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On Discrete Channels Decomposable into 
Memoryless Components 

KAREL WINKELBAUER 

The concept of £-capacity as developed by the author in [6], is studied here for the case of dis
crete channels which may be decomposed into a finite number of memoryless components: the 
entire paper is devoted to the statement and proof of the theorem on the existence of e-capacity 
for channels of the type described. The important difference between this paper and [6] is that we 
do not restrict ourselves here to regular cases (cf. [7]) as was done in [6], 

To explain the result established in this paper, let us suppose that we are given 
a discrete channel having exactly two distinct components, the components to be 
memoryless channels in the usual sense. If we denote the component channels by 
v l, v2, and the composed channel by v, we can express the way in which the channel v 
may be decomposed, symbolically by the relation v = ^v1 + (l — £) v2, where the 
probabilities £ and 1 — £ represent the rates of influence of the components in the 
noise arising during transmission of information over the composed channel. 

Let us denote the capacities of the component channels by C1, C2, and let the 
symbol Sn(s) designate the maximum length of those n-dimensional codes (in the sense 
of Wolfowitz; cf. [9]) which discern w-dimensional input sequences with probability 
of error not exceeding £ (0 < £ < 1). Up to now it is only known (as to the knowledge 
of the author) that the maximum length just mentioned lies in the interval 

2"<V-A> < 5„(£) < 2"(U+A> 

for X positive and arbitrarily small, and for n sufficiently large, where the bounds V, U 
are given by 

U = max(C\C2), r Ҷ - 1 + J - p 

the lower bound is due to Nedoma (cf. [4]), the upper bound being evident (cf. [6]). 
In this paper we shall state and prove the theorem that, for every £ except at most 



£ = £, or E = 1 — 4', there is a number C6 (s-capacity of the composed channel) US 
such that 

2n(C£-A) < s ^ < 2„(C e +A) 

for A arbitrarily small and n sufficiently large. Moreover, it may be shown that Ce 

equals exactly the maximum of £-quantiles associated with the parameter family of 
transmission rates of the component channels fed by independent stationary inputs 
(playing the role of parameters), the transmission rates taken as random variables 
with probability distributions determined by the probability vector (£,, 1 — £); cf. 
the theorem in Sec. 1. 

The theorem on the existence of £-capacity will, of course, be stated for discrete 
channels with any finite number of memoryless components. Moreover, we shall 
first restrict ourselves to the non-singular case described as such that all the transition 
probabilities which determine the component memoryless channels are positive, the 
general case being postponed to another paper since it requires a refinement of the 
methods of proof used below. 
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1. THE THEOREM 

Let us begin with some remarks on terminology and notations. As usual, the letter / 
designates the set of all integers. Given a finite non-empty set M, the symbol M1 

represents the space of doubly-infinite sequences £ = {C;};e/ = {Ci}t™-ao of mem
bers Ct lying in M. Similarly, M" is the space of n-dimensional sequences z = {z;}"Io» 
where zteM (i = 0, 1, . . . , n — 1; n = 1, 2, . . . ) . In accordance with [6] we shall set 

(1.1) [z] = { £ : { e M J , {£,}--> = z } for z e M". 

If Tu means the shift of the space M1 defined by the property that (TMC); = C. + i 
for i el, £ e M f , then the symbol FM will be employed to denote the tr-algebra of 
subsets of M1 which is generated by the class of all sets of the form Tj\f[z] where 
z e M", i el (n = 1,2,...). Finally, by a probability M-vector we shall mean a family 
p = {p(m)}meM of non-negative numbers p(m) which add to one. 

As in [6] we shall assume throughout the whole paper that we are given two (not 
necessarily distinct) finite non-empty sets A and B called alphabets, viz. A the output 
alphabet, and B the input alphabet. Elements of A1 and A", respectively, may be 



--* referred to as output sequences, and elements of B1 and B", respectively, as input 
sequences. 

In what follows we shall associate with any probability B-vector p = {p(b)}blsB 

a probability measure / j p uniquely determined on FB by the condition that 

(1.2) Hp(n[y]) = Tip(yj) for iel, yeB" („ « 1,2,...). 
j = o 

Let us put (cf. (1.1)) 

(1.3) n[F] = £ fi[y] for F c B", p = /." , p e P , 
yeF 

P = {p : p is a probability B-vector} ; 

i.e. throughout the entire paper the set of all probability B-vectors is designated by P. 
Following the terminology introduced in [3], we shall mean by a discrete channel 

a family v = {v„},eBi of probability measures v„ defined on the measurable (sample) 
space (A1, FA) which satisfy conditions 

(1.4) VTJTAE) = v„(£) for r, e B1, EeFA, 

V M = V - W for "> n' e [ y ] = x e A", y e £ " (n = 1, 2, ...) ; 

cf. (1.1). For such a channel we shall set 

(1.5) v [ E | y ] = j > [ x | ^ ] , v [ x | y ] = v,[x] 

where n e [ v] , E cz A", x e A", v e B" . 

