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Optimal Learning Systems 
V. S. PUGACHEV 

Optimal Bayes learning systems and the main properties of their algorithms are studied from 
the general standpoint of Learning System Theory. The general concepts of learning system, 
teacher, forms of learning, types of teachers, etc. are discussed. The general case of a real teacher 
which performs control processes with random errors is considered. The conventional case of an 
ideal teacher which has been the only case previously considered, is treated as a special case. 
A measure of closeness of the performance of a learning system to the optimal system with com
plete information is introduced. Studying of optimal learning systems enables the designer of 
learning systems to determine extreme possibilities of learning systems and to estimate the per
formance of various specific algorithms of learning. 

1. INTRODUCTION 

A learning system is called such a system which improves itself using the informa
tion contained in signals received by it. 

The main feature of a learning system distinguishing it from conventional auto
matic systems is the dependence of its output not on the actual input, only, but also 
on some previously obtained signals. Let Z be the input to the system, JJ^its output, 
S' the set of previously obtained signals (teaching information) on which the output W 
depends. Then the input-output relation of the learning system has the general form 

(IT) W=A(S')Z, 

where A(S') is some operator, deterministic or random, depending on teaching 
information S'. For usual automatic systems the operator A is completely independent 
of previously obtained signals. 

It should be emphasized that the notion of learning system convers only systems 
improving themselves while performing their functions. All the information intro
duced into the system during its designing before it begins performing its functions 
can not be considered as teaching information. This information can only be treated 
as characterizing the initial organization of the system, its capacities to learn. 



348 The period of time when the system receives the teaching signals S' on the basis of 
which its operator is formed, is called the period of learning. The period of learning 
may, in particular, include all the time of system working, i.e. the system may be 
permanently learning during all its life-time. 

If the system does not receive additional external information apart its usual 
inputs during the period of learning, it is called self-learning system. 

If the system receives some additional information as well as its usual inputs while 
learning, we say that it is taught by a teacher. A source of the additional information, 
being a man-operator or another automatic system, is called teacher. 

The teacher may teach a system in two different ways. The first way is to show the 
system how to perform its functions. This way we shall call teaching by show. The 
second way is to observe the actions of the system and introduce into it teacher's 
estimates of its performance. We shall call this mode of teaching teaching by esti
mating system actions. 

These three main ways of teaching may be combined sequentially or in parallel. 
For example, the system may be taught at first by show, then by estimating its actions, 
and then may continue improving its performance by self-learning. The system with 
several outputs may be taught simultaneously by show at some of its outputs, by 
estimating its actions at other outputs and may be self-learning with respect to the 
remaining outputs. 

The teacher may know exactly the desired output W corresponding to a given 
input Z and show this desired output to the system. We shall call such a teacher the 
ideal teacher. Only the ideal teacher has been considered in all previous works in the 
field of learning systems. But the teacher does not in general know the exact desired 
output IF and can only elaborate more or less suitable estimates of W. For example, 
the instructor teaching a man to pilot an aeroplane can not pilot this plane with 
absolute accuracy. He will inevitably make random errors resulting in random devia
tions of the plane from the required state of motion. In other words, he will show to 
the pupil only his own output, but can not show the actual desired output. 

We shall call a teacher whose output Wdoes not coincide with the desired output W 
the real teacher. The notion of the real teacher seems to be primarily introduced in 
the works of the author [1 — 3]. 

The algorithm of any real teacher is practically always stochastic, i.e. the output 
of the real teacher is random for any given input. So the algorithm of the real teacher 
can be defined only in the form of the conditional probability distribution of teacher 
output W given the input Z. We shall call this conditional distribution decision 
function of the teacher. 

The necessity of teaching a system arises only if the probability distribution of the 
input and desired output or some parameters of this distribution are unknown. 
E.g., the distribution of feedback signals is unknown, if the dynamical characteristics 
of the controlled system are unknown. But the feedback signals represent some of the 



components of the input to the control system. So the control system must learn to 
master performing the functions for which it is designed in this case. 

We shall call algorithm of learning the mode of treating teaching signals to improve 
system performance. Any algorithm of learning which provides the increase of system 
performance is admissible in principle. 

Up to now only heuristic algorithms of learning based on designer's skill and intui
tion were practically employed in learning system design. 

The most natural approach to design algorithms of learning seems to be statistical 
estimation of unknown probability distribution of signals involved. This approach 
was initiated by Spacek and developed by his pupils [4 — 18] who studied some general 
properties of learning processes. In particular, the methods of stochastic approxima
tions were extended and first used to derive the algorithms of learning [6, 8, 10—13]. 
The use of the methods of stochastic approximations to find algorithms of self-
adaptive systems was also first proposed [15 — 17] (see also [19]). Following Spacek 
ideas the author proposed in [20] one possible statistical algorithm of self-learning 
for systems based on optimal Bayes decisions. Some special statistical problems related 
to self-learning were solved in [21—25]. The algorithms of learning for pattern 
recognition systems based on stochastic approximation methods were first derived for 
the case of the ideal teacher in [26] (see also [27]). 

We shall derive here the general optimal algorithms of learning using Bayes 
statistical decision approach.* The system using such an optimal algorithm of learning 
will be called Bayes optimal learning system. This system possesses the best possible 
performance among all the learning systems receiving the same teaching information. 

The study of Bayes optimal learning systems enables us to establish the extreme 
performance of learning systems, i.e. potential learnability of learning systems. 
Comparing the performance of any projected learning system with the performance 
of the Bayes optimal learning system one can estimate the algorithm of learning 
employed in the designed system. 

We use here the terminology of automatic control theory, since the problems of 
teaching automatic systems are of special interest for us. Alternately, using the ter
minology accepted in studies of biological aspects of learning, Z represents the stimu
lus, W the desired reaction, J^the actual reaction of a learning system, J^the con
sequence caused by system reaction W to the stimulus Z. 

2. BAYES OPTIMAL LEARNING SYSTEMS 

We shall now give a precise formulation of the problem of finding a Bayes optimal 
learning system. 

We suppose that all possible values z of the input Z represent elements of some 

* This approach seems to be initiated by M. E. Shaikin [28] who solved one special problem 
of learning of pattern recognition systems. 



350 set A, and all possible values w of the desired output TV represent the elements of 
another set B. Let y(Az; 0 | X) be the family of probability measures on A, and 
x(Aw; 9 | z, X) the family of conditional probability measures on B given the value z 
of Z, X being a parameter with values in a set L, and 0 a parameter whose values are 
real numbers*. Suppose that the input Z and desired output TV represent random 
variables in A and B respectively distributed in accordance with the probability 
measure y(Az; 9 | X) and conditional probability measure x(Aw; 6 | z, X) corresponding 
to some specific value of X equal to the value X(9) of a random function A(0) with 
values in L, the parameter 0 taking different values in different cycles of the actions 
of the system (it may represent, in particular, the number of the cycle of system 
action). 

If the true value of X were known and introduced into the system at each cycle 
of its action, the system could make various statistical decisions, resulting in respective 
estimates of W. In particular, the system could evaluate the Bayes optimal estimate W* 
of IF corresponding to any given loss function 1(W, W\ X) which may, in general, 
depend on the parameter X. We shall call the system whose output at each cycle 
represents the Bayes optimal estimate W* of the desired output W corresponding to 
the true value of X Bayes optimal system with complete information about X. 

If the true value of X is unknown, the necessary estimates can be made, in principle, 
on the basis of some observations. Thus the system must learn to elaborate estimates 
of the desired output by making some observations and processing the information 
thus obtained, before it will begin performing the functions for which it is designed. 
We shall suppose that the learning period during which the system makes observations 
consists ofiV cycles of system action corresponding to values 9U .... 9N of the numeri
cal parameter 0. The value of 0 at the first cycle following the period of learning we 
shall leave without any indices. 

