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Algebraic Approach of the Root-Loci Method 
JlNDRICH SPAL 

The correlation of the variations of coefficients and of the induced changes of root values in 
algebraic equations are studied. The results are aimed to the synthesis of linear feedback systems. 

I. INTRODUCTION 

The root-locus method, introduced by Evans [ l ; 2] and applied and developped 
by other authors (compare [3, 4, 5] and others) is a powerful tool in the synthesis 
of linear control circuits. Nevertheless its application remains relatively limited. 

It seems to be two main reasons for it: 

1. In its present form, the root-locus theory is based mainly on geometrical 
considerations, whereas the modern control theory prefers algebraic methods, espe
cially those allowing numerical realization by iterative procedures, suitable for the 
solution on digital computers 

2. The method remains limited to the root-loci derived from the alteration of 
a single parameter, influencing the coefficients of the characteristic equation. There
fore, it is not immediately applicable for the synthesis of linear control circuits with 
a more complex structure of feedback. 

Further, an attempt is made to overcome these shortcomings. The solution is 
based on algebraic properties of the characteristic equation and allows the examination 
of the root trajectories for a linear transfer differential equation even under more 
complex variations of the parameters. 

II. SYNTHESIS OF LINEAR FEEDBACK CONTROL CIRCUITS 

Let us formulate, from this point of view, the problem of the synthesis of a PID 
feedback for the control of a linear system. 



Let us assume, the system to be described by a linear differential equation with 
constant coefficients of the form 

(1) iak.v^(t) = ibk.u«\t), 
k=0 k=0 

u{t) being the input signal, v(t) the output signal, both expressed as functions of the 
time variable t. 

Let us further introduce a feedback, the effect of which is defined by the integral 
setting r;, the proportional setting rp and the derivative setting rd. 

The transfer differential equation of the system with feedback control has the form: 

(2) . iak.v
(k+1Xt) + Zbk(rd.v«+2Ht) + rp.v

(k+lXt) + ri.v«Xt)) = 
k=0 k=0 , 

= f> 4 . „«-"(,). 
k = 0 

The problem of the synthesis consists in the determination of the operational 
settings r;, rp, rd, so as to fulfil the requirements of the dynamics of the feedback 
controlled system. From the equation (2), it may be seen that any of the setting coef
ficients varies the ensemble of (m + l) coefficients on the left-hand side. 

The corresponding characteristic equation of the initial differential equation (l) 

(3) t ak. pk = 0 
k = 0 

is altered by the introduction of the feedback to the form 

(4) "fa* . / = 0 
k = 0 

with the coefficients: 

(5) a*0 = b0.rt, 

a* = a0 + by . r ; + b0.rp, 

a*. = at + b2. rt + by.r-,, + b0 . rd , 

am+i = am + bm+l . r ; + bm . rp + fo,„_1 . ra , 

a*+i = an. 

The synthesis, i.e. the choice of the operational setting of the feedback, is usually 
done with respect to the dominant roots of the characteristic equation, most exposed 



to the right-hand side of the complex plane of the roots. The setting must be performed 
in such a way that the dominant roots attain a position ensuring the desired character 
of the transient process in the system. 

III. CHANGES OF ROOTS INDUCED BY COEFFICIENT VARIATIONS 

Thus, the basic problem of the root-locus method is to find out the connection 
between the variations of the coefficients and between the changes of the roots in 
an algebraic equation with real coefficients of the form: 

(6) £ ck. pk = 0 . 
k = 0 

The examination should be performed in such a way, as to enable the use of suit
able iterative proceedings, without the necessity of repeated solution of the algebraic 
equation with altered coefficients. 

The alteration Acm of any arbitrary coefficient cm is connected with the variation 
Ap, of any selected root p, by the relation 

CO t ck. (p, + APif + Acm . (p, + Ap;)
m = 0 

k = 0 

whence 

- £ ck. (p, + APl)
k 

(8) Лcm = 
k = 0 

(PІ + AP;)" 

As the coefficients of the equation must be real, the increase Acm must be real, too. 
The relation (8) is valid for any value of the increase Ap;. 

IV. COMPLEX ROOTS 

The relation (8) is applicable without difficulty in the domain of real roots. It 
allows to find the necessary alteration Acm, corresponding to the desired variation 
of a root Ap;, chosen in advance. 