Let us mention that the notion of discrete channel just stated coincides with that of 
stationary historyless channel (i.e. a stationary channel with zero past history; cf. 
[6]) as defined in [5]. 

In this paper we shall sometimes make use of the following notation: if M is a finite 
set, then the symbol n(M) means: 

(1.6) TC(M) = the number of elements in M ; 

cf. [5], [6]. The latter notation may especially be used to denote the length of a code. 
Let us recall that an n-dimensional code as defined by Wolfowitz in [9], Chapter 3, is 
a family {Q(y)}y£Y of mutually disjoint sets Q(y), Q(y) <= A", with parameter set 
Y c B"; the length of the Code is defined as the number 7r(Y). 

Given a discrete channel v and e (0 < e < l), we shall say that a set Yc B" is 
B-discernible (weakly s-discernible) for v if there is an n-dimensional code {Q(y)}yeY 

with the set of parameters equal to Yand such that 

v [ e M \y]>i-e (v[Q(y) \y] = l-e) for all yeY. 



Then the number S„(e, v) [and S„(e, v), respectively] defined as the maximum 

(1.7) S„(e, V) = max {n(Y) : Y c Bn, Yis e-discernible for v} 

[S„(e, v) = max {7t(Y) :Y <= B", Y weakly £-discernible for v}] 

represents the maximum length of those n-dimensional codes which discern n-
dimensional input sequences with probability of error less than s [and < e, respecti
vely]; as to the notion of e-discernibility cf. also [2]. 

In the sequel a discrete channel v is said to be decomposable into (a finite number 
of) memoryless components if there are a finite number, say k, of mutually distinct 
discrete channels v" and positive numbers £, (a = 1,2, ..., k) which add to one so that 
conditions (cf. (1.4), (1.5)) 

k 

(1.8) vn(E) = X C"X(£) > symbolically v = X£av"; 
<z = 1 

vM = nV[^U/]; *= 1,2,...,* 
; = o 

are satisfied for any E e FA, n e B1, x e A" (n = 1, 2, . . . ) ; of course, v" are memoryless 
channels in the usual sense (as to the notations used above cf. [8]). The latter channel 
will be called non-singular if 

(1.9) vfa\b] > 0 forall aeA, beB (a = 1, 2, ..., k). 

As mentioned in the introductory part, we want to deal in this paper only with non-
singular channels which yield from the point of view of the problem to be solved the 
fewest technical difficulties. Nevertheless, the problem of the existence of s-capacity 
has a positive answer also in singular cases, which will be shown in a paper to follow. 

Given v = Z£„va, let us set 

(1.10) ^(p) = ̂ (p;v)= I ^a\b]p{b)log2—^\\^ 
asA,bsB 2_, V la | ° J P\° ) 

b'eB 

for peP (a = 1,2, . . . ,fe). 

Then the supremum of infima 

( l . i l ) r{e, v) = suppeP inf {. : £{<x : 0ta(p; v) S t} ̂  9} , 0 < 6 S 1 , 

represents the maximum of the (lower) 0-quantiles of the family {^XP)}P^P of random 
variables (cf. [7]) on the probability space ({1, 2, ..., /<}, A, £), where 

(1.12) A = {st:^ cz{l,2,...,k}}, £(.-/) = £ £ „ for s4 e A 



(i.e. measure £, is determined by the probability vector {£„}*=«.), and where Si2a(p) are 
the (transmission) rates of the (memoryless) components v" taken with respect to 
inputs /.'(cf. (1.2), (1.3)). 

Denoting by Av the (necessarily finite; cf. also Lemma 3 in Sec. 3 below) set of 
discontinuity points of function r(6, v), in symbols 

(1.13) Av = {e : r(e, v) < r(e + 0, v)} c {^) : r f e A } , 

we are prepared to state the main theorem of this paper. 

Theorem on e-Capacity. Let v be a discrete channel which is decomposable into 
memoryless components and non-singular (i.e. of the form v = Z£xv

x; cf. (1.8), (1.9)). 
Then the limit 

(1A4) C£ = C£(v) = lim (1/n) log2 S„(e, v) 

[cf. (1.7)] exists at least for all e ̂  Av (0 < e < 1), i.e. except at most a finite number 
of e's of the form e = £,(d), J& e A (cf. (1.12)), and equals the supremal s-quantile 
r(e, v), in symbols: 

(1.15) C£(v) = r(e, v) , 0 < e < 1 , e f Av [cf. ( l . l l ) ] . 

More precisely, let e, 0 < e < 1, e $ Av, be arbitrary; then there are positive con
stants Ke, K'e such that for any n(n = 1,2,...) 

(1.16) 2-.C-K.V" < Sn(£> v) < S n( 8 ; v) < 2 » c + w » . 

Hence 

(1-17) Ce(v) = lim (1/n) log2 S„(e, v) for e £ Av. 