If the system observes while learning only the inputs Zu ..., ZN, it is self-learning. 
If it receives, apart from the inputs Zu ..., ZN, some other signals, it is learning with 
a teacher. The teacher may show to the system estimates Wu ..., WN of the desired 
outputs IV!,..., WN corresponding to the inputs ZU...,ZN or estimates of some 
functional of the pairs (Zu Wt),..., (ZN, WN). This is the case of teaching by show. 
If the teacher observes the responses Wu ...,WN of the system corresponding to the 
inputs Zu ...,ZN and shows to the system estimates Wu ...,WN of its performance 
at each cycle, the system is taught by estimating its actions. 

Thus the teacher output JYmay have, in general, another nature than the desired 
and actual system outputs W, W. Accordingly we shall suppose that all possible 
values w of the teacher output Wrepresent elements of a set B which may, certainly, 

* Speaking about measures defined on a set, we mean, certainly, measures defined on properly 
determined tr-algebra of subsets of this set. This will be assumed throughout the paper without 
further mentioning. We denote random variables by capital letters and their possible values 
(samples) by respective small letters; the sets of elements z, w, ... we denote Az, Aw, ..., so Az 
represents any subset of the set A, Aw any subset of the set B, etc. 



coincide with B in the special case of teaching by show. The algorithm of the teacher 351 
is determined in general by the conditional probability measure <5T(Aw; 9 | z, w, w, X) 
on B given the values z, w, w of the input Z, desired output W, and actual system 
output W, X being equal to the same value X(6) of the random function A(6) as before. 
In the special case of the ideal teacher <5T is condensed in single point w and does not 
depend on z, w, X. In the case of the real teacher teaching the system by show <5T is 
independent of w, w. In the case of the real teacher teaching the system by estimating 
its actions <5T is independent of w. 

We shall denote for brevity by S the set of all signals received by the learning system 
including all the signals received during the learning period and the input Z received 
at the first cycle after learning. 

In the case of self-learning S represents the set of teaching inputs Zu ...,ZN 

followed by the input Z to which the system must respond in an optimal way. The 
probability measure of S in the Cartesian product X = A*+ 1 is determined in this 
case by 

(2A) a(AZ \X,X) = y(Az; 6 | X) ft y(Az,; 0t \ Xt) , 
;=i 

I being the set of values Xu ..., XN of the random function A(9) corresponding to the 
values 0U ..., 6N of 9. In deriving(2.1) the assumption was made that Zu ..., ZN,Za.ve 
conditionally independent, i.e. independent for any given set of values of Xu ..., XN, X. 
The measure <r(A<J | X, X) represents the conditional probability measure of S given 
the values Xu ..., XN, X of A(9X), ..., A(9N), A(9). 

In the case of a system taught by show S represents the set of previously obtained 
inputs ZU...,ZN, corresponding teacher outputs Wu..., WN, and the input Z to 
which the system must respond optimally. The conditional probability measure of S 
in the Cartesian product X = AN+l x BN is given in this case by 

N (-

(2.2) <r(A£ I X, X) = y(Az; 9 | X) [ ] 7t(Awt; 9t I zt, X) dy(z,; 9t I X) , 
> '=IJAZ ( 

where 

(2.3) rt(Aw; 9 | z, X) = | <5T(Aw; 9 \ z, w, X) dx(w; 9 | z, X) , 

and triples (Zu Wy, W^), ..., (ZN, WN, WN) and Z are assumed conditionally in
dependent as before. 

In the case of a system taught by estimating its actions S represents the set of 
previously received inputs ZU...,ZN, corresponding system outputs Wu ..., WN, 
teacher outputs Wu ..., WN, and the input Z to which the system must respond 
optimally. The system outputs Wu ..., WN represent random variables in B with 
conditional probability measures <5J(Aw | z), ..., <5"(Aw | z) independent of X (since 
the values Xu ..., XN, X of the random function A (0) in the points 9U ..., 9N, 9 remain 



unknown to the system; otherwise learning would be of no sense). Yet each of the 
measures <52, ..., SN may depend on previously received teaching signals, namely 
<5'(Aw | z) may depend also on the values zu ..., z,_i, Wj, ..., w ;_ t , V?ls ..., VP,-. of 
Zu . . . , Z ; _ ! , I f i , . . . , Wt-U Wu...,Wi-l (i = 2,...,N). Hence the conditional 
probability measure of 3 in the Cartesian product X = AN+l x BN x BN is given 
in this case by 

(2.4) <x(A£ \X, 1) = y(Az; 0\X)U f dy(zt; 9t | A,) x 
i = 1

 JAZ ; 

x f ^(Awj; t9; [ z„ vv;, A,) d<5'(vv; [ z;) , 
JA*; 

where 

(2.5) - 7r(Avv; 0 \ z, w, X) = f <5T(Avv; 0 | z, w, vv, A) dx(w; 9 | z, X) , 

and the quadruples (Zu Wu Wu Wx), ...,(ZN, WN, WN, WN) and Z are assumed 
conditionally independent, as before. 

The system is required to elaborate the optimal estimate W* of the desired out
put Wat the first cycle after learning using the set 3 of all signals received. 

The average loss (i.e. the expected value of the loss function) at the first cycle after 
learning is determined by 

(2.6) R(<5) = El(W, W\A) = 

= f d^ f d^A(A, I) f d<r(£ \X,X)\ d8(w | <*) f l(w, w | X) dx(w; 8 \ z, X), 
J_ J E JX J B JB 

where A(AX, AX) is the joint probability measure of the random variables A(6), 
A(0t), ..., A(6N) in the Cartesian product L x L = LN+i, and <5(Aw [ A) is the system 
decision function representing the conditional probability measure of system 
output Wat the first cycle after learning given the value £ of 3 . 

The problem is then to find an optimal system decision function <50pt(Aw | <f) 
minimizing the average loss R(<5). The system using this optimal decision function 
will be the required Bayes optimal learning system. 

To solve the problem we notice that for any sets A£, AX, AX of values of E,, X, X 
respectively 

(2.7) f d„ f dxA(X, X) f d<r(£ |;., X) = f d/?(£) f dA f dxn(X, X\i), 
J AA J AA J A^ J A£ J AA J AX 

where 

(2.8) p(AZ) = f d_ f _(Ac | A, J) dxA(A, I) 



is the unconditional probability measure of S, and 

(2.9) „(AA, AA | £) = f d, f d f f ( ^ dA-A(A, 1) 

the joint conditional probability measure of A(6), A(9l), ..., A(GN) given the value £ 
of S. Using (2.7) and introducing the conditional probability measure of A(6): 

(2.10) Q(AX | £) = „(AA. L\ £) = f d, f ^ J A l d j A ( A , I ) , 
J A;. it d/?(£) 

(2.6) becomes 

(2.11) R(8)= [dp(£)[e(£,$)d8(ti\£) 

with 

(2.12) Q(£, w) = f d£2(A | £) f /(w, w | X) dx(w; 0 | z, A) . 

If for any £ there exists a unique w* satisfying 

(2A3) c(tj, w*) ^ e(& w) for all w , 

then the optimal system decision function <5opt(Aw | £) represents, obviously, the 
measure condensed in single point w* = Q£ (Q being the determiriistic operator 
establishing the correspondence between £ and w* satisfying (2.13)). Thus the Bayes 
optimal learning system is deterministic in this case and its output w* corresponding 
to the value £ of 3 is determined as the unique value w* of w giving the least value 
to Q(£, W). 

If for any £ there exists a set C. of values w* satisfying (2.13), then the optimal 
system decision function <5opt(Aw | £) represents an arbitrary probability measure 
on c4. There exists then an infinite set of Bayes optimal learning systems, some of 
which are deterministic and others stochastic. Each of the latter includes a random 
mechanisme of choice of w* from C^ for any given value £ of S. 

