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On Generalized Linear Discrete Inversion 
Filters 

LUDVIK PROUZA 

In this article, the methods and results of [1] are generalized to cover the case of disturbing 
signals. The connection of the inversion filter for this case and of the matched filter is shown. 

1. INTRODUCTION 

Let the finite sequence 

(1) {bj} = b0,bu...,bh 

(h = 1, bj real, b0 * 0, b„ #= 0) 

be interpreted as the unit impulse response of a linear discrete filter 38 — the "coding" 

or "distorting" filter. 

Let N = h be a natural number. Let the real sequence 

(2) {aj} = a0,au...,aN 

be the unit impulse response of a linear discrete filter s/. For the filters 38, s/ in 

cascade, the output sequence 

(3) {Cj} = c0,cu.. •> cN + ћ 

satisfies the relations 

.(«) c 0 = b0a0 , 
cl = bxa0 + ЪQÜ^ , 

cт = bтa0 + ř> r _ 1 a 1 
+ ... + b0aт, 

CN + Һ Ьh<*N 



with bj = 0 for ; > h. In what follows we will always suppose 0 = T^ N + h. 31 
The filter stf will be called the inversion filter to the given J1 if for the {c,} given 

by (4) the condition 

(5) c2
0 + c\ + ... + (1 - cT)2 + ... + c2

N + h = min 

is satisfied. 
Denoting 

(6) A(z) = a0 + axz-1 + ... + aNz'N , 

(7) B(z) = b0 + b^-1 + ... + bhz-", 

the condition (5) can be expressed as 

(8) - L f | z - - A ( z ) B ( z ) | 2 ^ = min. 
2JtiJCl z 

Ci is the unit circle. 
Introducing the matrix notation, (4) is 

(9) c = ßo 

and 
JV + Һ 

(10) X c ) - c ' / c = ° ' ß , ß o 

i = 0 

= o'УИo 

where / is the unit matrix and 

(И) /И = ß'ß = jџ0, џ_u .. •. Џ-h-N 

\Џl, Џo, •• ., Џ - h + l - N 

\HN + h, •••, MO 

where 
h-j h-j 

(12) H-j = Yi bk+A = __ bkbk+j = fij 
k=0 k=0 

are the "autocorrelations" of {bj}. For/ > /?, there is yu,- = 0. 

2. INVERSION IN PRESENCE OF DISTURBING SIGNALS 

Let a finite set of signals {b(i} exist (/ = 0, 1, ..., m), the signals having the same 

"length" h + 1. The sequence {b0J} will be considered as wanted signal, all other 

as disturbing ones. The signals can occur with the weights w0 > 0, wt =0, ... 



32 ..., w„, = 0. With the eventual normalization 

(13) £ W j = l 
j = 0 

the weights may be interpreted as probabilities of occurrence. 
Now, we define the generalized inversion filter as such satisfying 

(14) ± jw 0 | I * " - A{z) B0(z)|2 ^ + I Wj f |A(z) B/z) | 2 ^ = min , 
2m ( JC l z y=i J C l z 

where Bj{z) is the Z-transform of {bJn}. 
Comparing (14) with (8), (5) and (10), it is clear that (14) can be expressed as 

(15) ${a0, ..., aN) = w0(l - 2c0T) + w0a'M0a + 

+ ... + wma'Mma = w0(l — 2c0T) + a'{w0M0 + . . . + wm»Wm) a = min . 

The meanings of c0T and of the matrices Mj are clear. 
Put 

(16) vv0M0 + . . . + wmMm = w0M . 

Then from (15), (16) one gets the relation 

(17) 1 - 2c0T + a0{fx0a0 + n.l0l + . . . + H-hah) + 

+ «i(/^i«o + JVti + ••• + /«-/,a*+i) + ••• + aN{nhaN-h + ... + n0aN) = min . 

In (17), jXj are elements of the matrix M of (16). 
The necessary and sufficient conditions of the minimum of (17) are given by the 

following system of linear equations: 

(18) ji0a0 + M - i « i +... + H-hah = V r > 

H^o + Ho"i + ... + fi-„aH+i =b0rT-t, 

IATa0 + ix-r-^i + ... + H-hah+T = b00 , 

liT+1a0 + nTai + ... + fi-hah+T+l = 0 , 

HNa0 + + . . . + /i-hah + N = 0 , 

where \xi = 0 fory > h, b0j = 0 for j > h, aj = 0 for j > N. 
This system is formally the same as (15) in [1] and may be solved directly or, as it 

has been shown in [2], for JV substantially greater than h, with advantage as a 
difference equation with boundary conditions. 



