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State Space Approach to Discrete 
Linear Control 

VLADIMÍR KUČERA 

The state space approach to the synthesis of a class of discrete linear control systems is given. 
Both time-optimal and quadratic-cost problems are considered and a comparison to classical 
methods is made via the technique of pole assignment. 

INTRODUCTION 

During the past decade the state space approach to the optimal control theory has 
been given much attention. This paper makes a contribution to the synthesis of dis­
crete linear control. We consider the time-optimal and the quadratic-cost problems, 
either in two modifications: the state and the output one. 

By the state time-optimal problem we mean the problem of driving the state of the 
system to zero in minimum time, while in the output time-optimal problem we are 
to zero the (discrete) output of the system in minimum time. 

The quadratic-cost problem is that of finding a control so as to minimize a quadratic 
cost functional. In the state quadratic-cost problem the cost functional involves the 
state and/or the input of the system. On the other hand, the output quadratic-cost 
problem involves the system output only. The precise definitions will be given at the 
respective sections. 

The basic method of attack is the modern state space technique. However, the con­
nection to the --transform methods is discussed briefly for each problem. 

Throughout the paper a prime denotes the transpose of a matrix, square brac­
kets represent matrices or vectors made up of the inside symbols, and the standard 
notation P 2: 0 (P > 0) for symmetric matrices means that P is nonnegative (positive) 
definite. Further we write s/x for the orthogonal complement of j / and © denotes 
the direct summation of spaces. 



SYSTEM DESCRIPTION 

Consider the discrete, linear, time-invariant, single-input, single-output system Sf 
governed by 

(1) xk + 1 = Axk + buk, x0 given, 

(2) yk = cxk + duk 

where xk e S„, uk e S\ and yk e St are respectively the state, the input, and the out­
put of the system at time k [21]. The matrices A, b, c and d are of dimensions n x n, 
i i x l , l x - i i and l x l respectively. It is further assumed that det A + 0. 

Here n is the order of the system. Set 

(3) h0 = d, 

h, = cAl-lb, i = 1,2,. . . 

Then the number m defined by 

m = min {/ : h{ +• 0} 
i 

is called the relative order of the system [3]. In the z-transform parlance, m is the 
difference between the order of the denominator and that of the numerator of the 
system transfer function. Equivalently, m represents the delay of the discrete output 
response. 

THE INVERSE SYSTEM 

It will be seen later that the inverse system plays a fundamental role in the "output" 
optimal control problems. According to [3], [16], [17], y is a left (right) inverse 
system of Sf if for any x0 there exists x0 such that the cascade SfSf {SfSf) acts as 
a delay of L time units, L ^ 0. 

The minimum Lis called the inherent delay of the system and is equal to m. To get 
a state space representation of the inverse system, we find 

yk = cAkx0 + cAk"~1bu0 + ... + cbuk„l + duk = 

= cAkx0 + hku0 + ... + hluk_l + h0uk 

by (1), (2) and (3). 

Let m be the relative order of the system. Then 

(4) yk+m = cAmxk + Kuk • 



On rearranging and substituting into (l) we obtain the inverse system representation 

(5) xk+1 = Amxk + Buk, 

(6) yk = txk + duk, 

where 

(7) Am = A - bhm
lcAm , 

b = bh'1, 

c = - h ~' cAm , 

a = h m - > 
and 

j>* =uk, 

«* = >'* + » • 

Observe that ^ is again a linear system. The inverse system matrix, Am, m ^ 0, has 
always m zero eigenvalues associated with the chain of generalized eigenvectors 

A~lb, A~2b, ..., A~~b 

since 

AmA~lb = AA~'b - bhm
l(cAm~'b) = A-"'"1'/?, i = m, m - 1, .... 2 , 

= o, ; = i 

by the definition of m and hm. 

The other eigenvalues of Am coincide with the zeros of the transfer function of if-
Hence system (1) —(2) is a minimum-phase (discrete) system if and only if the inverse 
system (5) - (6 ) is stable. 

We note that (5) —(6) is both left and right inverse system for if. The problem, 
however, is much more complex for multi-input multi-output systems [17]. 

