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On the Variance in Controlled Markov Chains

PeTR MANDL ‘ : j

The variance of the reward in an absorbing Markov chain and the asymptotic variance of the
reward in an ergodic Markov chain are investigated. Attention is payed to optimal homogeneous
Markovian controls which minimize the variance.

1. NOTATIONS

Notations introduced in [4] are followed in the present paper and references to [4]
are made on some places. However, both the notations and the references are accom-
panied by comments which make the use of [4] avoidable. ‘

Let a controlled Markov cham W1th state space I = {1 2,. r} be given by two
_ systems of matrices

' ”P(j{ 3 Z)”;'.k=1 ’ ]lc(f= k; Z)Hg',k=1 ,ozeJ ={1,2,..,5}

p(Jj, k; z)is the transition probability from state j into state k under control parameter
value z. ¢}, ks z)is the reward from such transition. A control of the chain is identified
wuh a sequence of func‘uons

w = {z (Jo» -- .,‘j,,), n=20,1,...}.

z,(jo, ., Jn) is the control parameter value which is chosen at time n following the
occurrence of states jq, ...,J, @ is called a homogencous Markovian control if
Zy(Jor + oo dn) = 2(j,), n = 0,1; ... We write then @ ~ z(j). For each initial state j,
a control w together with the transition probabilities define the probability distribution
P$ of asequence {X,, n = 0, 1, ...} of random variables describing the development
of the chain under w. The mathema‘ucal expectation with respect to this probability
distribution will be denoted by E? - : :
The reward up to time n is given by

v

Gy = z C(Xm—b Xm;-zm—l(XO’ ‘oo Xm—l)) .

m=



We do not mark the dependence of C, on o explicitly. For shortening we shall also
omit the ‘arguments X, ..., X; and jo, ..., ji in z(Xo, .-, Xi) and z(jo, ..., ji),
respectively.

2. REWARD UP TO THE FIRST ENTRANCE INTO A CHOSEN SET
OF STATES

Let Iy < I. Denote by N the first entrance time of the trajectory {X,,, n=0,1, }

into Iy, i.e.,
N =inf{n:X,el,}.
We assume that
(1) i EiN <, jel,
holds for all homogeneous Markovian controls w. By Theorem 1 § 8 [4], relation (1)
is valid for arbitrary w. We introduce
N
C=Cy= Z C(X-wb X3 Zn—l) B
n

=1

the reward up to the first entrance into Iy. Our investigation of the variance of C
will be based on a formula for its characteristic function which is presented as
Theorem 1.

Note that for an arbitrary homogeneous Markovian control & ~ 2(j) we have

@ ESe% = $p(j, ks 23)) € URIMERE  jer 1,
k
EJ%eC =1, jel,, —0 <9< w.

Moreover, (2) as system of equations for (E3e™, ..., E%'*C) has a unique solution
for 9 from a neighbourhood of 0. This follows from the fact that its determinant
is non-zero for 8 = 0 in virtue of (1). Since the solution of (2) is infinitely differen-
tiable at 9 = 0, we conclude that !

Ef|Cf <, k=1,2,.. jel.
For the first two moments we get from (2) the equations
®3) ESC = Yol ks 2(3)) (e ks 20) + ERC), jel -1,
EJC? = Tp(), ks 2() (e ks 207)) + 2¢(j k; 2())) ESC + ERC?),
jel —1,,
EC = E}C* =0, jel,.



Theorem 1. Let & ~ #(j) be a homogeneous Markovian control, @ an arbitrary
control. Then

N-1
(4) Ege™ = EJePC + E7 Y V(X z,, N, jel—1,, —0 <9<,
n=0

where
(), z, 9) = Y p(j, k; z) eV HDETIC — ETeiC
%

Proofl. Let M be a positive integer. Set N’ = min {M, N}. To demonstrate the
Theorem we shall establish the relation
N'—1

) E?eisc;;, - Ej’;eisc +E°Y ,},'(Xm z,, 9) e¥Cn 4
n=0

+ Efiummn M (1 — ES, %9, jel—1,.

Here 2y, » is the indicator of the random event {N > M}. (4) follows from (5)
by letting M — co.

