KYBERNETIKA — VOLUME 7 (1971), NUMBER 6

The Kiefer-Wolfowitz Approximation Method in Controlled Markov Chains

Petr Mandl

A modification of the Kiefer Wolfowitz stochastic approximation method is employed to maximize the mean reward per one step from a Markov chain depending on a regression parameter.

Consider a system **S** from which income is earned at times 1, 2, 3, ... Let S_n denote the state of **S** at time n. S_n is one of the numbers 1, 2, ..., r. The law of motion of **S** is the following: For arbitrary $i \in \{1, 2, ..., r\} = I$, whenever **S** is in state i, the probability distribution of the next state is $(p_{i1}(x), ..., p_{ir}(x))$ where $x \in (-\infty, \infty)$ is a regression parameter. The income associated with a transition from i into j equals $v_{ij}(x)$. Thus, if X_m denotes the value of the regression parameter during the period (m, m + 1), then the total income earned up to time n = 1, 2, ... equals

$$V(n) = \sum_{m=1}^{n} v_{S_{m-1}S_m}(X_{m-1}), \quad V(0) = 0.$$

The system is specified by matrices

$$P(x) = \|p_{ij}(x)\|_{i,j=1}^{r}, \quad \|v_{ij}(x)\|_{i,j=1}^{r}, \quad x \in (-\infty, \infty).$$

For fixed regression parameter (i.e. $X_n = x$, n = 0, 1, ...), $\{S_n, n = 0, 1, ...\}$ is a homogeneous Markov chain with transition probability matrix P(x). We introduce the *n*-step transition probabilities $P(x)^n = \|p_{ij}^{(n)}(x)\|_{i,j=1}^n$. The expectation of V(n) for $S_0 = i$ is then given by

$$\mathsf{E}_{i}^{x} V(n) = \sum_{m=0}^{n-1} \sum_{j} \sum_{k} p_{ij}^{(m)}(x) \, p_{jk}(x) \, v_{jk}(x) \, .$$

Assumption 1.

1. $|v_{ij}(x)| \leq K < \infty, x \in (-\infty, \infty), i, j \in I.$

2. There exists a positive integer n_0 , an $h \in I$ and a number d > 0 such that

$$p_{jh}^{(n_0)}(x) \geq d, \quad j = 1, \dots, r, \quad x \in (-\infty, \infty).$$

Under Assumption 1, the limit

$$\Theta(x) = \lim_{n \to \infty} n^{-1} \mathsf{E}_i^x V(n)$$

is independent of *i*. $\Theta(x)$ is the mean income per one period corresponding to regression parameter x. It can also be expressed with aid of recurrence times. Denote by N(n) the n-th recurrence time into h, i.e.

$$\begin{split} N(0) &= \inf \left\{ m : S_m = h, \ m \ge 0 \right\}, \\ N(n) &= \inf \left\{ m : S_m = h, \ m > N(n-1) \right\}, \ n = 1, 2, \dots \end{split}$$

The pairs

$$[V(N(n + 1)) - V(N(n)), N(n + 1) - N(n)], \quad n = 0, 1, \dots$$

are mutually independent, identically distributed as long as x is kept fixed. Using the strong law of large numbers it is not difficult to derive that

(1)
$$\Theta(x) = \mathsf{E}_i^x [V(N(n+1)) - V(N(n))] / \mathsf{E}_i^x [N(n+1) - N(n)].$$

We place ourselves in the situation when the dependence of Θ on x is unknown to us and we are looking for a procedure to approximate the value \hat{x} for which $\Theta(x)$ is maximal. (1) implies that we may consider this as a problem of maximizing the ratio of mean values by making independent observations on pairs of random variables. For the mean value of the ratio, i.e.

$$E_i^{x}[V(N(n+1)) - V(N(n))]/[N(n+1) - N(n)]],$$

the Kiefer - Wolfowitz stochastic approximation method could be applied directly. Slight modification is necessary in the present case (see Theorem 1). We shall be basing on [1] and make therefore the following assumption:

Assumption 2. $\Theta(x)$ is increasing for $x < \hat{x}$ and decreasing for $x > \hat{x}$. The derivative $\Theta'(x)$ exists and is continuous. For $x \in (-\infty, \infty)$ holds

$$K_0|x - \hat{x}| \leq \Theta'(x) \leq K_1|x - \hat{x}|$$
 where $0 < K_0 < K_1 < \infty$.