POLE ASSIGNMENT 

One of the most recent techniques of the optimum system synthesis is that of pole 
assignment. It is based on the following theorem [3], [20]: The system (l) —(2) can 
be assigned any pole configuration (with complex poles occurring in complex con­
jugate pairs, of course) via a suitable linear state feedback uk = fxk if, and only if, 
system (! ) - (2) is controllable. 

Given that any configuration can be achieved, the construction of the feedback 
gain / is as follows. 



Let T be a nonsingular transformation which brings system (l) to the controllable 
canonical form 

vk+i = A0vk + b0uk, 

where 
»*-= T~'xk, 

A0 = T_1AT = 0 1 
0 1 

— 0Í- . . . 

1 

— a 

ь0 = т~lъ = 

Here #(z) = z" + alz
n 1 + ... + a„ is the characteristic polynomial of A. 

Let the desired pole configuration corresponds to a characteristic polynomial 
^(z) = z" + i?1z»-1 + ... + pn. 

Then 

(8) / o = / r = [ a ( . - A . , . . . . a 1 - / ? 1 ] 

[a„-&,...,„!-/?,] = Л 0 + Ь 0 / 0 = " 0 1 
0 1 

+ "0" 
0 

0 1 

+ "0" 
0 

0 
— a„ ... - « i _ x 

0 1 

0 1 

l-k ••• -fid 

This method forms a useful link between the state space and the z-Transform ap­

proaches and will be made use of later on. 

REVIEW OF STATE TIME-OPTIMAL PROBLEM 

In the z-transform approach this problem is referred to as the dead beat response 
problem [4], [18]. It has been posed in the state space and solved by Kalman [6], 
[8] and others as follows. 



It is desired to find a control which brings any initial state x0 e $„ of system (l) 237 
to zero in a minimum time N. 

Let 3Cj be the set of states that can be transferred to zero in no more than j time 
units. Then 

(9) SFj = span {A - 16, A~2b, ..., A~Jb} 

and, evidently, 

scj <=ar,+1, 7 = o , i , . . . , 

^ o = {0} • 

Let system (1) be controllable, i.e. rank [A~xb, A~2b, ..., A~nb\ = n, and define 

v = min {;' : if j = <?„} . 
j 

Then v is called the controllability index of the system. By definition, it is the minimum 
transfer time N sought for. Using (9) and the Cayley-Hamilton theorem we conclude 
that 

(10) N = v = n. 

The optimal control u* is given by 

(11) ut=fxk, 

where 

(12) f[A~lb,A~2b,...,A~nb] = [ - 1 , 0, ..., 0] . 

In fact, for any xk = £1A~1b + c2A~26 + ... + ljA~Jbe£j we have 

*k+i = (A + bf)xk = 

= "tb + l2A~xb + ... + £jA~J+1b - t.bedCj^, . 

Further, since 0 = x„ = (A + bf)" x0 for any x0 e Sn, the closed-loop system 
matrix A + bf is nilpotent with index n. Hence afl its eigenvalues are zero. Moreover 
the associated generalized-eigenvector chain is 

A~xb,A~2b,...,A~nb 

because 

(A + bf)A~'b = A~(i~ub, i = n, n - 1 , . . . ,2 , 

= 0 , / = 1 

by (12). 



238 An alternative construction of/involves the pole assignment. The desired charac­
teristic polynomial is 

<!>(-) = -" 
and, therefore, 

jo = fT= [oc„, ..., a t ] 

and 
A0 + b0f0 = T-'(A + b / ) T = 0 1 

0 

by virtue of I 

OUTPUT TIME-OPTIMAL PROBLEM 

This is the classical problem solved by the z-transform approach in [4], [18]. It has 
been first formulated in terms of state space and partially solved by Kucera [9]. The 
unified and complete solution is given below. 

It is desired to zero the (discrete) output in a minimum time M, starting at any 
x0 £ S„. Note that if the underlying system is continuous the output need not be zero 
in between sampling points. 

Let m be the relative order of system ( l ) - (2 ) . 
To solve the problem, we set 

0 = yk+m = cAmxk + hmuk, 

see (4). Hence 

(13) «* = -h~1cAmxk 

and the closed-loop system matrix is 

A - bh^cA", 

the inverse system matrix Am. It also follows that M = m. 