As we see from (2.12) the algorithm of learning of the Bayes optimal learning system 
consists of elaborating conditional probability measure Q(AX | £) of A(6) at the first 
cycle of system action after receiving the teaching signals. Q(AX | £) represents in 
fact the posterior probability measure of A(9) after receiving the teaching signals, 
while A(AX, L) is the prior probability measure of A(8). 

It should be emphasized that any Bayes optimal learning system is optimal for 
any value £ of 3, i.e. for any given set of teaching signals and any input Z after 
receiving the teaching signals, the expected loss Q(£, W*) having the least possible 
value for any value of £. 



354 Let us now estimate the effect of learning. To do this we compare the Bayes optimal 
learning system with the corresponding Bayes optimal system with complete informa
tion about the parameter X. This Bayes optimal system minimizes the conditional 
loss 

(2.14) QX(Z, w) = I l(w, w | X) dx(w; 6\z,X). 

If for any z there exists such w* for which 

(2.15) QX(Z,W$)^QX(Z,W) for all w, 

then the optimal decision function 3x(Aw \ z) is condensed in single point w = w* = 
= A(X) Z, A(X) being an operator depending on X (and 6, certainly). If for any z 
there exists a set CzX of w* satisfying (2.15), then the optimal decision function 
<5A(Aw | z) represents an arbitrary probability measure on CzA. 

In both cases (2.15) is satisfied for w = w* = Qt;. Hence the relative amount of 
the loss due to the absence of complete information about the value of the para
meter X: 

(2.16) •4U-'i'-'*)-•*'•'* 
Qx(z, WA) 

can be taken as the measure of closeness of the Bayes optimal learning system to the 
Bayes optimal system with complete information. 

To estimate the average performance of the learning system for all possible values 
of £ given X, we derive from (2.15) 

(2.17) f d<r(£ | X, X) [ QX(Z, w) d5x(w | z) rg f d<r(£ \ X, 1) [ Qx(z, w) dSoot(w \ £) . 
JX JB JX JB 

Averaging with respect to I and denoting the conditional average loss corresponding 
to a given value of the parameter X as 

(2.18) rx(8) = f dx
 df{X,l) \ dff(« \kM ̂  *) d ^(* I«) ' 

JL d j d^A(X,y)Jx JB 

we obtain from (2.17) rx(8x) g rx(dopt). So trie relative amount of,the conditional 
average loss 

(2-19) sA(5opt) = rJ^llM 

can serve as a measure of performances of the Bayes optimal learning system for 
a given value of X. 



Finally, averaging (2A7) with respect to both I and X, we obtain R(<5A) — R(<50pt)- 355 
So the relative amount of the average loss 

(2.20) < W . «•*>-** 
R(dl) 

can be taken as a total measure of performance of the Bayes optimal learning system 
(the measure of its potential learnability) [2].* 

Similarly the quantities eA{(<5), eA(<5) and e(<5) for any <5(Aw | <*) can serve as respective 
measures of the result of learning for any algorithm of learning. 

To estimate the result of learning it is sufficient to compare the values of eA{, eA or e 
for the Bayes optimal learning system with the respective values of eA{, eA, e for the 
Bayes optimal non-learning system which has no information about X and does not 
receive teaching signals. To find the decision function <50pt(Aw | z) of such a system 
it is sufficient to replace a(A£, \ X, X) in all previous formulas by y(Az; 9 \ X). 

3. SOME GENERAL PROPERTIES OF OPTIMAL LEARNING 
PROCESSES 

From (2.12), (2.10), (2.1), (2,2), (2.4) follow some general properties of optimal 
learning processes. Primarily, the Bayes optimal learning system represents a per
manently learning system, namely it never ceases self-learning, as shown by (2.1), 
(2.2), (2.4) and (2.10). 

It is clear that the learning of a system is possible only if the random variables 
A(9i), ...,A(9N),A(6) are interdependent, i.e. if the unknown parameter X varies 
sufficiently slowly. The learning is impossible, if A(61), ..., A(9N), A(9) are statistically 
independent, since Q(AX | £) depends only on the value z of the input Z, and is quite 
independent of previously obtained teaching signals in suGh a case. Closer is the 
interdependence between A(91),..., A(9N), A(d) to some determined functional 
relation, stronger is the effect of previously obtained teaching signals on Q(AX | £), 
and therefore better are the results of learning. The most effective learning is attained 
when A(9t) = . . . = A(9N) = A(9), i.e. when the unknown parameter X remains 
constant during learning and subsequent system action. 

In the special case of the ideal teacher <5T(Aw; 9 | z, w, X) is unity for any set Aw 
including w, and zero otherwise. So n(Aw; 9 | z, X) = x(Aw; 9 \ z, X) in this case, 
and (2.2) becomes 

N f 

(3.1) <x(A£ | X, X) = y(Az; 6 \ X) FT x(Aw,; 0, | zu Xt) dy(zi; 9{ \ X) . 
<=1 Jhzi 

* If QX(Z, w*) = 0 for some z, X, then the loss gx(z, w*) should be taken as a measure of per
formance of the learning system for these z, X instead of sA{(<5opt). Similarly, if rA(<5A) = 0 for 
some X, then the conditional average loss rA(<5opt) can serve as a measure of performance instead 
of sA(<5opt). Finally, if R(dx) = 0, the average loss J?(<5opt) would be a suitable measure of per
formance instead of e(<5opt)-



In the case of a real teacher <5T in (2.3) and (2.5) is independent of w, and therefore 
n = <5T, and (2.2) and (2.4) take respectively the forms 

N f 

(3.2) ff(A£ | A, X) = y(Az; 0 | A) [7 ^x(Aw;; 0 ; | z;, A;) dy(z;; 0 ; | A,), 
i = 1

 JAZ,-

w r 
(3.3) <r(A£ | A, X) = y(Az; 0 | A) FJ dy(z;; 0 ; | A;) x 

i = 1
 JA Z ! 

x <5T(Aw;; 0 ; | z;, w;, A;) d<5''(w; | z ; ) . 
J A*! 

The comparison of (3.1) with (3.2) shows that the real teacher teaching the system 
by show with <5T(Aw; 0 | z, A) = x(Aw; 0 | z, A) is completely equivalent to the ideal 
teacher. In other words the real teacher whose decision function coincides with the 
conditional distribution of the desired output W for a given value z of the input Z, 
is completely equivalent to the ideal teacher from the point of view of its teaching 
capabilities. 

If a real teacher teaching the system by show represents a deterministic system, 
then the measure <5T is condensed in single point w = AT(A) z, AT(A) being some 
deterministic operator depending on the corresponding value A of A(0) (and may be 
on 0 also), then the posterior measure t](AX, AX | £) differs from zero only on the 
subset of L x L determined by 

(3.4) w; = AT(X)Zi (( = 1,...,JV). 

If the random variables A(0jj, ..., A(0jv), MQ) are strongly correlated, then (3.4) 
imposes rather strong restriction on the domain of possible values of A(0) owing to 
which the aposteriori measure Q(AX | f) will be condensed in a narrow domain near 
the unknown true value of X. The effect of learning may be better in this case than in 
the case of the ideal teacher. 

If, in particular A(dl) = ... = A(6N) = A(6), i.e. the parameter X is constant, then 
the posterior measure 0(AA | £) differs from zero only on the subset of L determined 
by the equations 

(3.5) w^A^Zt (i = 1,...,N). 