The situation changes if the root is a complex one. Choosing in this case an arbitrary, 
real or complex, increase Ap,, we get from (8) an increase Acm, which is in general 
complex, too. Thus, the altered equation will not fulfil any more the requirement 
of real values of the coefficients. 

To fulfil the requirement of reality of the coefficients in the altered equation, the 
increase of the root, Ap,, must be chosen in a quite definite way. To find out this 
characteristic variation of the root, corresponding to the real value of the increase 



366 Acm, let us examine the local properties of the relation 

(9) Acm = gmi(APl) . 

Considering the left-hand side of the equation (6) as a function of two variables 

(10) fmi(cm, p,) = t ck . pi 
k=0 

we may bind both variables with a functional relation 

(H) P, = Fmi{cm) 

in such a way that during a variation of cm the initial equation (6) remains valid. 
By differentiating (10) we get 

(12) --* ik.ck.p
k

i-
l + p7 = 0 

acm k=i 

whence 

dp,- -P? 
(13) <.„.= 

àc„ ïk.cь.p)-

The argument of the generally complex expression on the right-hand side of (13) 
indicates the direction of the infinitesimal variation of the complex root, or in other 
words the direction of the root trajectory, corresponding to the real value of the 
increase Acm. 

For m = 0, i.e. for the alteration of the absolute term of the equation, we get 

(14) ,0|.!k._J-i . 
dCo ifc.c t.Pr 

k = l 

The alterations of other coefficients may be calculated from qoi by the use of the 
relation 

(15) qmi = q0i • P7 (15) 

or by the application of the recurrent formula 

(16) am+i>; = qmi. Pi. 

V. GENERALIZED SETTING PARAMETERS 

The proceeding indicated above may be generalized in the way that the root of the 
equation may be regarded as a function of several or all coefficients of the equation. 



Thus, we get instead of (10): 

(17) fi(c0 ,cuc2,. ••>cn>PÒ = ìck.V\. 
k = 0 

The alteration of singular i :oefficients yields then partial derivatives 

(18) Чm = ÔЉ-
' дcm 

-Pľ (18) Чm = ÔЉ-
' дcm îk. 

* = i 

ck.P

kГ 

367 

A simultaneous alteration of several or all coefficients results in the total increase 
of the corresponding root 

(19) dVi = £ <?mi. dcm = q0i £ p™ . dcm , 
m=0 m=0 

Spt - i (19a) qOІ = 
õc Zk.ck.P

k-
k=l 

If the coefficients are represented as given functions of several independent setting 
parameters su s2 , . . . , Sj, ..., sk 

(20) cm = cm(sus2,...,sk) 

we obtain: 

/•-,.. dPi v̂  Scm Ĵ , m 8cm 

(21) — = l<ln,i.-— = q0i 1 P 7 — 
OSj m = 0 OSj m = 0 OS, 

with q0i given by (19a). 
The resulting variation of the root, caused by the alteration of the setting parameter 

Sj is. 

(22) dPi = d s J i ^ 8 ^ . 
m = 0 OCm OSj 

The formulae indicated above are important from the practical point of view. 
The formula (18) indicates for any root its variation caused by the alteration of any 
singular coefficient of the characteristic equation. The generalized formula (21) 
gives the variation of any root, resulting from a simultaneous alteration of a complex 
of coefficients. The same situation has been met above in formulating the problem of 
the synthesis of a feedback control of a linear system. 

It is important to emphasize that the trajectory of any root is examined separately, 
without taking into account the behaviour of other roots of the equation, or even 
without the knowledge of the values of these roots. 



368 VI. MULTIPLE ROOTS. GENERAL CONSIDERATIONS 

The foregoing considerations assumed the fulfilment of the condition 

(23) fk.ck.p
k'l + 0 

k=l 

equivalent to the assumption, the root, the trajectory of which is examined, to be 
simple. 

Let us now pay attention to the case of multiple roots. For this purpose we trans
form the equation (7) to the form 

(24) Ec f t . i (%rv(A^ = 
k=o, h=o\nJ 

= i (A/>,r i ck (
k) P

kr = ^ + Ap,r • ^ • 
h=o k=o \hj 

The change in the upper bound, performed in the summation by h, is based on the 
fact that 

( ^ . = 0 for all h > k. 