However, this optimal system will not be stable if the inverse system is not, i.e. if 
(l) — (2) is not a minimum-phase system. 

The matrix Am has m zero eigenvalues associated with the chain of generalized 
eigenvectors A~1b, A~2b, ..., A~mb. Further let A+, i = 1, 2, ..., s be the remaining 
stable (|/,+ | < 1) eigenvalues of Am and write a+ for the associated eigenvectors. 
Similarly let k~ be the unstable eigenvalues of Am and a~ be the associated eigenvec­
tors. For the sake of simplicity we shall assume that all A+ and X~ be distinct and not 
equal to zero. This assumption is by no means essential, however. 



Now the state space can be decomposed as follows: 

<$n = dm ® ^ + ® st _ 

where stm, st+ and st'_ are the eigensubspaces of Am associated with the zero, 
stable, and unstable eigenvalues respectively. 

Observe that 

dim stm = m , 

dim st' + = s , 

dim st_ = n — m — s . 

It is easy to see that the optimal system will be stable as well if and only if the initial 
state is transferred to stm © st + and will remain there forever. 

In a like manner, write Wj for the set of states that can be transferred to stm © st + 
in no more than / time units. Then 

9j <=<2/J+1, j = 0, 1 , . . . , 

90 = stm© st + 

and 

(14) <&j = span{A_1fo, ...,A'mb, ..., A~m~Jb, A~Ja\, ..., A~fa + } • 

Let <WJ = <f„ for some j and set 

/( = min {; : <~fj = £„} . 
J 

Then the optimal as well as stable control is given by 

(15) ut=fxk, 

where 

/ [A - 1 / ? , ...,A~mb A~m~"b, A~"af, ..., A~"a+] = 

= [ - 1 , 0 , . . . . 0 ] . 

In fact, for any xk = E,1A~ib + .. . + i!,„/l~m£> + ... + £m + JA~'"-Jb + /; ,A~ Ja+ + 
+ ... + rjsA~Ja* e °?J} we have 

x*+i = (A + bf)xk = 

= £.6 + ... + /;m+JA-m~j+1b + ) ; , A - J + 1 a + + ... + 

+ ) ? s A - J + 1 a + - -ybeVj-x • 

Asa result, xM 6 J / „ , © st + . It remains to prove that x + i e J / „ , © .s/+ for i = 0, 1, ... 



240 First let x„ = ^A~lb + ... + ^mA~mb e s£m. Then 

x„+, = (A + fcj)x„ = 

= Cil> + i2A"lb + ... + imA-"l+ib - ^ e < r l e: ^ m 

and hence 
x„ + m = 0 e r f m . 

Before proceeding we recall that 

Amat = Aa+ - bhm
lcAmat = A+a+ , i = 1, 2,..., s. 

On multiplying the above equation by A_J-1 we get 

(16) A~Jat = hm'(cAmat) A~}~lb + l + A"J'-]a+ , 

i = 1,2, ..., s; ; = 0, 1 , . . . 

Now let x„ = *?i«+ + . . . + r/sa
 + G si + . Then (16) yields 

at = ^ - ' ( c A ^ + j A - 1 / ) + A+A-1^* , 

A~lat = hm\cAmat) A~2b + X]' A'2at , 

etc. so that 

at = hm
l(cAmat)A-1b + Xthm

l(cAmat) A~2b + ... 

... + (Xtf-xhm
l(cAmat) A~"b + (A,+)" A_"a+ , i = 1,2, . . . , 5 . 

It follows that 

(17) x p + 1 = ( A + &/)*„ = 

= f/!Aa+ + . . . + f/sAa+ — r]ibh~lcAmat — ... — r]sbhm
1cAmat = 

= AmX„ E ̂ / + . 

As a result, x,, E J / „ © J / + implies not only x,,+i e >a/m © $4 + for i = 0, 1, . . . but 
even more: 

xll + m+iesrf+ , i = 0, 1 , . . . 

It also results from equation (17) that the state Xj e ss/+ obeys the same equation as 
if it were controlled according to (13). 