(5) is a special case (m = 0) of
(6) E{e Ot | X =i X = jm} = E2e¥C +

Jm
N'—-1

+ E:){ Z T(Xn, 2, 3) ei.‘l(C,.-Cm) + X{N>M)ei3(CM—Cm) (1 — EiMei.‘JC) I ‘X1 =
n=m

= Jiree X =jm}v j¢10,-~-,jm¢10,

which will now be verified by induction for m = M, M — 1,...,0. For m = M,
(6) is obvious. Thus, let (6) hold for some m, M = m > 0. Then, substituting from (6)
into

EPeiO =m0 | X = iy ooy Xt = e} =

= Tplim-1: ks 2 ) @PCUm ks DR[O ) | X = X, =
k

) m-1
= Jmet1s X = k}
we obtain

i8(C+ —Con— . , 5 isC .
E?{el (O ‘)|X1 = 1o Xt =1m—1} =Ej,_,e" — Ej

Jm-1

eiélC +
N'-1

+ ;p(jm—la k; zm_])ei&c(jmq,k;zm-x)Ek«BciSC + E;’{ Z lP(Xm 2z, 3) ei3(0n—Cm—x) +
n=m
+ Xy emcl‘{'cmq)(1 - E3, %) [ Xy =i Xyt = Jm-1} =

dm-1

N'-1 -
= g% eiSC + Ef{ Z 1 Y’(X,,, Zn 9) CiS(C,.—Cm—\) +
n=m—

+ Avemy eis(cM~cm_l)(1 - E?rM emc) | X, =jpenXy g = jm—l} .

By this, the inductive proof of (6) is accomplished. [



Relations for the moments of C are obtained by differentiating (4) and by setting
9 = 0. Thus, let

. dr . . Y m m
¥.(j, z) = i P(j, 2, 9) |s=0 = IZp(], k; z) EXc(j, k; z) + C)" — ESC™.

For the first moment EYC = u(j; @) we obtain from (4)
N-1
)] u(j; o) = ulj; ®) + E} ZO Y (X, 22) -
P
Let & ~ Z(j) be an optimal control, i.e.
u(j; @) = 4(j) = max u(j; 0}, jel.
«w
Then .
i 2) = Xoli: ks 2) (el ks 2) + alk)) ~ i) -
Moreover, we have the Bellman equation (3 § 8 [4])
(j) = max kZp(j, k; 2y (c(j, k; z) + a(k)), jel —1I,.
Hence,
(8) ' 0=max ¥,(j.2), jel—1I,.
For jel — I,, the set of all z for which ¥,(j, z) = 0 will be denoted by J(j). (7) and
(8) imply the following Corollary, which is a rather immediate consequence of Bell-
man’s principle.
Corollary 1. w is an optimal control if and only if
9) P{(z/(Xos ... X,)eJ(X,), n=0,1,. . ,N~-1)=1, jel~1I,.

We shall now characterize those among controls satisfying (9) under which the
variance of C, EYC* — #(j)?, is minimal. Thus, let (9) hold for . & in (4} is assumed
to be an optimal control. Then

10)  ¥(j, 2z 9) = 1¥,(j,2) ¥ + O(%*) for 80, jel—1I,, zeJ(j).

From
E9C? = lim 972 E9(e'€ — 2 + e "% =
30
~1
= lim 872 {E3(e™ — 2 + e + E? Y (¥(X, 2, §) e +
80 n=0

+ Xy 2, —9) TN, jdo,



we get using (10)
N-1

(11) E9C? = E3C* + E2 Y. ¥y(Xw 2), J¢lo.
n=0

For j e I, the validity of (11) is obvious.
(11) 1mphes that the minimization of E§C* — #(f)? amounts to the minimization
V-

of E} Z ¥,(X,, z,)- We can therefore follow the reasonmg which lead to Corollary 1.

Introduce
o 8(j) = min {E?C? : o satisfying (9)} .
Then '
’y N-1 .
S(j) — ESC* = min {E? ¥, ¥,(X,, 7,) : o satisfying (9)}
#=0
fulfils the Bellman equation
(12) S(j) — Ejc? = n}(lr; {w,(j, 2) + ;p(j, k; 2) (S(k) — EPC)}, jel —1I.
zeJ(J,
(12) gives after simple transformations
(13)  8() = min Y.p(j, k; 2) [c(ji, k; 2)* + 2da(k) c(j, k; z) + S(k)], jel —Is,
zel(j) k
S§(G)=0, jel,.