If there exists a finite number, say r, of such equations having a unique solution with 
respect to A, then the unknown parameter A is exactly determined after receiving r 
pairs (z1; Wj), ..., (zr, wr) of a teaching signals, and the optimal learning system 
becomes the Bayes optimal system with complete information about A, for which 

^ ( O = o. 
Thus the deterministic real teacher whose operator AT(X) admits a finite number 

of equations of the form (3.5) having a unique solution with respect to A, is the best 



possible teacher making the system completely learned after showing to it the respec
tive finite number of teaching pairs of signals. The ideal teacher is thus by no means 
the best one in such a case. This result seems to be a paradox: the ideal teacher 
showing to the system exact values of the desired output corresponding to given 
values of the input is worse than the real teacher committing errors with probability 
one. The explanation of this paradox is very simple: since in the general case the 
input Z represents some signal distorted by noises, and the desired output Wdepends 
only on the signal, there exists no deterministic operator transforming Z into W. 
This is the reason why the relation between Z and Wis much more difficult to deter
mine from observations than the relation between Z and the output W of a deter
ministic teacher. 

It is also clear that in such cases stochastic real teachers with sufficiently small 
variances of If can be better than the ideal teacher. 

In special cases where the noises are absent or have small variances, the ideal 
teacher may certainly be better than any real teacher. The examples where the ideal 
teacher can make a system completely learned after showing to it a finite number of 
pairs input-output are numerous in pattern recognition theory (see, e.g., [29]). 

Let us now consider an important special case where A(9) represents a Markov 
random process. Let us partition the teaching cycles and the corresponding values 
0 , , . . . , 6N of 9 into two groups du ...,6K and 9K+1, ...,9N and let S, be the set of 
teaching signals received in the first K cycles plus the (K + l)-th input ZK+U B2 the 
set of all remaining teaching signals plus the input Z at the first cycle after learning, 
X\ the set Xu ..., Xp L\ the Cartesian product U~i+X, a,(A^i \ XK+U X\), p^A^), 
o2(A£,2 | X, XK+1), P2(A£2) the respective probability measures a and j8. Then taking 
into account that in this case 

(3.6) A(AA,Al)= f A2(AA,AA^+2|AK+1)dAK+)A1(AK+1,AÁf), 
JAAK + , 

AX(AXK + U AX\) being the probability measure of A(0i), ••-, A(9K+i), and A2(AA, 
AXN

K+2 | XK+i) the conditional probability measure of A(6K + 2), •••, A(6N), A(6) given 
the value XK+, of A(9K+,), we can rewrite (2.10) as 

(3.7) Q(AX | 0 - f d, f ^ % l M ± l ) d ^ 4 i A 3 ( A , XK + 1) 
J AX J i » K + , d£2(£2) 

with 

(3.8) A3(AX, AXN
K+1) = f A2(AA, AXK+2 | XK+1)d,K+lQi(XK + l \ Q , 

JAAK + I 

rWA. ' I.O f d f MgdJjt±iiif)d A (X X«) 



358 Formulas (3.7) and (3.8) show that the learning process can be realized recursively 
in this case, namely Q(AX \ £) can be calculated step by step after each teaching cycle 
using the posterior distribution previously obtained as the prior distribution. This 
fact permits to reduce essentially the capacity of the memory of computers. 

Of course, this is also true for the special case of constant unknown parameter X. 
All the properties of the optimal learning processes studied above were previously 

established for the special case of constant unknown parameter A in [1 —3]. 
We have restricted ourselves to studying learning processes for any finite number N 

of teaching cycles. The reason of this is that only a finite period of learning can be 
realized in practice. Yet the questions of convergence of learning processes when 
N -* oo are also of interest from the theoretical point of view. It is clear from the 
definitions of Section 2 that the optimal learning process is convergent for a given 
value olX and a given sequence £, of teaching signals, if eA?(<5opt) -* 0 when At -> oo. 
It is convergent for a given value of X and almost all possible teaching sequences £, 
if e;t(<5opt) -* 0. Finally, it is convergent for almost all values of X and almost possible 
sequences £,, if e(<5opt) -» 0. 

4. CASE OF DISCRETE SYSTEMS 

All the results obtained in previous sections are valid for the most general forms of 
inputs and outputs of systems. They may be elements of arbitrary sets. The cost of 
this generality is practical impossibility to use the theory for direct calculations. Yet 
the input and output of any real technical system represent some ordinary scalar 
or vector functions of time or other arguments. The large class of modern technical 
systems is the class of discrete or sampled-data systems. This class include, for 
instance, all digital computers. The inputs and outputs of such systems represent 
functions of discrete arguments taking always only finite number of values. Hence 
the sets of all the values of inputs and outputs may be considered as finite-dimensional 
vectors, and the sets A and B of the preceding theory represent ordinary finite-
dimensional Euclidean spaces. 

Thus in the case of discrete systems we may consider the input Z, desired and actual 
outputs of a system W, W, and the teacher output W as finite-dimensional random 
vectors and define their probability measures y(Az; 8 \ X), x(Aw; 6 | z, X), <5T(Aw; 
6 | z,w, w, X) by respective probability densities*: 

(4A) y(Az; 8 | X) = f g(z; d\X)dz, 
jAz 

* If Z, W and W represent discrete random variables, then the probability densities g, k and dT 

represent linear combinations of Dirac delta-functions. If Z, W and W have some possible values 
with non-zero probabilities besides continuous domains of possible values, then the respective 
probability densities g, k and dT represent sums of functions integrable in Rieman sense and 
linear combinations of delta-functions. 



(4.2) x(Aw; 0 | z, A) = f k(vv; 0 | z, A) dvv , 
J Aw 

(4.3) <5T(Aw; 0 | z, w, w, A) = f dT(w; 0 | z, w, w, X) dw . 
J Aw 

To obtain results applicable for direct calculations in technical system design we 
suppose that the parameter A represents also a finite-dimensional vector, and, conse
quently, Lis an ordinary Euclidean space. Thus A(0) of the preceding theory represents 
now a random vector function of 0, and the probability measures A(AA, AT) and 
Q(wX J £) can be defined by respective probability densities: 

(4.4) A(AA, Al) = f dA f a(X X) dA", 
J AX J A A 

(4.5) Q(AX1 £) = f <o(k | £) dA. 
JAA 

Using (4.1) - (4.5) we obtain from (2.10), (2.1), (2.2) and (2.4) 

(4.6) a>(X | £) = c(£) 3(z; 0 | A) f a(A, I) f ] 3(2;; 0,-1 A,) x 
J r '=i 

x p(w,-; 0; | z„ w„ Af) d l , 

where integration extends over the domain of all possible values of the composed 
random vector A formed by all the components of the vectors A(0X), ..., A(0jv), the 
function p(w; 0 J z, w, X) is unity in the case of self-learning, and is determined by 

(4.7) p(w; 0 | z, vv, X) = f dT(w; 0 | z, w, w, X) k(w; 0 | z, A) dw 

in the case of learning with a teacher, and 

(4.8) c(£) = [T g(z; 0 | A) dA f a(A, X) jjfa; 0, | Xt) x 

X P(WC 0; | Z„ W;, A;) d l 

represents normalizing constant generally depending on £. 
In the special case of the ideal teacher, dT represents Dirac delta-function (cer

tainly, multidimensional, in general), and p = k. In the case of any real teacher dT is 
independent of w, and p — dT. 

The value w* of the output of the Bayes optimal learning system corresponding to 
a given value z of the input Z is determined in this case as the value of w minimizing 

(4.9) e(£, w) = f w(X | £) dA f J(w, w | A) k(w; 0 | z, A) dw , 

359 



360 whereas the value w* of the output of the Bayes optimal system with complete 
information about X corresponding to the same value z of the input Z is determined 
as the value of w minimizing 

(4.10) QX(Z, w) = f l(w, w | X) k(w; G\z,X)dw. 