Thus 
yM + M + . = 0 , . - 0 , 1 , . . . 

and the proof of (15) has been completed. 
It follows from the above that the minimum transfer time M is given as 

M = n + m . 



To arrive at an expression for /x we recall that /z _ n — s — m; otherwise it would 241 
not be enough vectors in (14) to span <3tM. On the other hand, /< ^ n — s — m. If this 
were not true, we could write 

A-'"-*b 6 spán {A~]b, ..., A-'"-"+1b, A~"a + , ..., A~"a + } 

and since 
A-"a+ e span {A"**?, A~"+1a + } 

by (16), we would get <& ̂ -^ = 'W^, a contradiction. Hence 

jU -» n — s — m . 

Thus the minimum transfer time is 

(18) M = fi + m = n - s . 

To compare (10) and (18), M ^ N but at the expense of reaching equilibrium in 
finite time. 

The optimal closed-loop system matrix A + bf has eigenvalues X = 0 and X +, . . . 
..., 1 + . The zero eigenvalue is associated with the generalized-eigenvector chain 

A_1b, ..., A~mb, ..., A-m-"b 

and the eigenvalue X+ with the eigenvector a +, i = 1,2,..., s. 
In comparison to (13), it can be seen that stabilizing the system has cost \i time 

units; we had to remove n — s — m = [i unstable eigenvalues of A„, and introduce 
extra /< zero eigenvalues instead. 

An alternate construction of j involves again the pole assignment. The desired 
characteristic polynomial is 

•A(z) = z"-%z - 1+) ... (z - As
+) = z" + / J . z - 1 + ... + /?sz"-s 

and, therefore, 

/ 0 = / T = [a,, . . . , a , + l , a , - /? , . . . . ,« , - /?,] 

where x(z) = z" + a,z"" ' + ... + a„ is the characteristic polynomial of the given 
system. 

Example: To illustrate the theory, consider system (1)—(2) with 

A = 0 1 0 . b = 0 
0 0 1 0 
0-3679 -1-5809 2-2130 1 

= [0-0792 0-4094 0-1306] , d = [0] 



242 It can readily be shown that 

G(z) = 
0-1306Z2 + 0-4094Z + 0-0792 

z3 - 2-2130z2 + 1-5809- - 0-3679 

_ 0-1306(z + 0-2071) (z + 2-9276) 

(z - l ) (z - 0-6065)2 

is the transfer function of the system. The discrete system in question can also be viewed as the 
continuous system 

%) = 
p(p + 0-5)2 

sampled at t = 0, 1, 2, ... 
Since 

K = [ o ] , 

/), = [0-1306] + 0 , 

the relative order m = 1 and the inverse system matrix reads 

A, = [0 1 0 
0 0 1 

0 -0-6065 -3-1348 

The eigenvalues of A \ are 

Å = 0 , 

Å+ = --0-2071 , 

;.- = --2-9276 

and the associated eigenvectors 

A~lb = "2-7183 
0 
0 

, a+ = 4-8286" 
- 1 

0-2071 

0-3416 
- 1 

2-9276 

js/t = span {A~lb} , 

s&+ = span {a + } , s = 1 , 

•$/'_ = span {a - } . 

The minimum transfer time M is equal to n — s = 2. 
The optimal as well as stable control law/follows from (15). We obtain 

[A~ , A~ , A-ľa+] = 2-7183 11-6814 27-3284 
0 2-7183 4-8286 
0 0 - 1 



and hence 

/ = [-0-3679 1-5809 -2-4201] . 

Since the system is already exhibited in the controllable canonical form and 

x(z) = z3 - 2-213022 + 1-58092 - 0-3679, 

tA(z) = z2(z + 0-2071) = 

= z3 + 0-2071z2 , 

the pole assignment technique can readily be applied to yield the same result. 

REVIEW OF STATE QUADRATIC-COST PROBLEM 

This problem is quite involved to solve by means of z-transform [18], even for 
single-input single-output systems. In the state space form it has been introduced by 
Kalman [7], [8]; see also [2]. 