(13) can also be obtained more directly from (3).
Let J'(j) be the set of all z e J(j) which minimize the expresion on the right-hand
side of (13). Using Corollary 1 we get the following Theorem.

Theorem 2. For jeI-— I, we have
E7C = a(j), Ej(C = 4(}))* = min {EF(C ~ a(j))? : E7C = 4(j)}
if and only if

PYz(Xos ... X, )eV(X,), n=0,1,.,N—1)=1.

Collorary 2. There exist homogeneous Markovian controls which minimize the
variance of C.

Remark 1. Relation, analogous to (4), for the djscounted reward =

™s

D=

n
ﬂm_lﬁixm—x, X zm—i) , D= lem_l C(Xm—n D, Zm—l) s
m=

0<B<1’

m=1




reads
E?e®P = E3'P + ES Y. WH(X,, z,, B"9) P, jel, —w<§<w.
n=0
Here

W, 78) = Talj, ki 2) UMD BRI — B0
k
3. MEAN REWARD PER UNIT TIME

In this Section we make the following assumption: For arbitrary homogeneous
Markovian control o ~ z(j) the states which are recurrent with respect to
|l2(j, k&5 z())|[}1=1 form only one class. A slightly stronger assumption was made in
§9 [4]. but it is not difficult to verify that the results from §9 [4] which will be
employed here are valid under the present hypothesis.

Letd ~ E( j) be a homogencous Markovian control. Denote for the sake of brevity
G, ks 2 5a=1 = [Palis=r = P, P* = |50 }s=1
<G ks 2@ F=1 = lemlin=s -

In virtue of the above assumption we have

(14) lim pfp = m, kel,

n-+wo

and hence, the limites
(@) = lim n"*EJC, = }.Y mpucy
n—co ki
exist and are independent of j. Moreover, the limites
& ~ «©
@15) w; = lim (EfC, — n®) = 202‘;;(115'}2 ~ ) PuCir
n-> oo n=
are finite. Here 6 = (). In fact, since the convergence in (14) is exponential,
o
(16) 3 |w;, — E3C, — nB| < 0.
n=0

Let us recall the following proposition (Theorem 3, §9 [4]): & is the unique
number to which there exist w,, ..., w, such that

(17 i w;+ 6 = ;pjk(c,,‘ +w), jel.

The numbers wy, ..., w, are determined by (17) up to an additive constant. Conse-



quently, (17) together with
(13) Yrw; =0
7

determine w, ..., w, satisfying (15).
Consider now the variance of C,. We have

E¥C, — n@)? = ;P;;Ef(cjk +Cpy — n@)2 = ;pjk[(cjk - 68) +

+ 2y — B)wy + EXNC,y — 1 — 18)* + 2cy — B) (E2C,~, — n — 10 — wy)].
Setting
(19) ;p,-k[(cjk =6y +2ci — B)w] =7,

2;1’#(%‘ - 8)(EZC, — n6 — w,) = o}
we can write

EXC, — nBY =y, + 0] ' + LpuEYCoor — n — 18)*, n=12...
From here, '
EXC, - no)y =:i:: ;pﬁ’,ﬁ"(vk +a™™Y, n=1,2,..

Note that by (16)

and denote

Then

n-1

EXC, — nB)y — ng* = Zo ;[(p;;"’ - m) v + mel] +
—
n-t
+ 3 T~ m el
Thus again, the limites
|

(20) wy; = lim [E%(C, — n8)? — ng*] = Zo Xk:[(pg';‘) — m) Ve + mer]

are finite. A characterization of * analogous to (17) can be given. Namely, 67 is the
unique number such that

(2]) . ‘W2j+&2='yj+;pjkw2ka Jjel,




for appropriate w,y, ..., w,,. Any such numbers differ from those defined by (20)
at most by an additive constant.