Remark. Explicit expressions for the constants Ke, K'e are given in Sec. 3 below; 
cf. (3.13) and (3.14), respectively. The theorem may be restated in Wolfowitz's 
terms (cf. [9]) as follows: for e such that e f Av (0 < e < 1) there exist positive con
stants Ke, K'e having the property that for any n there is a code (n, N, s) with JV > 
> exp2 (nCe — K'e , /n), and there does not exist a code (n, N, e) satisfying 

N > exp2 (nCe + Ke ^Jn). 

The subsequent two sections contain a group of lemmas and theorems the proof 
of the main theorem is based upon. 

2. BASIC LEMMATA 

In this section we shall prove two lemmas which will play a fundamental role in 
deriving the upper and the lower bounds for the maximum length of w-dimensional 



K-codes. To do it, we shall need some additional notations. First we shall set (cf. 119 
(1.6)): 

(2.1) d = max (71(A), 71(B)) , N(a, b\x,y) = n{i : xt = a, yt = b} , 

N(a I x) = n{i : xt = a} = £ N(a, b I x, y), N(b I y) = n{i : yt = b (0 g i < n)} 
beB 

for as A, beB, x e A", y e B" (n = 1, 2, . . . ) . 

Following Wolfowitz (cf. [9], Chapter 2), we shall call an n-dimensional input 
sequence y e B" a p-sequence if 

\N(b I y) - np(b)\ < 2d1/2a(b; p) n1'2 for all beB 

where a(b; p) = [p(b) (I - p(b))]U2 , peP (cf. (1.3)). 

Furthermore we shall make use of the subsequent notations: 

(2.2) Fn(p) = {y : y e B", y is a p-sequence} , 

Po = mm {p(b): be Bp}, Bp = {b : p(b) > 0} for peP. 

An application of Chebyshev's inequality yields the relation (cf. (1.2)) 

(2.3) ^(p)] > I for peP (n -= 1, 2, . . . ) . 

If v is a discrete channel, and if p e P, we shall put (compare with (1.7)) 

(2.4) 5*(e, vfi") = max {7r(Y) : Y c Fn(p), Yis e-discernible for v} , 0 < e < 1 ; 

(2.5) 7„(xv; vp) = (l/n) log2 (v[x | y ] / ( £ , « - v[x | y'] fi[y'])) 

for x e A", v e B" (n = 1 ,2, . . . ) , /t = n" (cf. (1.5)) . 

Throughout the remainder of this section we shall suppose that we are given a non-
singular decomposable discrete channel v with k distinct memoryless components va, 
i.e. v = E^v", where {£a}*=i is a probability vector having positive components 
(cf. (1.8)); let us set (cf. (1.9)) 

(2.6) t0 = min {, > 0 , 
l g d g * 

w0 = min {v"[a \b]:ae A, b e B, a = 1, 2, ..., fc} > 0 . 

An n-dimensional output sequence x e A" is said to be u-generated by an input 
sequence y e B" (compare with [9], Chapter 2) with error less than e' (0 < ?! < 1) 
if(cf.(2.l)) 

\N(a,b\x,y) - v\a\b\N(b\y)\ < 

< d(e')-1'2aXa\b)[N(b\y)f'2 for all aeA, beB 

where a,(a | b) = (v°[a | 6] (1 - v"[a | b]))1/2 ; a = 1, 2 , . . . , k. 



120 Putting for « = 1, 2 , . . . , k, 0 < e' < 1, y e Bn (n = 1, 2, . . .) 

(2.7) rl(y; e') = {x : x e A", x is a-generated by y with error < e'} , 

we easily find by making use of Chebyshev's inequality that (cf. (1-5)) 

(2.8) v*[r„(y;s')\y]>\ - s' ; 

the latter fact justifies the above terminology. On the other hand, it follows directly 
from the definition of p-sequence and of generated input sequences that the number 
(cf. (2.1)) 

(2.9) (ijn) N(a, b | x, y) lies inside the bounds 

v"[a | b] p(b) ± 4d2(s')-112 i r 1 / 2 ( V [ - | b] p(b)y<* 

for any a e A , beBp, xe r„(y; e') , ye F„(p), peP , 0 < e' < 1 , 

a = l,2,.,.,k; n = 1,2,. . . ; 

cf. (1.9), (2.2), (2.7). 
In what follows we shall associate with any $f e A, si # 0 (cf. (1.12 ), the decom

posable channel v^ defined symbolically by 

(2.10) v^ = £ [ ^ ( ^ ) ] v « (cf. (1.8)). 

ae../ 

Let us put for y e B", 0 < s' < 1 

(2-11) r?(y;s') = Vrn(y;s') [cf. (2.7)] . 
For the rest of this section we shall make the assumption that we are given a pro

bability B-vector p; all the considerations and notations to follow will be in connection 
with the latter p fixed; especially, we shall set (cf. (1.2)) 

(2.12) u = ^ ; a / T x ] = £ v^[x | y] »[y] , 
yefl" 

to*[E] = £ w*[x] for E cz A" , x e A", 
yeE 

si e A(stl + 0) ; of = co{x) , a = 1, 2, ..., k . 

