
KYBERNETIKA —VOLUME 7(1971), NUMBER 6

On an Evaluation Function for Heuristic
Search as a Path Problem*

LUDOVÍT MOLNÁR

The new evaluation function for heuristic search as a path problem is proposed and compared
with those proposed earlier. The comparison is done for special problem space and the worst case.
The theoretical and experimental results give us the justification for the proposed evaluation
function.

INTRODUCTION

In a process of a finding a path through a graph consisting of a set of nodes cor
responding to discrete states of a solved problem we try to utilize all knowledge from
a given problem. The Graph Traverser [1] uses a purely heuristic evaluation function
f(n) = h(n) derived from a property of a given problem to control search for the
goal node as an estimate of a distance from a node n to the goal node.

Hart, Nilsson and Raphael [4] have proposed a compound evaluation function
f(n) — g(n) + h(n) where g(n) is a current distance from the start node to a node n
found during search and h(n) is a heuristic component which estimates the distance
from a node n to the goal node.

Pohl [7] has done experiments with a weighting of parameters for each part of the
compound evaluation function and discovered that improvement in a solution can be
reached for some values of parameters.

Similar experiments have been done also by Michie and Ross [5] who have done
an optimalization of parameters of the heuristic component of an evaluation function.

Molnar [6] has done an analysis of parameters of an evaluation function and
discovered that parameters should be not constants but functions which change their
values during search.

* The paper was partially written while the author was the Visiting Research Worker at the
Department of Machine Intelligence and Perception University of Edinburgh as the student of
the British Council.

In all these works a better utilization of a property of a given problem was tried to
do. Next we will show another kind of an utilization of a property of a given problem
by adding to an evaluation function so called difference of heuristic parts of an evalu
ation function. We will also prove in the worst case analysis that this evaluation
function is better in this sense than an evaluation function without difference.

THE PROBLEM SPACE AND THE ALGORITHM

We will use the same problem space and the algorithm as in [6], except an evalua
tion function which will be defined latter.

The evaluation function

The evaluation functions used in heuristic search can be classified as follows:

(0 f{n) - Q(n)

— exhaustive parallel or bredth first search — no heuristic information is used,

(2) f(n) = h(n)

— pure heuristic search [l] ,

(3) / („) = g(n) + h(n)

— compound heuristic search [4],

(4) f(n) = m g(n) + m' h(n)

— compound heuristic search with constant parameters [7],

(5) f(n) = m(n)g(n) + m'(n)h(n)

— compound heuristic search with function parameters [6].
We add to this list the new type of an evaluation function:

(6) f(n) = m(n) g(n) + m'(n) h(n) + D(n),

where m(n), m'(n) are function parameters, g(n) is a number of steps from the start
node to a node n, h(n) is an estimate of a number of steps from a node n to the goal
node,

D(n) = m'(n) h(n) - m'(np) h(np),

where np is the parent (predecessor) of n. If n is the root then

D(n) = 0 .

This evaluation function will be compared with evaluation functions of the form 443

(5). For a simplicity parameters will be used as constants equal 1.

The comparison of evaluation functions of the forms (5) and (6)

As we have said the comparison will be done for the worst case and we will use the

easy analysable problem space the regular binary tree.

Let h'(n) be a perfect estimator, h(n) be a given heuristic function, e be a bound on

the error 0, 1, 2,...,

h'(n) - E S h(n) ^ h'(n) + e .

To make h(n) as bad as possible we add s to each node on the shortest solution path

and subtract e from each node off the shortest solution path.

©

®

Ф®
m є - 2

5>®
h(n) ~oпlyпumber
f(n) ~ O

0 m~ П Fig. 1.

At first we will give an intuitive justification of the "difference" concept of an evalu

ation function. Consider a tree as in Fig. 1 with e = 2 and monitor our algorithm

using as evaluation functions

f(n) = g(n) + h(n),

F(n) = g(n) + h(n) + D(n).