The following Theorem contains formulas which are basic for the investigations
of the present Section.

Theorem 3. Let & ~ 2(j) be a homogeneous Markovian control, w an arbitrary
control. Then

M-1
(22) EjCy = MO + w; — Ewx, + ¥ Ej 0i(X,. 2,),

[
- M-1 -
(23) ES(Cyy — M) = MG* + wy; — ESwax,, + 2 Y ES 0,(X,, 2,) (C, — n8) —
n=0
M~1
— 2E}(Cyy — MB)wy,, + ¥ E} 90Xy 2,), jel, M=1,2,..,
- n=0
where )
24 0107,2) = Xl ks 2) [ej, ks 2) + w] = 8 = wj,
(25) @), 2) = 20, ks 2) (e ks 2) — BY + 2(c(s ks 2) — B) wy + wy] —
k
— Wy — 6%

Proof. (22) and (23) are established using induction with respect to M. We shall
verify (23). The proof of (22) is similar. Thus, let (23) hold for some M. Note that

(26) ES ¢,(Xap, za) (Cor — MB) =

= ENc(Xar Xpga15 Zm) — O + wxpy . — Wip) (Cor — MB),
(27) E? 0,(Xpp, za0) = ES[(c(Xpps Xar 413 2m0) — B +

+ 2(e(Xn Xare 13 Za) — B Wxpnr + Waxaear — Waxpe] — 62 -
Hence,
28) E(Cysy — (M + 1) B)* = E}(Cy — MBY +

+ 2E9(c(Xags Xpra 15 2m) — O)(Cyr — MO) + EYe(Xpp, Xpr 415 Zu) — O) +
+ E?(pl(xM’ ZM) - 2E?(C(XM5 Xys1s ZM) - @) Wxarer —
— ESWyxyes, + ESWoxy + 6%

Inserting for EY(Cy — M®)? from (23) into (28) we get

EYCysy — (M + 1) 8 = (M + 1)6* + wy; — ESwoy,,,, +



M
+2Y E2 9,(X,, 2)(Cp — 1) — 2EX(Cppay — (M + 1) B) wy ., +
n=0

Xag+1

M
+ ZOE‘)‘-’ @2(Xis 2,) -
=

Since (23) holds obviously for M = 0, the inductive proof is accomplished. [
Note that no special properties of &, wy, ..., w,, &2, Wa1, ..., Wy, Were used in the

proof of Theorem 3.

Let

(29) & = max {@(@) : ® homogencous Markovian} .

Then for appropriate & ~ £(j) holds & = (@) together with the Bellman equation
(Theorem 4, §9 [4]) : i :

(30 w; + @ = max Yp(j, k; z) (c(j, ks 2) + wy), Jjel,
z k

or

(31) max ¢,(j,z) =0, jel.

Denote by K(j) the set of all z for which ¢,(j, z) = 0.

Theorem 4. Let (29) hold and let «» be an arbitrary control. Then ESCy — M8,
M =1,2,..., is bounded from above. It is bounded if and only if

ke

(32) Z;)P}’(:,,(Xo, o X)EK(X)) < .

Proof. We shall employ (22). From (31),

E9Cy — MO <w; — ESwy,, £ w; — min w,. .
k

Moreover, EYCy — M8, M = 1,2, ..., is bounded if and only if
(33) ZOE? (X z)) > —0.
(33) is equivalent to (32). O

The conjecture that all controls satisfying Pj(z,€K(X,),n =0,1,2,...) = 1

maximize the mean reward per unit time was presented to the author by Z. Koutsky.

Corollary 3. If (32) holds, then
max EfCy — EJCy, M =1,2,..,

is bounded.



10

Hence, under o, the expected reward up to time M is sufficiently close to the
maximal expected reward for all M.

Let us now investigate the asymptotic behaviour of E{(Cy — Ml @)z for controls
satisfying (32). The investigation will be based on (23). Analogously to (15), (17),
for arbitrary & ~ £(j) holds

M-1
lim Y Ef ¢,(X,, z,) — My(®) =v;, jeI,
[

Moo n=
where
v; + n(®) = 020, 2(J)) + ;p(j, ki 2(j) v, jel.