Substituting from (18) in (17), one gets from (15) 

(19) <P(a0,...,aN)min = w0(l-cor). 

From the right side, the value of the minimum can be easily computed. 

3. INVERSION AND MATCHED FILTERS 

Let us suppose specially N = T = h. Further, let the signals {b^},] = 0, 1, ..., h, 
I = 0, 1,. . . , 2h+l - 1 be all 2 , ,+ 1 sequences of l's and - l ' s of the "length" h + I, 
possesing equal probabilities of occurrence. 

An arbitrarily selected sequence is considered as the wanted signal, all remaining 
sequences represent disturbance. 

With these suppositions, it is easy to show that in the matrix M all \ij with exception 
of \i0 are zero and the solution of (18) is formally the conventional matched filter for 
the case of white noise. 

This result may be generalized. For general discrete signals with weights considered 
as probabilities of occurrence, the matrix in (18) is a true correlation matrix repre
senting a colored noise. 

Denoting this matrix by M0 and the vector on the right side of (18) by b0 , (18) 
gives the known result 

(20) a = M0
xb0 

and with c0T from (4) the known result 

(21) c0T = b'0M0
lb0. 

From (21) and (19) there follows that the minimum value of the minimum <P is 
obtained precisely if the signal b0 is an eigenvector belonging to the greatest eigenvalue 
of the matrix M~l, a result which may be found in [3]. 

The only difference is that in (20), (21) the wanted signal occurs in *M0, whereas in 
the formulas derived from the signal/noise concept M0 is represented only by the dis
turbances. 

Thus the usual matched filter may be considered as the "limiting case" of the filter 
from this section. For small relative weight of the wanted signal there is practically 
no difference. 

Now, if the supposition N = T = h is not valid, (18) still has solution which may 
be considered as a generalization of the matched filter concept. 

4. INVERSION BY RECURSIVE FILTER 

Suppose now that A(z) in (14) is an infinite series representing a physically realizable 
stable filter. To find it, we will use the method of decomposition as described for the 
case of Kolmogorov-Wiener filters e.g. in [5]. 



34 Rewrite (14) as 

(22) *[A(z)] = ± L0 f \£- - A(z) 2 . |B0(z)|2 --? + 
2t" I Jc.Po(z) z 

+ 2 > y [ |A (z)MB,(z) |^ Z j = min. 
J = 1 Jc. ZJ 

The necessary conditions for (22) to be minimum are easily proved to be 

(23) -L f z* A(z) f w, 5,(z) B,(z" -J 1Z = -L f z'"»w, 50(z) --? . 
2 j t lJc, - = ° z 27U J c, z 

The function 

(24) /(z) = f;w,B,(z)5,(z-1) 
j = o 

for z = exp ik represents the spectral density of the input signals and has the maxi
mum degree term of degree s <. h. 

Further, 

(25) - L f z ^ B 0 ( z ) ^ = Vr -_ = 
2JCI J c, z 

so that (23) may be written with (24), (25) as 

(26) - ^ f zkA(z)f(z)dZ^b0J.k 

2raJCl z 

(fc = 0, 1, ... and b0l = 0 for I < 0 and for / > h). 
Now, decompose 

(27) j(z) = u ( £ j i £ i ) - ( z - z - ) ( 1 - - . - ) - ( 1 - - d ) 
zs 

where it is supposed 

(28) | z , | > l , (; = l,...,s) 

since we know that if |z,| = 1 for some j , no stable recursive filter would result. 
To satisfy the conditions (26), we suppose 

(29) A(z)=- Z ~" P M_-
( l - z l Z ) . . . ( l - z s z ) 

where n and the polynomial P(z) are to be determined. 



With (29) and with 

(30) fo • (2 - z 0 ••• (z - zs) = <7o"s + . . . + . , 

one gets from (26) 

(31) — f z""""5 P(r) (^o"s + . . . + ? . ) - = - 0 > - -* • 
2ltiJCl z 

But b0 _, = b0 _2 = ••- = 0, thus with k = T + 1 there must be T+ I - n -

— s = 1, thus 

(32) n = T - s . 

Further, for each boj (J = 0, ..., T) a coefficient in P(z) is needed. Thus 

(33) P(z) = p0z
T + ... +pT. 