It may be shown by making use of (2.9) [and (2.1)] that 

(2.13) (1/n) N(a \ x) belongs to the open interval having bounds 

co"[a] ± 4d3(e')~112 n-ll2(co*[a])1/4 

for any a € A (cf. (1.9)), x e rjj; e') , 0 < &' < 1 , a = 1, 2 , . . . . k 



where y is any n-dimensional p-sequence (n = 1, 2, . . . ) ; as to deriving the bounds 1-i 
cf. also [9], Chapter 2. 

Before stating the first of the lemmas mentioned above, let us remind a well-known 
inequality 

(2.14) £ r i l o g ^ ( r 1 + . . . + rm) log .r> + 
и, + ... + u„ 

valid for any r ( ^ 0, ut _ 0 (i = 1, ..., m) of which we shall make use in the proof 
of the lemma (cf. [1], Sec. 2). 

A very important result known for memoryless channels upon which the second 
part of the proof of the first lemma is basing, may be reformulated in our terms as 
follows (cf. (1.10), (2.5)): If y e B" is a p-sequence, and if x is an n-dimensional output 
sequence a-generated by y with error < e' (0 < e' < 1) then 

(2.15) Ia(xy;vcc[it') lies between the bounds 

mx(p) + 32d4(e')-l/2n-l/z; » = 1, 2, ..., k ( n = l , 2 , . . . ) ; 

the latter fact is a combination of the inequalities stated in Lemma 2.L3 and Lemma 
2.L5 of [9] together with relations 

max i( —log2 t) = e _ 1 log2 e < 1 , 
0 < l g l 

where e is the base of natural logarithms. 

Lemma 1. Let E' (0 < E' < 1), stf(s4 e A, si + 0), n (n = 1, 2, ...) be arbitrary, 
let uesi, and let y be an n-dimensional p-sequence. Then the inequalities (cf. 
(1.10), (2.5), (2.10)) 

(2.16) ®x(p) - Xn < In(xy; v V ) < ®iv) + K 

are satisfied for any n-dimensional output sequence x which is u-generated by the 

input sequence y with error < s' (i.e. for any x e Tt(y', E'); cf. (2.7)) provided that 

(2.17) Xn = A„(£') = (1 /B) log2 (2/cio) + Kjyfn , 

K = K(E') = 36d4Wo V ) - 1 ' 2 [cf. (2.6)] 

so that quantity Xn is independent of p, M', u, y, and x. 

Corollary. / / e' (0 < s' < 1), si (si e A, si #= 0), " (n = 1, 2, . . . ) , yeFn(p) 

[cf. (2.2)] are chosen arbitrarily then 

(2.18) min 0ta(p) - Xn < In(xy; v V ) < max ma(p) + k„ 
(test xesf 

for any x e rf (y; E') [cf. (2.11)] . 



122 Proof. Let us suppose that the quantities e', s4, a, n, y, x such that satisfy the 
assumptions of the lemma, are given and kept fixed during the proof. Then we shall 
make use of the abbreviations (cf. (2A2)) 

(1) I„=I„(xy;v^n"), I„=In(xy;v^), I? - E ^ , 

v5' = v^[x | y] , v" = va[x | y] , co<* = co*[x] , co" = G/[X] , 

v" = v"[x | y] , co" = o)"[x] for /Jerf. 

According to (2.5), (2.10), (1.12), and (2.12) we obtain that 

exp2 (n7„) = *— => exp2 (n/a) Ç.« 

É.У 

so that the inequalities 

(2) exp2 (n/„) g |~1 + S^a(^/c:a) -£"| exp2 (nl*) , 

exp2 (n/„) >= f l + T.%j£f\Q—a 1 exp2 (n/a) 

must hold. 
Given /? 4= a (j3 e .-/), let us assume that v"[a \ b] 4= v*[a | b] for some a e A, 

b e Bp; cf. (2.2). Since 

•t. n (fjaf'""', 
Va aeA,beB \ V [ a | O j / 

and since by assumption x e ra(y; e') where y e F„(p), we obtain by (2.9) that 

- 0/») log, ^ > I Kl>) I va[« | 6] log2 ^ f 4 S " 
vp[a J b j V ЬєB aєЛ 

- 4 d 2 ( г ' ) - 1 / z n - 1 / 2 X (va[a | b] p(b))1/4 

яє.4 ,ЬєBp 
log 2 

v a [ a | b ] 

vß[a | b ] 

On the one hand, 

E v a [ a | b ] l o g 2 4 H - T ^ ° f o r a 1 1 b e B 

aeA VP[a I fej 

according to (2.14), on the other hand, 

|log2 (v*[a | b]jvl>[a | b])\ ^ log2 (l/w0) ^ l/w0 



(cf. (1.9)) as follows from (2.6) so that (cf. (2.1)) 