Set
n(®) =14, ¥i(2) = 0. 2) + ;P(i;k;z)vk —v;,—#, jel,zel.

Then by (22) N
M-1 M-1
(34) Zo E20)(X,, 2,) = MA + v; — Ejvg,, + ZOE_‘;’ i(Xa, 2,) -

The insertion of (34) into (23) yields
(35) E(Cy — MO = M(6* + ) + wy; + v; — Ef(Waxy + Uxy)
M-1 M-1
+2 Zo ES9y(X,, 2,) (C. — n8) — 2E9(Car — MB) wy,, + Zo ESy(X,, z,) .

Let & ~ 2(j) be chosen so that
(39) ) ek()), jel,
(37) v+ A= n;l(n) {0:(j, z) + ;p(j, k;z)v}, jel.
2eK(Jj

Then @(®) = & and (see Theorems 3 and 4, §9 [4]),
fi = min {n(@) : & ~ 2(j), zZ(j)eK()), jel}.
(37) can be written in the form

(38) min ¢,(j,z) =0, jel.
zeK())

Setting @ = & in (35) we get
E)(Cy — MOY = M(&* + A) + wa; + v; — Ef(way,, + vx,,) —
— 2E9(Cyy — MB) wy,, .



From here we infer without difficulties that
P =o(®)}? =6 +19.

Theorem 5. Let (29), (37) hold. Let w be a control satisfying (32). Then, for
M - oo,

M-1
(39) EJ(Cy — MB)? = M6 + ZOE;’ V(X 2,) + O(JM), jel.
Proof. Consider (35). Note that (32) implies

@
Z;)\/(E;“ ?1(X, 2)7) < 0,
ns
and set

A= 23 JES 0, 2)) + max ),

B = max (wy + v, — Wy — ).
) ]

Employing Schwartz Inequality one gets from (35)

(40) ES(Cy — MB)* — A /[ max EJ(C, — n6)*] — B £ Mé* +
15nsM
M-1 -
+ Y EpY(X,, z,) S Ef(Cy — MB)* + 4 /[ max EJ(C, ~ n6)*] + B.
n=0 15agM
(38) and (32) imply

n—-1 M-1
max [n6% + ¥ EY (Xm z2m)] S M&? + ¥ EY (X, 2) +C, M=1,2,...,
m=0 n=0

15nEM

where C vis a constant independent of M. Hence, the chain of inequalities as in (40)
holds with E?(Cy — M&)* replaced by max EJ(C, — n®)* and B replaced by
1SnsSM

B + C. From this, using elementary reasoning, one obtains

(41) \/[lgastE;?(c,, - nBy] = 0(yM), M- .

(40), (41) imply (39). O
Coroliary 4. For any control w satisfying (32) we have .

EX(Cy — MO < M&* + O(JM), M > .



This follows from (39), (38), (37). On the other hand for the homogeneous Marko-

vian control @&
EXCy — MY = M&* + 0(1), M- o,
according to (20).
(Received September 3, 1970.)
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VYTAH

O rozptylu v fizenych Markovovych fetézcich

PETR MANDL

Prdce se tykd Fizenych Markovovych fetézch s kone&nym poétem stavill i hodnot
parametru Fizeni. Prvni &dst je vénovdna celkovému vynosu do prvého dosaZeni
zvolené mnoZiny stavii. Je odvozen vztah (4) pro charakteristické funkce vynosu.
Z ngj vyplyvd charakterizace optimdlnich fizeni, minimalizujicich rozptyl vynosu,
obsaZend ve vEt& 2. Vyklad v &dsti o primérném vynosu na jednotku ¢asu je zaloZen
na rovnostech (22), (23), které jsou nepfimym diisledkem (4). Véta 4 obsahuje nutnou
a postalujici podminku pro to, aby pfi fizeni @ rozdil mezi ofekdvanym vynosem
a maximdlnim moZnym vynosem do libovolného &asového okamZiku byl ohraniden.
Pro takovd fizeni je odvozeno asymptotické vyjddfeni rozptylu (39). Z n&j plyne
zejména, Ze minimdlniho asymptotického rozptylu je dosaZeno p¥i Homogennim
markovském Fizeni.
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