Description of the procedure. Let $\{a_n, n = 1, 2, ...\}$, $\{c_n, n = 1, 2, ...\}$ be sequences of positive numbers, $\{M_n, n = 1, 2, ...\}$ a sequence of positive integers. Let

(2)
$$c_n \to 0$$
, $\sum_{n=1}^{\infty} a_n = \infty$, $\sum_{n=1}^{\infty} a_n^2 < \infty$, $\sum_{n=1}^{\infty} a_n c_n < \infty$.

437

where

$$Y_{2n} = \frac{\eta_{2n+1}^1 + \eta_{2n+2}^1 + \dots + \eta_{2n,Mn}^1}{\eta_{2n+1}^2 + \eta_{2n+2}^2 + \dots + \eta_{2n,Mn}^2}, \quad Y_{2n-1} = \frac{\eta_{2n-1+1}^1 + \dots + \eta_{2n-1,Mn}^1}{\eta_{2n-1+1}^2 + \dots + \eta_{2n-1,Mn}^2},$$

and for given $\eta_{1,1}^1, \eta_{1,1}^2, \dots, \eta_{2n-2,Mn-1}^1, \eta_{2n-2,Mn-1}^2$ the vectors $(\eta_{2n-1,i}^1, \eta_{2n-1,i}^2)$, $(\eta_{2n,i}^1, \eta_{2n,i}^2)$ $i = 1, 2, \dots, M_n$ are mutually independent with distribution function $F(y^1, y^2 | x_n - c_n)$ and $F(y^1, y^2 | x_n + c_n)$, respectively. Then

$$\lim_{n \to \infty} \mathsf{E}(x_n - \hat{x})^2 = 0 \, .$$

The demonstration is obtained by inserting appropriate estimates in the proof of Theorem 1 in [1] and will not be given here. Under the assumption $m''(x) \leq \leq Q < \infty$ for $x \in (-\infty, \infty)$, it can also be shown by the methods of [1] that for

$$a_n = an^{-1}$$
, $c_n = cn^{-1/4}$, $M_n = [dn^{3/4}] + 1$, $n = 1, 2, ...,$

where $a > \frac{1}{4}K_0$, c > 0, d > 0, we get

$$\mathsf{E}(x_n - \hat{x})^2 = O(R_n^{-4/7}) \quad \text{for} \quad n \to \infty \; .$$

 $R_n = 2 \sum_{1}^{n} M_m$ is the number of observations employed. The corresponding estimate for the Kiefer - Wolfowitz method is

$$E(x_n - \hat{x})^2 = O(n^{-2/3}) = O(R_n^{-2/3}).$$

(Received June 3, 1971.)

REFERENCES

- Václav Dupač: O Kiefer Wolfowitzově aproximační metodě. Časopis pro pěst. mat. 82 (1957), 1, 47-75. (Appeared in Selected Translations in Mathematical Statistics and Probability.)
- [2] R. A. Howard: Dynamic Programming and Markov Processes. J. Wiley, New York 1960.

439

440 <u>VÝTAH</u>

Kieferova - Wolfowitzova aproximační metoda v řízených Markovových řetězcích

PETR MANDL

. *

V práci je modifikace Kieferovy - Wolfowitzovy stochastické aproximační metody použita k maximalizaci průměrného důchodu na jeden krok Markovova řetězce závislého na regresním parametru.

Dr. Petr Mandl, DrSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation – Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2.