The formulas (2.18) and (2.6) determining the conditional average loss rx(8) and 
average loss R(<5) become in this case respectively 

(4.11) rx(8) = f a2(J | X) dl f s(£ | X X) d£ f Qx(z, w) d(w \ £) dw , 
JL Jx JB 

(4.12) R(5)= (rx(5)ai{X)dX, 

where 

(4.13) «,(A) = f a(A, X) d l , a2(I | X) = - ^ , 

(4.14) s(£ | A, I) = fl(z; 0 | A) n l?(z.; »i | *i) x <*!>*1 -,) K*i5 0< I 2.'' *i» A0 ' 
i = l 

and £t'(w | z), ..., dN(ti> | z), <i(w | cj) represent the conditional probability densities 
of system output W at the respective cycles of its action determining its decision 
functions, of which d(w j £) is to be optimized. 

Let us now consider the special case of learning pattern recognition systems designed 
to recognize which of the mutually exclusive patterns Au ..., A„ is present in the 
input Z received.* The desired output W represents in this case the number of the 
pattern Aw, and therefore is a discrete random variable with n possible values ! , . . . , « . 
The actual output of the system W represents the number of the pattern determined 
by the system. If the refusal to decide is admissble, then Wis a random variable with 
n + I possible values 0, 1, ..., n, the value 0 being assigned to the refusal. As to the 
teacher output W, it may represent either the number of the pattern determined by the 
teacher, or the number of the group of patterns, if the teacher shows to the system 
only to which of several groups into which the patterns are partitioned the input Z 
corresponds, or the estimate of the system response given by the teacher in the case 
of teaching by estimating system actions. Supposing in the latter case that the teacher 
estimate can assume only integer values 0, 1, . . . , r, we cover all the cases assuming 
that the teacher output IP represents a random variable with integer possible values 
0, 1, ..., r (r being equal to n in the first case). 

* We call pattern any set of subjects having some common features in virtue of which they are 
considered as belonging to the same class. The pattern recognition problem consists in distingui
shing between the subjects of different classes, i.e. of classifying objects into several classes. 



It should be emphasized that this case covers also the problem of recognizing any 361 
finite sequence of patterns, since any such sequence may be considered as a single 
composed pattern. 

Let pu ...,/>„ be the probabilities of the patterns Au ..., A„ respectively, jw(z; 0 | A) 
the conditional probability density of the input Z for a given pattern Aw. Then 

(4-15) g(z; 0 | A) = £ pjk(z; 0 | A), 
*=i 

(4.16) fc(w; 0 | z, A) = £ Pk(z, A, 0) <5(w - fc), 
t = i 

(4.17) dT(w; 6 I z, w, w, A) = £ ft.(z, w, w, A, 0) S(w - h) , 
A = I 

and (4.7) becomes 

(4.18) p(w; 0 | z, w, A) = £ Wh(z, w, A, 0) d(w - h) , 
h = 0 

where 

(4.19) Wh(z, w, A, 0) = £ Pk(z, A, 0) e,(z, fc, w, A, 0) . 
t = i 

Formula (4.6) takes the form 

(4.20) co(A | c) = c(0 a(z; 0 | A) f <x(A, I) f ] ff(-<; 0,-1 A;) y # f ( - i . *«• ^ d') d I • 
J r - I 

where 

(4.21) c(£) = f" f 0(z; 0 | A) dA f a(A, 1) ft a(z;; 0; | A;) <P*f(Z(, w;, A;, 0;) d l l ' . 

To obtain this formula from (4.6) strictly the function 5(x) should be replaced by 
some bounded function different from zero only in a narrow interval ( — g, e), e < 1/2. 
Evidently this does not alter the problem. The this function will be cancelled in (4.20) 
and (4.21), and we obtain (4.20) in the limit when e -> 0. Formula (4.20) can, of course, 
be obtained directly from the general formulas (2.10), (2.1), (2.2) and (2.4) without 
limiting processes. 

Finally, (4.9) takes the form 

(4.22) Q(S, h) = £ lkhP*(Z, A) (h = w = 0, 1 , . . . , n) , 
k= 1 

where 

(4.23) P*k(L A) = f Pk(z, A, 6) co(X | {) dA (fc = 1, ..., n) . 



The Bayes optimal learning system must choose the value h of vv minimizing Q(£,, h), 

whereas the Bayes optimal system with complete information about A must choose 

the value m minimizing 

(4.24) Qi(z, m) = t lkmPk(z, A, 0) (m = 0, 1, . . . , n) . 

)t=i 

Example. Let us consider a learning system designed to estimate the parameter U of the input 

(4.25) Z(t) = U <p(t) + X(t) , 

where q>(t) is a given function, U normally distributed random variable with unknown expected 
value X and known variance Du, X(t) normally distributed random function independent of U 
with zero expected value and known covariance Kx(t, t'). The performance of the system is 
measured by its mean square error E(W — W)2. 

Considering the case of discrete systems we assume that the input Z excites the system at time 
instants t = tlt t2,..., tn, and the optimal estimate of U is required at the same time instants. The 
desired output W is in this case the parameter U. The Bayes optimal system with complete 
information about X elaborates its output determined by 

(4.26) WUtv) = DuHM + X (v = \,...,n), 
y ' K ' b^Du + 1 V ' 

(4.27) H W = E ^ z ( 0 , l>(v) = 5>v„<Kt„), 
„=i M=I 

the coefficients gvu being determined by the sets of linear algebraic equations 

(4.28) £ gvuKx(tu, .„) = (p(ta) (a = 1 , . . . , v; v = 1 , . . . , n) . 
n = i 

To determine the Bayes optimal learning system we suppose that the system receives at TV 
cycles of the period of learning the values zlt ...,zN of the input and the respective values w1,... 
...,wN of teacher output, and then must elaborate the optimal estimate of the signal parameter U 
at every instant tlt ...,tn of the first cycle after learning. As to the teacher we shall suppose that 
it elaborates at each cycle the Bayes optimal estimates W*(tv) (v = 1 ri) of W = U with 
random errors Y(t{),..., Y(t„) which represent the values of a normally distributed random 
function Y(s) with zero expected value and known covariance Kp(s, s'). 

The probability density of the input Z and the decision function of the teacher at each of N 
teaching cycles are determined in this case by 

(4.29) g(zi;ei\l) = (2n)~'"2\Kn\-
1'2 x 

xexpl-i^-cWl'x;1^-^)]}, 

(4.30) dT(w,.; sf | zb X) = (2TT)-" /2 | K T | - 1 / 2 X 

x exp {-i[tf. - v{X)-\ K^1[wi - Vi(X)-]} , 



where z ; represents n X 1 matrix whose elements are the values z{(tv) (v = 1, ..., n) of the input 
Z{(tv) at the i-th cycle, £(A) the n X 1 matrix with the elements C(v)(A) = A <p(tv) (v = 1 , . . . . ri), 
Kn the n X n covariance matrix of the input Z with the elements Du (p(tv) ipQ^) + Kx(tv, t^), w{ the 
n x 1 matrix whose elements are the values of teacher output 

( 4-3 i ) ^ ) = b " C + i + % ) ( v = i ' - ' n ) 

at the i-th cycle, v{(X) the n X 1 matrix with the elements 

(4.32) tffti) = M ^ t i , ,(v> = £ , „ Z j ( g , 
fe(v)D„ + 1 „=i 

KT the conditional covariance matrix of the random vector W{ with the elements Ky(tv, t^). The 
probability density of the input Z at each instant tv of the first cycle after learning is given by 
formula (4.29) with n replaced by v (v = 1, . . . , ri). 