Let t be the goal node. Then

h'(t) = 0 ; g(t) = 1 ;

h(t) = h'(t) + e = 2 ;

f(t) = a (0 + h(0 = 3;

h(2l) = h'(21) - e = 0 ;

h(3l) = 1 ;

F(t) = g(t) + h(t) + h(t) - h(l) = 0 ;

4 4 4 /(21) = 1 ; F(21) = - 2 ;

/(31) = 3 ; F(31) = 4 .

When we now compare the values of/(21) and F(21) with the values of their successors
i.e. /(31) and F(3l) we can see that there is a greater difference between F(21) and
F(31) than between / (2 l) and /(31). This means that if we use as an evaluation
function F(n) = g(n) + h(n) + D(n) the search along an incorrect path will be
terminated sooner than if we use a function without difference D(n).

Now we will prove it formally.

Theorem 1. Let k be the distance from the start node to the goal node and

f(n) = g(n) + h(n)

be the evaluation function. Then the maximum number of nodes visited in a binary
tree will be

2 £ + 1 . k + 1 .

Proof. We must visit in our binary tree all nodes on the solution path and all
nodes off the solution path whose value is less (in the case of ties i.e. nodes with
a same value of an evaluation function, we choose, in the sense of the worst case
analysis, "the worst" node) than the value of the goal node.

If t is the goal node then

/(f) = g(t) + h(t) = g(t) + h'(t) + e = k + E.

For any node n off the solution path is

f(n) = g(n) + h(n) = g(n) + h'(n)-e.

If w is a number of steps off the solution path, then (see [6])

g(n) + h'(n) = k + 2w
and we can write

f(n) = 2w + k - E .

As we have said the relation between f(n) and /(f) must be

2w + k-e>k + E,

2w > 2E,

W > E .

Since we want to visit the minimum number of nodes we let

w — s + 1.

Since the number of leaves in the binary tree grows as 2W 1 the number of nodes 445
visited is equal:

k + 1 + k + 2k + 22k + ... + 2w"1fc = 1 + 2k + k \ l l =
i = l

= 1 + 2w/c = 1 + 2£ + 1 / c .

Theorem 2. Let k be the distance from the start node to the goal node and

/ (B) = 0(n) + h(n) + D(n)

be the evaluation function. Then the maximum number of nodes visited in a binary
tree will be

2'.k+\.

Proof. In this case we must also visit all nodes on and off the solution path whose

value is less than the value of the goal node.

If t is the goal node then

f(t) = g(t) + h(t) + D(t) = g(t) + h'(t) + £ + h'(t) + e - h'(tp) - e =

S3 k + E - 1 .

For any other node n off the solution path we have two possibilities:

1. A node n is 1 step off the solution path, when

f(n) = g(n) + h(n) + D(n) = g(n) + h'(n) - e + h'(n) - e -(h'(np) + e).

Since the node np is on the solution path we had to use " + e" in D(n).

f(n) = g(n) + h'(n) - 3e + h'(n) - h'(np).

Using the relation

g(n) + h'(n) = k + 2w

as in Theorem 1 we will get

f(n) = k + 2w - 3e + 1 .

This value must be greater than f(t) i.e.:

/(»)>/(<)>
k + 2w - 3e + 1 > k + e - 1 ,

2w > 4e - 2 ,

w > 2e - 1 .

446 Since n is 1 step off the solution path

w = 1

and for e we can write

e < 1 .

This means that all nodes 1 step off the solution path will have e < 1 (i.e. e = 0) for
which the value off(n) is greater than that off(t). This conclusion is same as that
of Theorem 1.

The number of nodes visited is equal

1 + k = 1 + 2E . k .

2. A node n is more than 1 step off the solution path. Then

f(n) = g(n) + h(n) + D(n) = g(n) + h'(n) - e + h'(n) - e - h'(np) + e =

= k + 2w - e + 1

and again

fw>f(o,
k + 2w — e + l>k + e— I ,

2w > 2e - 2 ,

w > e — 1 .

Since we want to visit the minimum number of nodes we let

w = e

and for the number of nodes visited we can write:

1 + 2£ . k.

The above results are extendable to any tree with a unique goal node.