(3) - (1/n) log2 (v»/v*) > - K 0 n - 1 / 2 , i.e. v"/v« < exp2 (K0n
m) 

for K0 = 4d 4 w 0
1 (e ' ) - 1 / 2 ; 

the latter inequalities remain true also in case vp[ | fc] = v"[ j b] for all b e Bp 

because then v" = v* (K0 > l). 
Proceeding in a similar way in case a / 4= of, we get by making use of the relation 

G/ = n faf[a^maix) 

of OBA \co"[a]; 

and of (2.13) that 

1 i <°f v „r -i, £«a[a] - - log2 — > V, ©-[a] log2 - L i 
n ar aeA a> p[aJ 

-4d 3 ( Є ' ) - 1 / 2 n- 1 / 2 X(ш"[a]) 1 / 4 
Ю " M 
o/[a] 

Since o/[a] > w0 for any a e A, Pes/ as follows from (2.12), (1.9), and (2.6), we 
may assert that 

| l o g 2 ( a , t a ] K [ f l ] ) | < l o g 2 ^ g i . 

123 

So a similar argument as above (cf. (2.14)) yields the inequality 

(4) - (1/n) log2 (w^ar) > -K0n~112 , i.e. a//©' < exp2 (K0n
1/2) 

remaining in power also for a/ = of. 
Now combining (2) with (3) and (4), respectively, we immediately find that 

(5) 

Since 

exp2 (nl„) < [1 + ( l / í 0 ) 2*Wn] exp2 (nK), 

exp2 (nl„) > [1 + (1/tío) I^У1 exp 2 (nlt) • 

1 + ( l / ^ 0 ) 2 f ^ < ( 2 / c 0 ) 2 K ^ , 

we obtain from (5) the inequalities 

(6) /„ < n + (l/«) log2 (2/5o) + *o/V« -

I„ > r„ - (1/n) log2 (2/50) - X0/Vn . 

The last step to do is to apply (2.15) and replace J," by its bounds: by doing that we get 

the desired inequalities (2.16) where 1„ satisfies (2.17), Q.E.D. 



124 Remark. Let us emphasize that in general case, if (1.9) is not satisfied, the argument 
used in deriving (4) is not more true because we can assert only that cop[a] ^ w0p0 

[cf. (2.2)], where w0 is the minimum taken over positive vp[a | b]; hence, in general, 
the lower bound for /„ [cf. (1) above] is (and must be) substantially dependent on the 
probability vector p. 

Lemma 2. Let e (0 < e < 1), $4 (sf e A, st 4= 0), n (n = 1, 2, ...) be arbitrary; 
then (cf. (2.4), (2.10), (1.10)) 

(2.19) (1/n) log2 S*(e, v V ) < max @Xp) + (l/n) log2 (t - e - e')~l + X„(e') 
aejrf 

for 0 < e' < 1 — e , 

(2.20) (l/n) log2 S*(e, v V ) > m i n -*«0>) ~ C1/") log2 ~ ^ W) 
ocejaT £ — £ ' 

for 0 < e' < £ , 

where A„(e') is aiuen hy (2A7). Especially, 

(2.21) £ exp2 ( n [V - A„ ( ^ ) ] ) < S*(E, v V ) < - - ~ exp2 (n [V + A„ ( ~ - p ) ] ) 

where r' = min ^ a ( p ) , r = max ^ a(p) . 

Proof. Let us suppose e, s4, n to be given and fixed. Then (2.8) together with (2.10) 
imply that 

(2.22) v"[rf(y;e')\y]> 1 - e' 

for any y e B", 0 < e' < I. Given £', let us set 

(1) r(y) = rf(y;e'). 

I. Let us assume first that e' < 1 — e. Let (oXy)}^ be an n-dimensional code such 
that y <r F = E„(p), yis E-discernible for v^, and 

(2) n(Y) = S = S*(E, v V ) ; 

the existence of such a code is guaranteed by (2.4) [cf. also (2.3)]. If E(y) = Q(y) n 
n r(}>), it follows from (2.22), (1), and from E-discernibility of Ythat 

(3) v"\E(y) | >•] > 1 - e - £' for all y e Y. 

If x e E(y), y eY then x e T( y), y e F (i.e. x e T^y; e') for some ae s/, y e F„(p)) so 
that Lemma 1 (cf. Corollary) may be applied: it follows from (2.18) and (2.5) that 

v"[x | y] < 2neco^[x] , Q - r + X„ (cf. (2.21)) , 

i.e. ei<v«[E(y)[y]<2«*0>«[E(y)], yeY 



for £! = ! — £ — £'; cf. (3). Since E(y) are mutually disjoint, we obtain from the latter 125 
inequalities according to (2) that 

S£, < 2"cco^[ U E(yJ] < 2"e, i.e. S < (l/«.) 2"«, 

which shows the validity of (2A9). 
II. Now we shall assume that e' < s. Let us construct a code {Q(y)}yEY

 s u c n t n a t 

(4) Y={y\ . . . , / } c F , S = 7x(Y), F = rB(y), 

v"[aM | y] > i - H , e(y) = T(y) - u r(/). ; = 1, • •., s, 
r = l 

s 
v"[r(y) - U r(yJ') | y] < 1 - £ for all y e F , 

J = I 

where T(_v) is defined by (1); the existence of a non-empty set Ysatisfying conditions 
(4) follows from (2.22) because s' < s, and from (2.3) which shows that F is not empty. 
An easy calculation yields the inequalities (cf. (2.12), (2.22)) 