Assuming a normal prior distribution of the unknown parameter considered as a random 
variable A with the expected value m and variance D, (4.6) and (4.7) yield normal posterior distri
bution for A, the posterior expected value X*(tv) and variance A(fv) of A being determined by 

(4.33) X*(ty) = A(tv) I—^ + — J £ rjin) + 
V ! K J V ; [fo(v)D„ + 1 bwDu + 1 r=i 

+!i[ci-*w]+^}. 
(4.34) J(rv) = 

D(fe(v)D„ + 1) (b(n)Du + 1)  
~ (b(v)D„ + 1) [(1 + NxD) (b(n)D„ + 1) + Nb(")D] + fo(v)D(ft(n)D„ + 1) ' 

where, in addition to former notations, 

(4.35) >?(v) = i>v„z(t„), {i = thwi(tv), 
K = l v = l 

(4.36) <PM = V - M<V) , x = £ — ^ , 
v ; v ; v=ih(v)D„ + r v=ib(v)D„ + r 

z( / j ) , . . . , z(f„) represent the values of the input Z(t) at the first cycle after learning, and the 
coefficients hlt •••,hn are determined by the set of linear algebraic equations 

(4.37) £«tv,0 = ^ ^ (, = l,...,n). 

The output of the Bayes optimal learning system is given by 

(4.38) w%),M^±m. 
K ' W b<"D. + 1 



364 Formula (2.20) gives in this case the following expression for the relative amount of the 
average loss at each step of the first cycle after learning: 

(439) ^-TUMTT) ( ' - ' "»• 
For the Bayes optimal non-learning system X*(tv) and A(tv) must be replaced by the respective 

prior values m and D. Formula (4.39) shows then that the performance of the learning system 
exceeds that of the non-learning system as D exceeds A(tv). 

As (4.34) shows A(tv) -» 0 when JV-* co, X*(tv) tends to the unknown true value of X, and 
e(<5opt) -* 0. The optimal learning process is thus convergent in this case. 

The case of self-learning may be obtained as a special case where the variance of the teacher 
output Wis infinite. Equations (4.37) give in this case hl = . . . = hn = 0, and hence f. = <P(//;) = 
= x = 0. 

The case of the ideal teacher, as we proved, is formally the same as the case of the real teacher 
whose decision function dT coincides with the conditional probability density of the desired 
output W given the input Z. Thus to obtain the case of the ideal teacher, we must put 

(4.40) Kf(tv,tfl)= — A - a = max {v, fi . 
b Ou + 1 

Finally the case of the deterministic teacher which represents the Bayes optimal system with 
complete information about X is obtained by putting Kp(s, s') = 0. Equations (4.37) give in this 
case hx = .. . = hn = co after which (4.36) yeidl % = co, and formula (4.34) shows that A(tv) = 0 
for any JV and v in this case. This means that the system is completely learned and becomes itself 
the Bayes optimal system with complete information about X after receiving a single value (at any 
of the points t1,..., tn) of the teacher output. This fact is quite clear, since Y(s) = 0 in this case, 
and (4.31) gives 

(4.41) tf(,v) = M _ ± f (v = l,...,n). 
y ' V ' bwZ>u + 1 V ' 

Any of these equations, say the first one, yields immediately the exact value of the unknown 
parameter X. This example illustrates very well the fact established above that the ideal teacher 
showing to the system exact value of the desired output, i.e. the exact value of the parameter U 
to be estimated, is worse than the deterministic real teacher estimating U with random errors. 

5. CASE OF CONTINUOUS SYSTEMS 

In the case of systems with continuous input Z represents a random function of the 

argument / continuously varying in a certain domain T. The outputs W, W and W 

may be discrete in this case, i.e. random vectors as in the preceding section. The 

random function Z(f) is scalar in the case of systems with one input, and vector in the 

case of systems with several inputs. The argument / represents usually time, but may 

be any scalar or vector variable as well. 

To obtain practically applicable results we shall suppose as before that A is a finite-



dimensional vector. Then from (2.10), (2.1)-(2.5), (4.2)-(4.5) and (4.7) follows 

(5.1) o>(A U ) = f d < 7 ^ I K ^ a(X, X) dX 

da(Z \X,X) _ 

with 

(5.2) 

N 

П K # ; ; Ö І I ZІ> * i . A І ) 

fd* f r r ^ n ^ 4 T I *>» •• I z« •• *> •>•»d*' 
J i J r d y ( z ; 0 | A ) ; = i d y ( z ; ; 0 ; | A;) 

Thus it is sufficient to find Radon-Nikodym derivative dy(z; 0 j n)jdy(z; 6 | A). 

We shall consider an important special case where Z(i) statistically depends on 

a finite-dimensional random vector U and has normal conditional distribution for 

any possible values A, u of A, U. In this case 

(5.3) y(tf>z; 6 \ A) = (^(Az; 0 | A, u)/(«; 0 | A) dM , 

where yt(Az; 0 | A, M) is Gaussian conditional probability measure of Z(t) given the 

values A, u of A, U,f(u; 0 | A) the conditional probability density of U (which may 

contain a linear combination of delta-functions) given the value A of A, and integration 

extends over the region of all possible values of U. 

From (5.3) we have 

( 5 4 ) dy(z; 0 | _ _ f _ _Mj_)__ 
d ľ(z; 0 | А) Гd ľ l (z;0 |А,м) • ' 

}dУl(z; \џ,v) ' ; 

and the problem is reduced to calculating Radon-Nikodym derivative of one 

Gaussian measure with respect to another Gaussian measure. 

To calculate this derivative we suppose in addition that for any possible values A, u 

of A, U the random function Z(i) is representable by the series 

(5.5) Z(0 = _ Z v x v ( 0 (teT), 
v = l 

where {xv(f)} is some set of functions independent of A, u (but which may depend on 

the numerical parameter 0). As such set of functions the set of coordinate functions 

of a canonical expansion of the random function Z(i) for some specific values A0, M0 

of A, u may be used. Let {Q(v)} be the set of linear functionals satisfying the biortho-



366 gonality condition 

(5.6) Q^xu = <5V„ . 

Such set may be determined, for instance, using the procedure indicated in [30], 
§ 63. If xv(t) represent the coordinate functions of some canonical expansion, then the 
set {£2(v)} is automatically determined while finding this canonical expansion [30], 
§§60-62. 

From (5.5) and (5.6) follows 

(5.7) Zv = fl(v) Z(t). 

Formulas (5.5) and (5.7) establish complete equivalence between the random function 
Z(t), t e T, and the set of random variables {Zv} in the sense that any set of values {zv} 
of {Zv} determine completely the corresponding sample z(t), t e T of Z(t) and vice 
versa. 

Let us now find the conditional probability density ft(X, u | z) of A, U given the 
value z[t), t e T of Z(f). We have in virtue of the above proved equivalence between 
Z(t), t e T, and {Zv} 

(5.8) f,{X, u | z) = limj(n)(A, u | zu ..., z„). 
n-»oo 

On the other hand 

J L J dyi(z; 0 I A, M) 

Hence, once ji(A, M | z) is found, the derivative dy t(z; 0 | \i, v)\&yx(z; 6 \ X, u) will be 
determined immediately. To determine f("^(X, u [ zu ..., z„) in (5.8) we notice that 
the joint conditional distribution of Zls . •., Z„ is normal for any X, u with the expected 
values 

(5.10) mv(X, u) = Q^mz(t | X, u) 

and covariance matrix Kn(X, u) whose elements are given by 

(5.11) kvli(X, u) = Q^Q^Klt, x | X, u) , 

where mz(t | X, u), Kz(t, t' \ X, u) are respectively the conditional expected value and 
conditional covariance of the random function Z(t) given X, u (they depend also on 6 
which is omitted for brevity). Therefore 

(5.12) j(">(A, M | zi, ..., z„) = c„ai(A)j(M; 6 \ X) X 



x exp { - ± t k" (A, u) fiWC-O) - m2() | A, «)] [Z(T) - 3 6 ? 

v, / t= l 

- m2(T | A, u)] - I In A„(X, u)} , 

where fc^,(l, u) represent the elements of the inverse matrix K;l(X, U) (necessarily 
depending on n), c„ the normalizing constant independent of X, u, and A„(X, u) the 
determinant of the n x n matrix r„(X, u) with the elements 

(5.B) "*m)-%$}-

{Dx} being an arbitrary sequence of positive numbers. 
Now introducing the bilinear operator 

(5.14) Qn(X, u) = £ p - ( A , « ) - D ; 1 ^ ] e W > 
v, / l=l 

and the linear operator 

(5.15) Ln(X, «) = £ [ £ k;„(x, u) QPmJf | X, «)] fi<" , 
v = l n = l 

we rewrite (5.12) in the form 

(5.16) f["\X, u | zu . . . . z„) = c„ «.(.l)/(i., 0 | 1) exp {-*&,(.!, u) z(r) Z(T) + 

+ Ln(X, u) z(t) - tfn(X, «)} , 

where 

(5.17) P„(X, u) = Ln(X, u), mz(t \ X, u) + In An(X, u). 

