There are no other differences. 

The states of the automata 3I(R) and 2I('R) consist of sets of (principal) indices 
of R and 'R . The set £f('R) is obtained from y ( R ) in such a way that each index 
n 6 JV is replaced in all states of Sf(R) by the corresponding index m e M. From two 
different states arise two different ones again. Really, an arbitrary state s e £f(R) 
contains index n if and only if s contains the index m which corresponds to n. Thus 
by replacing n by m we get from two different sets of indices two different ones, too. 



Hence 

(4) a('R) = a(R) . 

We call here every mapping E from Z* to /V u {0} (where N is the set of all positive 
integers) a (finite) family iff E(a) > 0 for a finite number of strings a € I * only. 

If E, G are families, define: 

E = G iff Va e Z* (E(a) = G(a)), 

(E 0 G) (a) = E(a) + G(a) for each a e I* , 

(F 0 G) (a) = E(a) - G(a) for each aeZ* ; 

E 0 G is defined only for such families E, G, for which E(a) > G(a) for each a e Z*. 
Clearly, every family E can be characterized by a finite list J?F of exactly those 

strings ae Z* for which E(a) > 0; in this list £CF each ae Z* occurs E(a)-times. 
Two lists which differ only in the order of strings are supposed to be identical. 

E.g. if E(a) = 2, E(£) = 1, F(y) = 3 and E(£) = 0 for £ e Z* - {a, ft, y}, we write 
J2> = [a, a, p, y, y, y]. 

In what follows, we speak about .S?F's themselves as about "families". Each finite 
set A c Z* will be understood as a family that contains each string a e Z* at most 
once. 

Each expression which is a sum of several nonempty strings (belonging to Z*) is 
said to be a polynomial. 

Obviously, every expression R is unbracketetable to a polynomial, i.e. there is 
a sequence R „ . . . , R„, such that 

R, = R, Ri+1 = R,, 

where either R; = L R ; or R; = R* (i = 1, ..., m — 1) and Rm is a polynomial. 

If P is a polynomial, P = a, + ... + a„, a ; e I * (i = 1, ..., «), put ||P|[ = 
= [a,, a2, ..., a„]. (J|PJ| is a family.) 

Let R be an expression and let F be a family. We write j |R | = E iff R is unbrackete
table to a polynomial P such that ||P|| = E. (Clearly, it is not possible that R is un
bracketetable to polynomials P t and P2 such that ||P,|j + \\Pz\-) 

Each expression R for which |R | | = |R | is said to be simple. 

Lemma. Let R be an arbitrary expression. There is a simple expression S such 
that \S\ = [R| and a(S) = <r(R). 

Proof. (In the proof a knowledge of the notion TotF is necessary; see [2] for it.) 
Assume R is not simple. By [2] (Theorem l) there is a sequence R,,..., R,„ such 

that R! = R, Ri+1 a LR ; and Rm has the form TotF (i = 1, ..., m - 1). At the 
same time by (4) it is er(Rm) = <r(R) and of course |Rm | | = | |R | . 



Because R is not simple, there is a e I*, a = xu ...,x„ such that |R j | = ||Rm|| = 293 
= [a, a, 7,. . .]. 

Clearly, it is sufficient to prove that there is Sm e g such that 

a(Sm) = a(Rm) and |5 M | | = ||Rm|| 0 [a] . 

Assume Rm = yu ...,yd (j>,e_0); each subexpression T= ydl, ..., ydl of Rm such 
that j>dl_j is the left parenthesis, yd2 + 1 is the right parenthesis and for no i, d^ = 

^ i :g d2, yi is a parenthesis, is called a minimal subexpression of Rm. (Clearly, Tis 
a polynomial.) 

Suppose that T,, ..., Tk are all minimal subexpressions of Rm. If 5 e I* (possibly 
5 ~ A; A denotes the empty string), and T is a polynomial, T = dt + ... + 5q, put 
II111 II5II = lA"5' •••> < ¥ ] • I I i s n o t difficult to verify that 

lR4 = \\T4bi\\®-®\\T4\h\\®lPi>->likl, 

where rju . . . , t\k, fiu ..., f}HeE* are suitable strings, k = 0, ft = 0. Put T0 = 

= pt + ... + A, >?0 = A. 
Thus there are r, s, r + s, 0 = r = k, 0 = s = k such that 

l-",|IWl©III;»IW = [«,«,y>-]-

Now there are two possibilities: either 

Tr S . . . + Xj . . . X t l + . . . , t]r 3 . Xfl + 1 . . . Xp 

and 

Ts = . . . + x, . . . x t 2 + ... , rjs s x,2 + 1 . . . x p , 

or 
Tr = . . . + x t . . . x t l + ... + x, ... x,2 + . . . , 

1r — x r , + 1 • • • xp — xt2 + 1 • • • x p 

and /j ^ t2-

Assume that Sm arises from Rm by deletion of the string xx . . . x t l (without any 
other change). Clearly |Sm | | = \\Rm\\ Q [a]. 

R m = . . . ( . . . + {1 + X1...X,1. + £2 + . . . ) . . . ( . . . +x\...x2
n + . . . ) . . . , 

Sm = . . . ( . . . + £, +$2+ ...)...(... + x 3 . . . x r
3

2 + . . . ) . . . 

(upper indices are only for distinguishing the same symbols in various places; 
^ . 2 62*) . 

It is obvious that x{, x l 7 x
3 have the same "preindex", namely 0. Denote by i(x{) 

the index of x[. Clearly, Sle,9'(Rm), where St = (i(x[) v i(x\) v . . . ) ; hence 



S2eSf(Rm), where S2 = (t(x2) v <xf) V ...) etc.; finally Sh e S"(Rm), where 
Sn ~ (((xjj) v i(x,2,) v . . . ) . It is easy to see that no other state s 6 y(R m ) contains 
any of the indices i(x\), ..., .(x*). 