For polynomials of the form (10) 

(25) tcj^-h6^ k=o \hj h\ dp) 

Thus, if pt is a /-fold root of the equation 

(26) f(p) = ick.p
k = 0 

t=o 

both sides in (25) are equal to zero for any 

0 ^ h = / - 1 

but are different from zero for all 

l ^ h ^ n . 

Keeping this in mind, we may arrange (25) to the form 

(27) £ (APif i ck (
k) pk-h = - A c m . (Pi + Ap,r • 

h=i k=o \hl 



VII. NON-ZERO MULTIPLE ROOTS 

Let us suppose the root to be a multiple one with pt # 0. Neglecting increases 
of higher orders on both sides of (27) we get 

(28) lim & l -. Zll 
jc„-o Acm -A (k\ k_, 

I indicating the multiplicity of the root. 
The increase Acm is here of the same order as (Ap/)'. 
From (28) results 

(29) lim APi = lim / Zh. . Ac, 
Jc,„-0 ^Cm-0 I A P<\ k-l 

IHr 
The expression on the right-hand side represents generally a complex value. To 

find its argument let us put: 

(30) cp, = arg 

1/1 

i±Q* 
The value of Acm being real there is 

(31) arg Acm = 0 for cm > 0 , 

arg Acm = 71 for cm < 0 . 

From (29), (30), (31) there results 

(32) arg Ap, =-.£- + - « 

for h = 0 ,1 ,2 , . . . ,(2/ - 1), 

the even values of h corresponding to positive values of Ac„„ 
the odd values of h corresponding to negative values of Acm. 

A /-fold root is the starting point of 2/ trajectories, forming in the proximity of the 
root a regular star. Indicating on the trajectories the direction of positive increase 
of Acm and marking the trajectories successively by numbers in such a way that the 
trajectory with the argument (pjl be marked by 0, we find that the odd trajectories 
aim towards the multiple root, the even ones run away from the root. 



370 VIII. ZERO ROOTS 

The case of a /-food zero root requires special examination. The corresponding 
algebraic equation has coefficients 

ck = 0 
for all 

0 £ fc g l - 1 

Thus, the relation (7) has the form 

(33) t ck. (Ap,)* + Acm . (Ap.)" = 0 . 
k = l 

Going over to the limit we get 

(34) i im(^r: = ^ 
Jcm->0 AC m C; 

valid for all m < I, whence 

(-Ac y / c - " " 
(35) lim Ap; = lim =-) 

,4cm-»0 <4cm->0 \ C, j 

A /-fold zero root is the starting point of 2(/ — m) trajectories, forming again in its 
proximity a regular star, one half of the trajectories aiming again towards the root, 
the other half running away from the root. The remaining m zero roots do not under
go any change with the alteration of Acm, keeping identically the zero value. 

The alteration of the coefficients ck with 

does not influence the value of the zero roots. This fact is evident directly from the 
equation (33). 

IX. VARIABILITY OF SIMPLE REAL ROOTS 

Let us suppose the coefficient of the highest order 

a„ > 0 

and let us examine the variations of the simple real roots, if there are any. Let us 
put again 

(36) / (p) = Y.ak.p
k. 

k = 0 

It is evident that 

(37) l im/(p) = + oo . 



At first let us pay attention to the dominant simple real root. From topological 
considerations we find for this roots 

According to (18) there is 

(39) sign — = sign (-pf) . 
dcm 

In consequence we may formulate for the dominant simple real root the following 
rules: 

1. If the root is positive it decreases with the increase of any coefficient 
2. If it is negative it decreases with the increase of any coefficient with zero or even 

order number, but it increases with the increase of any coefficient with an odd order 
number. 

3. If Pi = 0, it decreases with the increase of c0 and remains unchanged under the 
alteration of any other coefficient of the equation. 

Going over to the next lower simple real root we find again from topological con
siderations that the sign of the derivative has changed. From this fact we may con
clude that neighbouring simple real roots are always moving in opposite directions 
under the alteration of any coefficient of the equation. 

X. SENSITIVITY OF ROOTS VARIATIONS 

The relations (15) and (16) make it possible to estimate the sensitivity of the varia
tions of real and complex roots depending on the alteration of the coefficients. Let 
us define the sensitivity as the absolute values \qmi\. 