Substituting (5.16) into (5.8), taking the limit with n -» oo, and comparing the result 
with (5.9), we find 

/ 5 l g ) dYl(z; e\n,v) = exp {-jQjfi, v) z(t) Z(T) + L(fi, v) z(t) - j/tfrz, v)} 

d7l(z; 9\X,u) exp { -\Q(X, u) z(t) z(x) + L(X, u) z(t) - ifi(X, u)} ' 

where 

(5.19) Q(X, u) = Jim QR(X, u), L(X, u) = lim Ln(X, u) , 
IJ->OO n->oo 

and 

(5.20) P(X, u) = lim P„(X, u) = L(X, u), mz(t \A,U) + In A(X, u) 

with A(X, u) = lim A„(X, u). 



368 Now we introduce the random function 

(5.21) X(t) = tv,xv(t) (teT), 
v = l 

where Vv are uncorrelated random variables with zero expected values and variances 
equal to the respective numbers Dv chosen so that the series 

(5.22) lDyxl(t) 
v = l 

be convergent for all t e T Then the random function X(t) has bounded covariance 

(5.23) Kx(t,r) = iDvxv(t)xy(x) (t,xeT). 
v = l 

Now it is easy to show that the operators Q and L satisfy respectively the linear 
equations 

(5.24) Q(X, u)ts Kz(t, x\X,u) Kx(s, a) = Kx(x, a) - Kz(x, a\X,u) (x, a e T), 

(5.25) L(X, u)t Kz(t, x [ X, u) = mz(x | X, u) (x e T). 

Formula (5.18) determines the Radon-Nikodym derivative of two Gaussian 
measures, if they are absolutely continuous one with respect to other (i.e. equivalent), 
as is generally the case. But this formula is also valid, if these two measures are 
orthogonal, giving in such a case Radon-Nikodym derivative in the form of the 
delta-functional (which is the generalization of usual Dirac delta-function). From 
(5.18) follow as special cases some results of papers [31, 32]. 

Substituting (5.18) into (5.4) formulas (5.1) and (5.2) give again (4.6) with 

(5.26) g(z; 8\X)= f/(«; 9 \ X) exp {-$Q(X, u) z(t) z(x) + 

+ L(X, u) z(t) - W(X, u)} du . 

Thus in the case of systems with continuous input and discrete output the posterior 
probability density of A(9) is determined by (4.6) and (4.7), g(z; 9 \ X) being the 
functional of z(t) given by (5.26) with operators Q and Lsatisfying the linear equations 
(5.24) and (5.25), and the function J? determined by (5.20). 

To solve equations (5.24) and (5.25) the method of canonical expansions of random 
functions may be applied in the general case. Representing the random function 
Z(t), t e T for given X, u by some canonical expansion, we find P(X, u, a)t = 
= Q(X, u)ts Kx(s, a) and L(X, u) as shown in [30], §§ 135, 136, after which using some 
canonical expansion of the form (5.21) of the random function X(t), we obtain by the 
same techniques the operator Q(X, u). In various special cases other techniques can 
be used (see, for example, [30], §§ 128-133, and [33]). 



The most difficult for practical calculations in evaluating g(z; 9 | X) is the finding 
of the infinite determinant A(X, u). To derive a suitable expression for A(X, u) we put 

(5.27) Kz(t, x | X, u) = Kx(t, x) + R(t, x\X,u). 

Then taking into account (5.6) and (5.23), formula (5.13) yields 

(5.28) Уv„(A " ) = <5v„ + 
QүïQ^R^t, x\X,u) 

V(->A) 
Using the conventional expansion for A„(X, u) and passing to the limit with n -> oo, 
we obtain in virtue of linearity of the functionals £2(v) 

(5.29) A(X,u) = í+ I ±-0%\ 
P = I p! 

Utpz„ 

RHJi(h,*i\i,u) ••• * w , ( í i . * - i *.«] 

H. ..(<•-, Td M • - * W , ( í f ,T , |A ,« ) 

where Rj/t, T | A, M) represent the elements of the matrix R(t, x | A, w), and 0 is the 
bilinear operator 

(5.30) 0 = X J 5 ; 1 Í 2 ( , V ) Í 2 ( ; ) , 

0'.-j acting on a matrix whose elements are numbered by i,j and represent functions 
of t, x. 

It is easy to show that the operator 0 satisfies the linear equation 

(5.31) 0tsKx(t, x) Kx(s, a) = Kx(x, a) (x, a e Ť) . 

Formula (5.29) is especially convenient, if R(t, % \ X, u) is small as compared with 
Kx(t, T). In this case only a few first members of the series in (5.29) will suffice. The 
numbers Dv can be chosen optimally so that Kx(t, x) coincide with the expected value 
of Kz(t, x | X, u) averaged with respect to X, u. 

Equations (5.24), (5.25) and (5.31) represent linear integral equations of the first 
kind, if Z(t) is a scalar random function, and sets of simultaneous linear integral 
equations of the first kind, if Z(t) is a vector random function. Finally, (5.24), (5.25) 
and (5.31) represent sets of linear algebraic equations, if Tis a discrete set of values 
of the argument t (case of discrete systems). 

The special case where Z(t) represents the sum of two indepedent random functions, 
one of which has normal conditional distribution for any values X, u of A, U, and 
other is independent of A, U normally distributed random functions, was first 
studied by L. P. Sysoev [34] who used canonical expansions in another way and 
obtained for this special case another expression for A(X, u). 



In the special case where Kz(t, T | A, tt) is independent of X, u, it can be taken as 
Kx(t, T). Then (5.24) and (5.29) give Q(X, u) = 0, A(X, u) = 1, and we obtain the 
results formerly derived in [35 — 37] (see also [30], § 144). 

In the case of systems with continuous input and continuous output we obtain 
from (2.10), (2.2)-(2.5), (4.4) and (4.5) the expression (5.1) with 

(5.32) ^ \ X , l ) U C d y ( z ; B \ , ) x 

m) LL JLdy(z;9\X) 

< = i dy(z;; 9t \ A;) d<5T(u>;; 9; \ z;, w;, A;) J 

The Radon-Nikodym derivative 

d<5T(w; 0 | z, w, n)jddT(w; 9\z,w, X) 

can be calculated by the same techniques as dy(z; 9 \ fi)jdy(z; 9 \ X) in the case where W 
represents a random function W'(p), pe P, depending on A and some other random 
vector A, and having normal conditional distribution for any z(t), t e T, w(s), seS, 
and any possible values X, a of A, A. In the case of teaching by show <5T is independent 
of w(s), and P coincides with S. In the case of the ideal teacher <5T in (5.32) coincides 
with x. 