Substituting from (33) in (31) for k = T T - 1, ..., 0, one gets the system of 

linear equations for Pj 

(34) qspT = b00, 

qs~\Pr + QSPT-\ = b01 , 

qs-TPT + 9S-T+IPT-I + ••• + qsPo = b0T, 

where qj = 0 for j < 0. This system has precisely one solution. Thus the filter si 
with transfer function (29) is a uniquely determined stable recursive filter. That this 
solution gives the minimum of (22) is evident from the geometrical meaning of (5). 

It remains to show that for the filter s/ the formula (19) still holds. To this end 
let us express (14) with the aid of ParsevaFs formula. One gets after easy calculation 

(35) #[_!(_)] = £ wj(a0b0j)
2 + £ w/floi,. + aibj0f + 

j=0 j = 0 

+ .. . + JT Wj(a0bJh + ... + ahbJ0)
2 + w0[l - 2(aT_hb0h + ... + aTb00)] . 

j = 0 

Further, in the case of <Pmm there is 

a0 d$ + i 

2 da0 2 da1 

(36) ^ i _ ! + *!Aф

 + ... = o 

and from this there follows 

(37) TwAaobjo)2 + _ » o & / i + axb,0)
2 + 

= w0(aT_hbOn + ... + aTb00). 

From (35) and (37), (19) follows at once. 



5. EXAMPLES 

Example 1. Consider the Barker code b00 = I, b0l = — 1 as the wanted signal and 
the code bl0 = 1, bXi = 1 as the disturbation, both signals with equal weights 1. 

According to (16) one gets for N = 1 

« - G : 
and from (18) with T = 1 one has 

a0 = — 1/4, a, = 1/4, a2 = a3 = . . . = 0 . 

Thus the conventional matched filter is obtained. 

Example 2. Consider the Barker code b00 = I, b0l = 1, b02 = - 1 as the wanted 
signal and the code b 1 0 = 1, 6 U = 1, bl2 = 1 as the disturbation, both signals 
with equal weights 1. 

According to (16) one gets for N = 2 

(6 2 6 
(39) M = 2 6 2 

\0 2 6 

and from (18) with T = 2 one has 

a0 = -10/42 = -0,238 , at = 9/42 = 0,214, a2 = 4/42 = 0,095 . 

Example 3. Consider the same signals and weights as in example 2. 
For N = 3 one gets 

/6 2 0 0\ 

\0 0 2 6/ 

and from (18) with T = 2 one has 

a0 = -26/110 = -0,236 , a, = 23/110 = 0,209 , a2 = 12/110 = 0,109 , 

a3 = -4/110 = - 0 , 0 3 6 . 

Example 4. Consider the same signal and weights as in preceding two examples. 
Let T = 2 and let N -* co. We seek the "limiting" recursive filter. 



From (24) and (27) one gets 

(4.) / ( z ) = 0-764 (» + * 6 " ) ( l + - « - 8 - ) . 
z 

From (29) and (32) one gets 

(42) A(z) . Z~l P ( Z ) . 
1 + 2-618z 

Now, from (30) 

(43) fl0z + .7, = 0-764z + 2 

and since T = h = 2, one gets from the system (34) 

p2 = 0-5, Pl= 0-309, p0 = - 0 - 6 1 8 , 

so that finally 

u*\ .i \ z _ 1 ( - 0 - 6 1 8 z 2 + 0-309z + 0-5) 
(44) A(z) = i '-

' W 1 + 2-618z 

and from this 

a0= - 0 -236 , a, = 0 - 2 0 8 , a2 = 0111 , a3 = - 0 0 4 2 , 

which compared with the values from the example 3 shows that the nonrecursive 
filter of example 3 is practically as good as the "limiting" filter from (44). 

6. CONCLUDING REMARKS 

The method described in this article makes it possible to analyze the influence of 
known disturbing signals on the least squares inversion filter and to synthetize the 
optimum one. 

For unknown signals, their statistical properties must be measured experimentally 
and if they vary with time, then some sort of adaptivity in the computations of the 
filter must be provided, as has been shown for the matched filters and equalizers in 
the cited references. 

(Received June 15, 1971.) 
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O zobecněných lineárních diskrétních inverzních filtrech 

LUDVÍK PROUZA 

V článku se zobecňují metody a výsledky práce [ l ] seznamu literatury na případ, 
kdy vedle žádoucího signálu se vyskytují ještě signály poruchové. Ukazuje se sou
vislost inverzního a tzv. přizpůsobeného filtru v tomto případě. 
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