We are to control system (1) in such a way that the following cost functional 

(19) J = ifx'kQxk + ru2
k 

k = 0 

be minimized for any x0 e S„. 
Here Q and r are n x n and 1 x 1 symmetric matrices respectively. It will be assumed 

that Q ^ 0 and r > 0. 
We invoke dynamic programming [ l ] , [19] to obtain the optimal control 

(20) u*k = - ( ' • + b'Pb)~l b'PAxk. 

Here P is an n x n symmetric nonnegative definite matrix solution of the algebraic 
equation 

(21) P - A'PA + A'Pb(r + b'Pb)"1 b'PA - Q = 0 . 

The minimal value J* of J is given by 

J* = W0Px0 . 

Before proceeding any further we define the pair (A, b) to be stabilizable [20] if 
there exists an 1 x n matrix / such that A + bf is stable, and, dually, the pair (c, A) 
is said to be detectable if (A', c') is stabilizable. 

Another characterization of stabilizability and detectability utilizes the concept of 
controllable and observable eigenvalues of A [5] : (A, b) is stabilizable if and only if 
the unstable eigenvalues of A are controllable through b, ard (c, A) is detectable 
if and only if the unstable eigenvalues of A are observable in c. 

Unfortunately, the solution P of (21), if it exists at all, is not generally unique. 



There can be negative definite, indefinite, or even nonsymmetric solutions, which are 

of no value to us. Kucera has recently proved the following fundamental theorem 

[10], [12]: 

Let br'1^ = bxb\ and Q = ciC<, where bt and Cl are matrices of full rank such 

that rank bt = rank br~lb' and rank C, = rank Q. Then stabilizability of (A, bY) 

and detectability of (C1; A) is necessary and sufficient for equation (21) to have 

a unique solution P ^ 0 yielding a stable closed-loop system. 

We find it convenient to introduce the costate pk by 

dJ* 
Pk = — - = xkP . 

dxk 

Then we have the following two-point boundary value problem [15] 

(22) xk + 1 = Axk - br-1b'p'k+l , 

Pk = x'kQ + pk+lA 

to be solved instead of equation (21). 

On rearranging, 

[;;::]=-[;:] 
where H is the In x 2n matrix below: 

Let 

H 

Then it is easy to show that 

„ ГA + ЬГ^VÄ-^Q, -Ьr-lЪ'A'-l~\ 

P l = яГx" 
L^J L.v. 

Я Ф O . 

[-/, x']H-> = A [ - / , x ' ] 

and hence 

[ - / , x ' ] H = l - 1 [ ~ / , x'-]. 

To put it in words, if H has an eigenvalue X it has also the eigenvalue X"1. 

It has been established in [14], [13] that every solution P of (21) takes the form 

P = YX~l , 

where 

X = [xux2, ..., x„], 

3r-Dwa.-">.vJ 



and ' , i = 1, 2, ..., n are the eigenvectors or generalized eigenvectors of H as-
UJ 

sociated with such an n-tuple of eigenvalues X, that X ' exists. Moreover, with any 
generalized eigenvector all lower-ranking ones must also be used. 

It is important to note that A — b(r + b'Pb)"1 b'PA, the closed-loop system ma­
trix yielded by P, has A„ i = 1, 2, ..., n as its eigenvalues and xl as the associated 
eigenvectors. It implies that P generates a stable closed-loop system if, and only if, 
it corresponds to the choice of stable eigenvalues X{ of H, i = 1,2,..., n. 

In case (C,, A) is not detectable, equation (21) will have at least two nonnegative 
solutions and the optimal solution will no more coincide with the stable one [ l l ] . 

OUTPUT QUADRATIC-COST PROBLEM 

This problem has been completely solved by the z-transform approach in [4], [18]. 
From the state-space point of view it can be regarded as a special case of the previous 
problem provided r 2: 0 is allowed. Nevertheless, we are providing a deeper insight, 
which, to the author's knowledge, originates here. 