(l - £') tfF] - «^[ U Q(yJ)] < I v"[r(y) - U Q(yJ) | y] n[y] < (l - a) tfF] , 
j = l yeF j = l 

i.e. J(£ - £') < (£ - E') /i[E] < <*>•"[ U Q(y3)] 
J = l 

as follows from (2.3). Another application of the corollary to Lemma 1 will yield the 
inequalities 

r°'a>«lQ{yJ)] < v*[Q(y'-) | y*] < 1 , j - 1, 2 , . . . . S , 

where g' = r' - An [cf. (2.21)] 

so that from the disjointness of Q(yJ) and from above it will follow that 

i(£-£')<«/T.ue(y)] <2-"<\s, 
J = I 

i.e. i(£ - £') 2"e' < S < S*(s, v*n") , 

by which the validity of (2.20) is verified. 
The inequalities given in (2.1) are easily obtained from (2.19) and (2.20) by setting 

s' = $(1 — E) and s' = \s, respectively, which concludes the proof. 

3. THE UPPER AND THE LOWER BOUNDS 

In this section we shall establish the validity of all the assertions that are stated in 
the theorem on £-capacity. We shall first deal with the problem of deriving the upper 



J26 and the lower bounds for the maximum length of n-dimensional £-codes for £ given. 
In what follows we shall need some other notations, viz. (cf. (1A0), (1A1)) 

(3.1) Ae = {si : si e A, £(.-/) ^ 9} , 0 < 0 < 1 [cf. (1.12)] ; 

(3.2) r'(e, v) = sup^p sup {r : £{a : ®s(p; v) ^ t} ^ 1 - 9} , 0 ^ 0 < 1 , 

the latter for v decomposable into memoryless components. If r'(6, v) is compared 
with r(9, v), it is immediately seen that r'(9, v) represents the maximum of the upper 
0-quantiles of the family {^?a(jp)}pEp taken with respect to the probability distribution c, 
for v given; the fact that either of the supremal quantiles r(6, v) and r'(9, v) is a maxi
mum, will be proved in the following 

Lemma 3. The quantile functions r( , v) and r'( , v) are both monotonically 
increasing, r( , v) is continuous from the left, and 

r'(9 - 0, v) = r(9, v) < r'(9, v) for 0 < 9 < 1 . 

Both the quantile functions have the same set of discontinuities Av (cf. (1A3)), 

(3.3) r'(s, v) = r(£, v) for e$Av, 0 < e < 1 , 

and may be expressed in the form (cf. (3A)) 

(3.4) r(9, v) = max^p m i n ^ ^ maxaejrf &J(p) , 0 < 0 ^ 1 ; 

r'(9, v) = m a x ^ m a x , ^ , . , rnin^.^ @x(p), 0 < 6 < ] . 

Proof. The first part of the lemma up to (3.3) is an immediate consequence of the 
quantile character of both quantities; cf. Lemma 3.5 in [7], and more details in [6], 
Lemma 3.5. It remains to prove formulas (3.4). In either formula in (3.4) the maximum 
exists because Mx(p) is a continuous function of parameter p if P is imbedded in 
7i(B)-dimensional Euclidean space (cf. (1A0)). Then the first formula easily follows 
from definition (1.11) and from the relation 

{t : c{a : @a(p) g t} ^ 9} = (J (t : max <Ma(p) = <} • 

Similarly, the second formula is a consequence of definition (3.2) and of a relation 
which is dual to the latter with 9 replaced by 1 — 0. 

• Theorem 1. If v is a discrete channel which is decomposable and non-singular, 
v = X^v* with memoryless components, then for any n (n = 1, 2, ...) and e (0 < 



< e < 1) the inequality [cf. (1.7), (1.11)] 

(3.5) (1 jn) log2 S„(e, v) < r(8, v) + A„(e') + 

+ (1/„),og ^ +„15Mi!Lti> 
1 - (sjQ) - s n 

holds for every 0 such that e < 6 < 1, and for any e', 0 < e' < 1 — (ej6), where 
A„(e') /s defined by (2.17); especially, 

(3.6) S„(e, v) < - H L („ + 1)< e X p 2 ( „ [r(0, v) + A„ ( — - ? ) ] ) 

/o r e < 0 < 1 . 

Proof. First we shall introduce some more notations which will be employed in 
the proof. Given n, let us set 

(1) P„ = {p : p e P, np(b) is an integer for every b e B} . 