Thus in the case of systems with continuous input and output foimula (4.6) for the 
posterior probability density co(X \ £) is valid with g(z; 9 | X) determined by (5.26) and 

(5.33) p(w; 9\z,w,X)- dT(w; 9 \ z, w, A) = 

= jT(a; 0 | z, w, X) exp {-iQT(z, w, X, a) w(p) w(q) + 

+ LT(z, w, X, a) w(p) - iPT(z, w, X, a)} da , 

where fT(a; 9 \ z, w, A) is the conditional probability density of the random vector A 
given z(t), t e T, w(s), s e S, X; QT(z, w, X, a) the bilinear operator satisfying the linear 
equation 

(5.34) gT(z, w, X, a)pq K*(p, £ | z, w, X, a) Ky(q, n | r, w) -

= Ky(£, il\z,w)~ K^, n\z,w, X, a) (L n 6 P) , 

LT(z, w, X, a) the linear operator satisfying the equation 

(5.35) LT(z,w,X,a)pK^(p,i\z,w,X,a)~m^\z,w,X,a) ( £ e P ) , 

and 

(5.36) pT(z, w, X, a) = LT(z, w, X, a)p m*(p | z, w, X, a) + In AT(z, w, X, a), 



AT(z, w, X, a) being the infinite determinant with the elements 

(,37) a„u.).W^.;l^.^), 

m#(p | z, w, X, a), K#(p, q \ z, w, A, a) the conditional expected value and covariance 
of the random function W(p), r(v) the linear functionals similar to £2(v), Av positive 
numbers similar to Dv, and Ky(p, q\ z,w) the conditional covariance of the random 
function Y(p) costructed in the same way as X(t). The infinite determinant ^lT(z, w, 
X, a) can be expressed by the formula similar to (5.29). 

To obtain the expression for Q(%, W) suitable to practical calculations, it is necessary 
to impose certain restrictions on the loss function. 

At first we suppose that the loss function l(w, w \ X) is an ordinary function of the 
values of the functions w(s) and w(s) at a finite set of points s1? ..., sm. In this case 
formula (4.9) is valid, k(w; 6 \ z, X) being the joint conditional probability density 
of W(Sl),..., W(sm). 

Secondly we consider the loss function which is a functional of w(s), w(s), of the 
form 

(5.38) l(w, w | X) = (Psa(s, w(s), w(s) | X), 

where <Z> is a linear functional in a space of ordinary functions of s, s e S, and a 
a function of s, w(s), w(s) which may depend also on the derivatives w'(s), w"(s),... 
..., wip)(s), w'(s), w"(s), ..., w(p)(s), p being some positive integer. In this case 

(5.39) <?(£, w) = (* co(X j i) 6X<PS J a(s, w, w(s) | A) k(w; s, 9 \ z, X) dw , 

where k(w; s, 6 \ z, X) is the joint conditional probability density of W(s), W'(s),... 
..., W(p)(s) for a given value of the argument s. 

To estimate the performance of the learned system only eXi(6) can be used in the 
genera] case. The quantities ê (<5) and e((5) can be calculated practically only approx
imately. And only in some special cases one may succeed in obtaining exact values 
of £A(5) and e(<5), as we shall see in the following example. 

To obtain e^(o), we use (4.9) and (4.10), or (5.39) and the corresponding expression 
for Q,{Z, w): 

(5.40) QІz, w) = Фs I a(s, w, w(s) | X) k(w; s,в\z, X) dv 

In the special case of recognizing system with continuous input (its output is 
always discrete) all the formulas of the preceding section are valid, if the input Z(t) 
is a random function of the type considered, with fw(z; 6 | X) given by the formula 



372 similar to (5.26): 

(5.41) /w(z; 0 | A) = (/(i.; 9 \ X) exp { -4QW(A, u) z(t) z(x) + 

+ LW(X, u) z(t) - i/Jw(l, «)} d« , 

operators Qw and Lw being determined by the equations similar to (5.24) and (5.25), 
and the function /?w by the formula similar to (5.20). 

Example. Let us consider the problem of the example of the preceding section, supposing that 
the input Z(t) excites the system continuously in the interval of time 0 ^ ( ^ T and the optimal 
estimate of the parameter U is required at any instant i of the interval s0 5S s 5S T. The output 
of the Bayes optimal system with complete information about X is in this case determined by 

(5-42) W*^ = 17Y^~T (*°=- = r ) ' 
b(s) Du + 1 

where 

(5.43) H(s) = rg(s, t) Z(t) dt, b(s) = f Sg(s, t) cp(t) dt, 

the weighting function g(s, t) being determined by the integral equation 

(5.44) (Sg(s, t) Kx(t, T) dt = q>(x) (0 <, T g T) . 

To find the Bayes optimal learning system we suppose that the system receives the teacher 
output W(s) continuously in the time interval s0 :S s 5̂  T at each cycle of learning. We assume 
also that the teacher gives the Bayes optimal estimate W*(s) of W(s) = U with random error Y(s) 
representing a normally distributed random function with zero expected value and the covariance 
Ky(s, s'). Using (5.20), (5.24)—(5.26) and (5.33)—(5.36) and taking into account that A(X, u) = 
= AT(z, w, X, a) = 1 in this case, we obtain 

(5.45) g(z; 0\X) = c, exp f - m±±£*zl£. ffl ± W\ , 
' 1 2D„[6(r) D„ + 1] J 

(5.46) dT(w; 6 | z, 1) = c2 exp {[£ - #(-.)] A - |xA2} , 

where Cj, c2 are constants independent of X, q(s) is determined by (5.43) with Z(t) replaced 
by z(t), and 

' h(s) ds 

+ 1 ' 
(5.47) C = f V - ) «(-) ̂  , <%) = I r -^)^)dj- , x = f' U@ 

the weighting function A(j) being determined by the integral equation 

(5.48) !\(s) K,(s, a) ds = - * (s0 £ <- ^ T ) . 



Then assuming as in the example of the preceding section the normal prior distribution for A 373 
with the expected value m and variance D, we obtain the normal posterior distribution a>(X \ £)> 
the posterior expected value X*(s) and variance A(s) of A being determined by 

(5.49) X*(s) = Ms) I ^ + ! V n/T) + 

K ' W W \b(s) Du + 1 b(T) Du + 1 kx ' 

+ I [ C . - * ( • . . ) ] + - $ , 

(5.50) A(s) = 

= P[fr(s) Du + 1] [6(T) £>„ + 1]  
~ [fe(s) Du + 1] {(1 + NxD) [b(T) Du + 1] + M>(T) D} + b(s) [b(T) Du + 1] ' 

The output of the Bayes optimal learning system is determined by 

b(s) Du + 1 

Finally, we shall estimate the results of learning. Using (4.9) and (4.10) with quadratic loss 
function l(w, w\X)= (w — w)2, we see that E;.^(t5opt) is independent of X, «J, and therefore 

(5.52) £(<5opt) = EA(Apt) = eA,(5opt) = A{^ 
Du[b(s) Du + 1] 

Thus the fortunate circumstance — the independence of Q(£, W*) and QX(Z, w*) of A and <J — 
gives in our case the possibility to find Sf(8op^ and £(<5opt) without tedious calculations. Such 
a case is, however, rarely encountered in problems of practice. 

(Received August 22, 1967.) 
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Optimální učící se systémy 

V. S. PUGAČEV 

V článku se probírají optimální Bayesovy učicí se systémy a základní vlastnosti 
jejich algoritmů z hlediska obecné teorie učících se systémů. Diskutují se obecné 
koncepce učícího se systému, učitele, forem učení se, typy učitelů atd. Uvažuje se 
obecný případ reálného učitele řídícího procesy s náhodnými chybami. Případ 
ideálního učitele, který se dříve uvažoval výlučně, je pojímán jako zvláštní případ. 
Zavádí se míra odlišnosti učícího se systému od optimálního systému s úplnou infor
mací. 
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