It ;s desired to control system (l) —(2) so as to minimize the cost 

(23) J = ityl 
k = 0 

for any x0 e Sn. 
Unlike (19), functional (23) involves no control (r = 0) and hence the above results 

are not directly applicable. 
Let m 2: 0 be the relative order (discrete output delay) of system ( l ) - (2) . Then 

(23) is minimized if and only if the cost 

(24) i m = i f v t
2

+ m 
k = 0 

is minimized. Making use of (4), 

(25) Jm = i £ x'kQxk + 2x'ksuk + ru\ , 
t = o 

where 

(26) Q = A""c'cAm , 

s = A""c'h,„, 

r = hm > 0 . 

The substitution 

(27) uk = uk + r~[s'xk 



246 eliminates the cross-term in (25). The state term in (25) also vanishes due to (26), 

Q = Q - s r - y = 0 , 

and (25) simplifies to 

jm =_ £ ^ « . • 

Equation (l) is thus modified to 

xk+1 = Axk + biik 

where 

A = A - br'h' = Am, 

the inverse system matrix. 
This is exactly the state quadratic-cost problem with 

(28) 6 = 0, 

r = h2
m, 

A = Am , 

that is, equation (21) reads 

(29) P - A'mPAm + AmPb(hm + b'Pb)-1 b'PAm = 0 . 

The only difficulty involved is that A"1, m > 0, does not exist. The nature of the 
problem, however, implies that a solution does exist. To circumvent the difficulty, 
write 

gH = (s4+ ® .-/_) © ( J / + © S4-)1 

and define the generalized inverse Am of Am as follows: 

A„,Amx = x , XBS4+®S>4^ 

Amy = 0 , y e ( j /+ © j / _ ) x . 

Roughly speaking, A"* acts as A"1 on J</ + © a/_ and as zero on (j/+ © ,E/_) X . It 
follows that ( i m i * ) ' = AmAm. 

Now we are able to solve equation (22) for pk+1: 

Pk + i = x'kQAm + PkAm. 

In view of (28) the matrix H becomes 

[O. Ai] 



The eigenvalues of H are those of Am and A*'. Let for A; + 0 

Amfl; = A,fl; , 

r;/fm = A,r ;. 

Then 

Ama; = x-'ctt 

r,Am =A ; ~V ; 

by definition of A*. 
It follows by direct verification for A, + 0 that 

•[?M?]-

where R\ = (A,Am - JY 1 bhm

2b'. 
In the case of zero eigenvalues, 

r,ГA~'V| ГA-(;-ł)fcl 
Я = , Í = m, m - 1, ..., 2 , 

L 0 J L 0 J 
'°" / = ! 
0 and also 

•la-ra--" -
where 2,-A* = 0. Note that the eigenvectors can form no solution of (29) since 

X~l would not exist. 
There is always the solution P = 0 to equation (29). The corresponding control 

u* = 0 is certainly optimal since J* = 0. By virtue of (27) and (26) we obtain 

u* = -h~lcAm 

while the closed-loop system matrix becomes 

A - bhm
lcAm = A„, . 

As a result the optimal control system is stable if and only if the inverse system is 
so, or equivalently, if the given system enjoys the minimum-phase property. More­
over, the optimal strategy for the output quadratic-cost problem coincides with that 
of the output time-optimal problem. 



System ( l ) - ( 2 ) is assumed to be stabilizable. It follows that the pair (Am, bt) is 
stabilizable, too. Since Q = 0, however, the pair (Cu Am) is never observable. In case 
A,„ is stable, (Cl5 Am) is detectable and P = 0 is the only nonnegative solution of 
(29). If Am is not stable, i.e. system (1) —(2) is not of minimum phase, the pair 
(C,, A~m) is not detectable. Hence there exist at least two nonnegative solutions to 
(29): P = 0, the optimal but not stable one, and another solution which is optimal 
as well as stable. 

To extract the latter solution we have to choose the stable eigenvalues of H, that 
is to set 

(30) P = YX~l 

where 

[ ~ 1 _ \A~1b,...,A-mb, a + , . . . , a s
+ , R'^', ..., R'„_m_s r~lm_,l 

\_Y\~\_O, . . . , 0 , 0, . . . , 0 , r~',..., r;:m_s\ 

This is the state space equivalent to spectral factorization. 
Solution (30) yields, by equation (20), the control 

H* = -(hi + VPb)-1 b'PAmxk, 

i.e., 

«* = fxk 

where 

(31) / = -(hm + VPbY1 b'PAm - h^cA"'. 