Theorem 3. If our algorithm is searching a tree for the goal node, then

1. if we use as an evaluation function

f(n) = g(n) + h(n)

we will visit at least as many nodes as if we use an evaluation function

f(n) = g(n) + h(n) + D(n)

in the sense of the above worst case analysis;

2. if the error bound on hi(n) is el and e2 is on h2(n) with the relation et < s2

then in the sense of the worst case analysis with h2(n) must be visited more nodes
than with hi(n).

Proof. The proof follows from Theorems 1 and 2.

EXPERIMENTS

Our experiments have been carried out with the Fifteen puzzle. As an evaluation
function we used

f(n) = co(n) g(n) + co'(n) h(n) + D(n)

where co(n), co'(n) are function parameters [6] used in the form

co(n) = 1 ,

,, . h(n) + e(n) + 2
co(n) = - ^ ^

V ' h(n) - e(n)
where

£(„) = R(n) = £ Pi
i = l

defined as in [6].
This evaluation function was tested on 50 randomly generated Fifteen puzzles.

The size of the partial tree was 200 nodes, resignation occured when 500 nodes had
been encountered.

The results were compared with those obtained using an evaluation function

f(n) «. co(n) g(n) + co'(n) h(n).

In both evaluation functions

h(n) = ?1p>
i = i

where p, is a number of steps of the i-th piece from the goal position. The experimental
results are summarized in Table 1.

Table 1.

Sample size % of puzzles
solved

The average number of nodes
encountered/puzzle

without difference D(n) 50 48 402

with difference D{ri) 50 60 364

CONCLUSION

The modification of an evaluation function for heuristic search as a path problem
is discussed. The purpose of the modification is the better utilization of a knowledge
of a given problem. The comparison with evaluation functions defined earlier have
been done for the special problem space and for the worst case but experiments
which have been done showed the applicability of the theoretical results to the real
problem space too.

Acknowledgements. The author wishes to thank to Professor Donald Michie — Professor of
the Department of Machine Intelligence and Perception University of Edinburgh, under whose
supervision the work was done, Dr. R. Kowalski and Mr. R. Ross of the same Department for
many helpful] discussions and criticisms.

(Received February 22, 1971.)

REFERENCES

[1] Doran, J. E., Michie, D.: Experiments with the Graph Traverser program. Proc. R. Soc. 294
(1966), 1437, 235-259.

[2] Doran, J. E.: An approach to automatic problem solving. Machine Intelligence 1 (eds. N.
L. Collins, D. Michie). Oliver and Boyd, Edinburgh 1967.

[3] Doran, J. E.: New developments of the Graph Traverser. Machine Intelligence 2 (eds. E.
Dale, D. Michie). Oliver and Boyd, Edinburgh 1968.

[4] Hart, P., Nilsson, N , Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. I.E.E.E. Trans, on Sys. Sci. and Cybernetics 4 (1968), 2, 100—107.

[5] Michie, D., Ross, R.: Experiments with the Adaptive Graph Traverser. Machine Intelligence 5
(eds. B. Meltzer, D. Michie). Edinburgh University Press, Edinburgh 1970.

[6] Molnar, L\: On parameters of an evaluation function for heuristic search as a path problem.
Kybernetika 7 (1971), 5, 386—393.

[7] Pohl, I.: First results on the effect of error in heuristic search. Machine Intelligence 5 (eds. B.
Meltzer, D. Michie). Edinburgh University Press, Edinburgh 1970.

VÝTAH 449

O vyhodnocovacej funkcii pre heuristické Madame ako problém
cesty

EUDOVÍT MOLNÁR

V článku sa pojednává o vyhodnocovacej funkcii pre heuristické hiadanie ako
problém hladania cesty. Navrhuje sa nový typ vyhodnocovacej funkcie, ktorá efek-
tívnejšie využívá znalost' problému. Je porovnávaná pre najhorší případ s vyhodnoco
vacími funkciami navrhnutými skór. Teoretické i experimentálně výsledky ukazujú,
že táto vyhodnocovacia funkcia je lepšia, než vyhodnocovacie funkcie navrhnuté skór.

Ludovit Molnár, prom.fyz., Katedra matematických strojů EFSVŠT (Department of Computer
Science — Slovák Technical University), Vazovova Jjb, Bratislava.