Assume ^ (R m ) = Q u {«., ..., stt], Q n {s,, ..., s„} = 0. Then Sf(Sm) = 
= 2 ^ {sj, ..., s,J, Q n {sj, ..., s,J = 0 again, where s( arises from s( by replacing 
the couple i(x]) v t(x?) by ((x,) (i = 1, ..., /j). Furthermore, because no Sj contains 
i(x3

t) (i, j = 1, ..., tj), it is s„ + st, for « + V (u, v = 1, . . . , f x). Hence 

cr(Sm) = a(Rm) . 

As follows from the lemma when searching for a minimal form, we can confine 
ourselves to simple expressions only. Really, if some Reg that is not simple is a 
minimal form, by the lemma there exists such a simple S e g that S is a minimal form 
(of the same language), too. 

Let P be a polynomial. If we apply several times identity 76 from right to left to P 
(i.e. we form a sequence Pu ..., Pm, where Pt = P, Pt+l = P't (i = 1, ..., m — l)), 
it is easy to see that here T in I6 represents only strings belonging to I* (not arbitrary 
expressions). 

Now let R be an expression and examine the relation between the numbers a(R) 
and a(R') under the special condition mentioned above, i.e. R' arises from R by re
placing P by P', where P = Pxa + P2a, P' = (R, + P2) a and a = xx ... x t, 
a e Z*. Write down some places and indices in P and P'\ 

(5) IR^Xj | x2 | . . . |x* | + | P 2 | x j | x2 | ...\xk | , 
m m + 1 m + 2 m + k n n + 1 n + 2 n + t 

(6) | ( |P , | + |P2 | ) |*1 J *2 | -fa | • 
m n m m + 1 m + 2 m + t 

Consider, how (5) differs from (6), i.e. R from R'. In (5) n + 1 Xj-follows n, in 
(6) m + 1 Xj-follows n. Further, in (5) m + i + 1 or n + i + 1 x1 + ]-follows m + i 
or n + i, respectively, while in (6) only m + i + 1 xi+1-follows m + i (i = 1, ... 
..., fc — l). There are no other differences. 

Thus the set 5^(R') is obtained from Sf(R) by replacing index n + i in all states 
belonging to Sf(R) by index m + i (i = 1, ..., k). Hence (because due to the replacing 
two or more identical states can arise) 

(7) a(R') ^ a(R). 

In general, the inequality ^ in (7) cannot be replaced by < . The latter one, how
ever, holds in "most" of concrete cases, as it can be proved. 

Let R be a polynomial and let Ru ..., Rm be a sequence of expressions such that 
Ri = R, R, + 1 = R'i (i = 1, ..., m - 1) and Rm = R,„. Then the expression Rm is 
called total right bracketing of R. 



Assume an arbitrary finite language L is given. It is possible in many ways to form 295 
a polynomial that represents L. (We simply write down all strings of L in an arbitrary 
order and place between every two neighbouring strings the symbol +.) Further, 
to each such polynomial there exist various total right bracketings of it. We show, 
however, that all such bracketings yield automata with the same number of states 
and that each such bracketing is a minimal form of the language L. 

Really, let P . , P2 be arbitrary polynomials that represent the language L and let 
T; be an arbitrary total right bracketing of P f (i = 1, 2). It is clear that e.g. T2 is also 
a total right bracketing of P j . (Really, by definition of P'x it is possible to apply to P t 

firstly several times identity I4; in such a way P2 can be obtained.) 
In [2] (Theorem 3) it is proved that every two total right bracketings of an 

arbitrary polynomial can be obtained each from the other by multiple application 
of the identity I4. Whence and by (l) it follows that 

o-(Ti) = o(T2) . 

Now suppose there is given an arbitrary (simple) expression R e _(L). In [2] 
(Theorem 1) it is proved, that there is a sequence P , , ..., Pm, Su ..., S„ such that 
Pi = R, P i + 1 = LP„ S. = Pm, SJ+1 = SR (i = 1, ..., m - 1; j = 1, ..., n - l) 
and S„ is a polynomial. 

By (4) we then have 

(8) c(Pm) = o(R) 

(ifP i + 1 s LP i ( t h e n ' P i + 1 a P ;). 

Further, there is a sequence Rj, ..., Rk (k — n) such that Rj = S„, Ri+1 = RJ 
(i = 1, ..., k — 1). R'k = Rt and at the same time R( = S„_ i + 1 (j = 1, ..., n); 
particularly, R„ == Si a Pm. 

Hence and by (7) 
_•(/?_) :g <x(Pm) 

and then (by (8)) 
o(Rk) = o(R). 

(The formula (7) can be applied because in [2] the results we use were proved under 
the same special condition as (7) was.) 

Thus the number of states of S2I(R) is not less than the number of states of 2l(T), 
where T is some (and then arbitrary) total right bracketing of a polynomial P which 
represents the language L. Hence each total right bracketing of P is a minimal form 
of the language L. 

(Received October 21, 1969.) 
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Poznámka ke Gluškovovu algoritmu syntézy konečných automatů 

JAN MAREŠ 

Při syntéze konečného automatu pomocí regulárních výrazů závisí počet vnitřních 
stavů konstruovaného automatu na tvaru regulárního výrazu, od kterého při syntéze 
vycházíme. V tomto článku je ukázáno, jak lze k libovolnému konečnému jazyku L 
nalézt takový regulární výraz R (reprezentující jazyk L), který je minimální v tom 
smyslu, že je-li S libovolný jiný regulární výraz reprezentující jazyk L, není počet 
stavů automatu zkonstruovaného pomocí S menší než počet stavů automatu zkon
struovaného pomocí R. 
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