Given e, let {Q(j')}y£y be an n-dimensional code such that Yis e-discernible for v(Yc 
<= B"), and 

(2) n(Y) = S = S„(e, v) ; 

such a code exists by definition (1.7). Setting (cf. (2.1)) 

(3) Yp = {y : y e Y, N(b \ y) = np(b) for every ft e B} , peP„, 

we conclude from the disjointness of the family Yp (p e P„) that 

(4) S-^XY,). 
peP„ 

Given d > e, let us fix p e P„ and take s4 e Ag such that (cf. (3.1)) 

(5) r = max @a(p) = min max 3$a(p) . 

Then it follows from e-discernihility of Yfor v and from relation $4 e A9 which implies 
^ 0, that 

'[Q(y)\y]^[^)]-im(y)\yl-ZQ > 

> - Ц ( l - £ - [ l - W ] ) = l - i ^ - : 

for any y e Y, especially for any y 6 Yp. However, Yp c F„(p) as follows from (3) and 



1-8 (2.2), so we have found that (cf. (2.4)) 

7r(Yp)gS„*(a/0,vV)-

Given e' < 1 — (sj9) [e' > 0], we obtain by making use of Lemma 2 and of the latter 
inequality that 

jr(Yp) < ( l / £ l ) 2"(r+A) where £ l = 1 - (ej9) - s', X = A„(e') ; 

cf. (2.19), (2.21), (5), (2.17). Lemma 3 shows that r S r(6, v) [cf. (3.4), (5)] so that 
we may assert that 

n(Yp) < ( l / e . ) 2"* for any p e Pn [cf. (l)] , 

where Q = r(9, v) + X„(s') . 

From here and from (4) we immediately conclude that 

S < - & - 2 « . 

As easily follows from definition (1), n(P„) ^ (n + l)d so that 

S < (n + If (l/£l) 2"e . 

The latter inequality is, by (2), equivalent to the desired result stated in (3.5). The 
inequality in (3.6) is easily obtained by setting s' = (9 — s)j29, which is in accordance 
with (2.21). This concludes the proof. 

Theorem 2. If v is a discrete channel which is decomposable and non-singular, 
v = I ^ v " with memoryless components, then for any n (n = 1, 2, . . . ) and s (0 < 
< s < 1) the inequality [cf. (1.7), (3.2)] 

(3.7); (l/„) log2 S„(£, v) > r'(6', v) - Xn(s') - (l/«) log2 ± ; 

8 — 9 — e 

holds for every 9' such that 0 <. 9' < s, and for any s', s' < s — 9', where l„(fi') is 
defined by (2.17); especially, 

(3.8) S„(£, v) > L l l e X p 2 fn \r'(9', v) - Xn f t ^ \ \ for 0 <. 9' < E . 

Proof. Given n, e, and 9' < s(9' ^ 0), let us choose peP and s4 e A' such that 
A' = / . ( 1 - n [cf. (3.1)], 

(1) r' = min @a(p) = max^p | i^,eA, min MJ^p) = r'(0', v) ; 



the existence of such a pair p, s4 is guaranteed by Lemma 3. Now let us construct an 1-9 
n-dimensional code {Q(y)}yeY having the property that Y<= Fn(p) [cf. (2.2)], Y is 
£2-discernible for Vs* (where £2 = e - 0'), and [cf. (2.4)] 

(2) K(Y) = S*(e2, v V ) . e2 = e-9' . 

Making use of that si & A' so that £,(s4) > 1 — 0', and of definition (2.10) of v"**, 
we obtain the inequalities 

v[QG01)'] = &*) v*[Q(y) | y] > (1 - 0') (l - 62) > l - e 

valid for any every >> e Y; so we have found that [cf. (1.7)] 

(3) K(Y)^Sn(e,v). 

Now applying Lemma 2 to get a lower bound for S*(E2 , V**HP), we conclude by taking 
into account (l), (2), and (3) that 

S„(s, v) > -2-ZJL 2<r'-k) where X = Xn(e'), 0 < e' < e2 

[cf. (2.20), (2.21)], which gives an equivalent form of the desired inequality (3.7). 
The special case given in (3.8) corresponds to the lower bound stated in (2.21) with £ 
replaced by £ — 0', Q.E.D. 

As a consequence of the validity of the assertions stated in both theorems of this 
section we shall prove the following 

Corollary. Let v be a discrete channel which is decomposable into memoryless 
components and non-singular, i.e. v = ~L£xv

x; then for every e such that 0 < e < 1, 
e$Av (cf. (1.13)), there is a positive constant dc not exceeding e and having the 
property that, for any n — 1, 2, ,.., the inequalities (cf. (1.7), (1.11)) 

(3.9) K o 4 exp2 (nr(e, v) - n1'2 K(S,)) < Sn(e, v) < 

< — exp2 (nr(e, v) + n1/2[d log2 e + K(Se)]) 

hold with £,0 expressed as minimum of %a by (2.6), where e is the base of natural 
logarithms, and where K as a function of parameter e' is expressed by formula 
(2.17), i.e. 

(3-10) ^ ) = ~ 3 6 ^ " 

The constant 5e may be chosen as 

(3.11) 8C m $ min {|£(j/) - e| : st e A, Z(sJ) * E} . 