The first term in (31) has the desired stabilizing effect. 

The optimal as well as stable closed-loop system therefore obeys the equation 

xk+l = [Am - b(hm + VPbY1 VPAm] xk 

and has eigenvalues X = 0, A,+ , i = 1, 2, ..., s and (A~)~l> / = 1, 2, ..., n — m — s. 
The chain A~1b, ..., A~mb is associated with 1 = 0, the eigenvectors a* with A+ 

and KJr,"'with (Af)"1. 
It is of interest to note that the eigenvalues and eigenvectors of Am only, not of H, 

are required. Also the generalized inverse Am does not enter any computations and 
was introduced for formal reasons only. 

The cost J* of the optimal control takes the value 

Jm = _x'0Px0 

consistently with the previous section. 
Another possible synthesis technique is that of pole placement. The desired char-



acteristic polynomial is 

^(z) = z-(z - xi)... (z - x:) (z - (x;)-1)... (z - (x:_m_sy
l) = 

= z" + ^jz"- 1 + ... + i?„_,„z"-m. 

Hence the optimal as well as stable control gain satisfies 

/ 0 = f T = [a„, . . . ,a„_m + 1 , «„_,„- /?„_„,, . . . , „ . - / ? , ] 

where ^(z) = z" + a ^ " - 1 + ... + a„ is the characteristic polynomial of the given 
system. 

Example. As an illustrative example consider again the system 

A = 0 1 0 
0 0 1 
0-3679 -1-5809 2-2130 

b = 

c = [0-0792 0-4094 0-1306] , d = [0] . 

To compute/we extra need the vectors 

0 , R'r~' = " 168-6425 
0-2071 -57-6045 
1 19-6764 

In the light of the previous computations we can write 

= 2-7183 4-8286 168-6425" 
0 - 1 -57-6045 
0 0-2071 19-6764 

Y = 0 0 0 
0 0 0-2071 
0 0 1 

and 

P = YX"1 = 0 0 0 
0 0-0055 0-0267 
0 00267 01290 

Therefore (31) results in 

/ = [ - 0 - 3 6 7 9 1-5101 - 2 - 7 6 1 7 ] . 

The same formula is obtained by invoking the pole assignment technique for 

\jj(z) = z(z + 0-2071) (z + 0-3416) = z 3 + 0-5487z2 + 0-0708z . 



CONCLUSIONS 

In this paper a unified state space approach to the synthesis of the time-optimal 

and quadratic-cost controls has been established. In either case the "state" problem 

has been reviewed and the "output" problem posed and completely solved. Illustrative 

examples have been included to help the reader. 

The highlight of the paper is the state space theory of the "output" problems. This 

theory is limited to single-input single-output systems. This is mostly due to the inverse 

system problem, which becomes very involved for multivariable systems and has not 

been completely solved yet. 

It should be emphasized that the entire state of the system is needed to generate 

the optimal control, even in the "output" problems. 

Throughout the paper the following important idea accompanies the theory, 

optimality does not necessarily imply stability. As a matter of fact, certain measures 

had to be taken to ensure stability. 

Last but not least, the pole assignment method is briefly discussed for each problem. 

Acknowledgement. The author is very thankful to Ing. A. Halouskova, CSc. for her com­
ments and stimulating discussions. 
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Syntéza diskrétního lineárního řízení metodou stavového prostoru 

VLADIMÍR KUČERA 

V článku je formulován diskrétní časově optimální problém (konečný počet kroků 

regulace) i problém syntézy diskrétního řízení podle kvadratického kritéria ve stavo­

vém prostoru. Jsou shrnuty známé poznatky a poprvé jsou ve stavovém prostoru 

systematicky zkoumány úlohy zahrnující výstup soustavy. Je dáno jednotné a kom­

pletní řešení pro jednoparametrové obvody. Metoda přiřazení pólů umožňuje jednak 

účinnou syntézu optimálního obvodu, a jednak srovnání s klasickým řešením užíva­

jícím z-transformace. 
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