130 Proof. Defining <5 = <5£ by (3.11), we immediately find that <5 < I min (e, 1 — e) 
so that Theorem 1 and Theorem 2 may be applied to 9 = e + 2<5 and 6' = e — 2<5, 
respectively. Replacing X„ in formulas (3.6) and (3.8) by its expression according to 
(2.17), and making use of the inequality n + 1 < ev", we obtain the bounds, for n 
given arbitrarily, in the form 

Hot exp2 \nr'(E - 2<5, v) - n1'2 K(S)] < S„(E, V) < 

< — (e + 2,5) edV" exp2 \nr(e + 25) + n112 K(—^-~ ] 
£0<5 L \s + 25Jm 

On the other hand, it follows from the definition of <5 that the open interval (e — 45, 
e + 4<5) does not contain any £(##) =t= e where s£ e A; hence we conclude according 
to (3.1) that 

Ae = A£ for e — 4<5 < 6 < e + 4<5, 

because in the latter case £(•&) ^ 6 implies £(s#) = e + 4<5. The relation just estab
lished together with those given in Lemma 3 show that [cf. (3.4), and also (3.3)] 

(3.12) r(e - 45 + 0, v) = r(e + 45, v) , 

and then r'(e - 25, v) = r(e, v) = r(e + 25, v). Now the desired inequalities (3.9) 
follow from those given above and from that e + 2<5 < 1, and that K is a decreasing 
function of its parameter. 

Remark. The latter considerations also show that the inclusion given in (1.13) 
must be valid; cf. (3.12). In other words, if e does not belong to the set {£(.«/) : #/ eA}, 
then it is a continuity point of the quantile function r( , v), i.e. r(e + 0, v) = r(s, v). 
Let us point out that it may happen that a continuity point of r( , v) is of the form 
e = £(#/); for example, this is the case if v is a channel with memoryless components 
which is regularly decomposable in the sense of [7], and which, at the same time, has 
the property that all the component channels possess the same capacity; then all e 
lying between 0 and 1 are points of continuity as follows from the main theorem of [6]. 

P r o o f of the t h e o r e m on e-capacity. Under the assumptions of the theorem 
as stated in Section 1, we may apply the preceding corollary to any e $ Av and conclude 
that the limit C£(v) expressed by (1.14) equals the supremal quantile r(e, v) as stated 
in (1.15). 

To show the validity of (1.16), let us take e fixed and put A = <5£ where 5C is defined 
by (3.11). Applying the corollary to e + A, we obtain the inequality 

S„(s + A, v) < - ? - exp2 (nr(E, v) + n1/2[d log2 e + K($A]) 
ZoA 

because 5 § \A for <5 = <5£+J (cf. (3.U)), as follows from the definitions of both the 



latter constants, from (3.12) with <5 replaced by A, and from the fact that if s 4= £{s?) 1 3 1 

for all stf e A, 

4<5 = min \£(s/) - (e + A)\ ^ min \%(sf) - e\ - A = 3A , 
si si 

and that 5 = \A if e = £,($#) for some srf e A. Setting 

(3.13) K, = K(i<5E) + log2 — + 5d, 
Co4 

KE = K(<5£) + log2 — + 2 [cf. (3+0), (3.11), (2.6)] , 
C"o4 

and making use of the inequalities 

S„(6, v) ^ S„(e + A, v), log, e ^ 2 , 3 < 3d , 

we get from (3.9) and from above that 

r(e, v) - n-ll2K'E < - log2 S„(e, v) g - log2 S„(£, v) < r(s, v) + n~1/2Ke. 
n n 

Since the latter inequalities are equivalent to those stated in (l .16), it is seen that the 
bounds given in (1.16) are functioning with constants KE,K'E defined by (3.13). On 
the other hand, from the inequalities just established the assertion of (1 +7) immediate
ly follows, which concludes the proof of the theorem. 

As a final remark, let us mention that a more comfortable expression for constants 
KE, K'E is given by 

(3.14) Ki-K~-f*- [cf. (3.11), (2.6), (2.1)]. 

The latter expression is easily obtained by enlarging the constants stated in (3.13) in 
accordance with the definition of K(5) as expressed by (3.10). 

(Received November 9, 1971.) 
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Diskrétní kanály rozložitelné v bezpaměťové složky 

KAREL WINKELBAUER 

V práci se studuje pojem £-kapacity, který byl zaveden autorem v článku [6], 

v případě diskrétních kanálů, jež lze rozložit na konečný počet bezpaměťových kom

ponent. Celá práce je věnována formulaci a důkazu základního teorému o existenci 

e-kapacity pro případ sdělovacích kanálů popsaného typu. Podstatný rozdíl mezi 

touto prací a pojednáním [6] je v tom, že se zde neomezujeme na případ kanálů 

regulárně rozložitelných (ve smyslu zavedeném v článku [7]), jak se činí v práci [6]. 
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