Then following relations are valid: 

1. for \p\ > 1 

(40) \qm+h,,\ > \qmi\ , 

2. for |p,| < 1 

(41) . \qm+h,i\<\qm,\, 

3. for |p,| = 1 

(42) l*-+*.i| = |4.i | . 

for any positive values of m, h. 



Thus for |p,| = 1 the roots are equally sensitive to the alterations of any coeffi
cient of the equation. For |p ; | > 1, i.e. for roots situated far from the origin, altera
tions of coefficients of higher order show a more expressed influence on the root 
changes as compared with coefficients of lower order. For \p,\ < 1, on the contrary, 
the coefficients of lower order show a more expressed influence on the root variations 
as compared with coefficients of higher orders. 

XI. EXAMPLES 

In the following the application of the preceeding theoretical considerations is illustrated on 
several examples. 

Example 1 

For the equation 

(1A) 

with the coefficients 

f(p) = I ч • ł - o 
)c = 0 

c3 = 1 , c2 = 4 , c . = 9 , c 0 = 10 

the variations of the root 
pt = —1+21 

were examined for the alterations of singular coefficients c0, c 1 ; c2. 

Fig. 1. 
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c
0 

Pl Чoi 
c
0 

Re Im Re Im 

10-0 -10000 + 2-0000 + 01000 + 00500 

101 -0-9901 + 20050 00987 00504 

10-2 -0-9803 20101 00972 00509 

10-3 -0-9707 2-0152 0-0956 00514 

10-4 -0-9612 2-0204 00941 00518 

10-5 -0-9519 2-0256 00927 00521 

10-6 -0-9427 2-0308 00912 0-0524 

10-7 -0-9336 20361 0-0898 00527 

10-8 -0-9247 20414 0-0885 00529 

10-9 -0-9160 2-0467 00871 00531 

110 -0-9073 20520 0-0858 0-0533 

111 -0-8988 20573 0-0845 00534 

11-2 -0-8905 2-0627 0-0833 0-0535 

11-3 -0-8822 2-0680 00821 00536 

11-4 -0-8741 2-0734 00809 00536 

115 -0-8660 2-0787 00798 00536 

11-6 -0-8581 20841 00786 00536 

11-7 -0-8503 2-0895 00776 00536 

11-8 -0-8426 20948 00765 00536 

11-9 -0-8351 21002 00754 00536 

120 -0-8276 2-1055 00744 00535 

The examination was achieved on a digital computer by application of (13) with the choice 
of iterative steps Acm = 0.02. Intermediate results were fixed after every fifth step. 

The results are given in Tables I, II, III and are shown graphically in Fig. 1. The results were 
not corrected during computation. In spite of it the relative error of the final roots after 200 
iterative steps is of the order of 1 0 - 4 . 

Example 2 

The examination of root variations was done for the equation 

(2 A) g(p) = p.f(p) = 0 

with/CO defined by (1 A) and with the same values of coefficients, so that 

(2B) 
k = 0 



c l 
P\ <7i l 

c l 
Re Im Re Im 

9-0 - 1 0 0 0 0 + 2 0000 -0-2000 + 01500 
9-1 - 1 0 1 9 9 20152 - 0 1 9 9 0 + 0-1547 
9-2 -1-0397 20310 - 0 1 9 6 9 01604 
9-3 -1-0592 2 0474 - 0 1 9 4 5 01657 
9-4 -1-0784 20642 - 0 1 9 1 3 0-1710 

9-5 - 1 0972 20816 -0-1880 01760 
9-6 -1-1158 20994 -0-1843 01807 
9-7 -1-1339 2-1178 - 0 1 8 0 2 01850 
9-8 - 1 1 5 1 6 2-1365 - 0 1 7 5 9 01892 
9-9 - 1 1 6 8 9 2-1556 -0-1714 01927 

100 -1-1857 21750 - 0 1 6 6 7 01961 
101 -1-2020 2-1947 - 0 1 6 2 0 01989 
10-2 -1-2179 2-2148 - 0 1 5 6 9 0-2013 
10-3 -1-2333 2-2350 - 0 1 5 2 2 0-2035 
10-4 -1-2482 2-2554 -0-1472 0-2052 

10-5 -1-2626 2-2760 - 0 1 4 2 4 0-2068 
10-6 -1-2765 2-2967 - 0 1 3 7 8 0-2078 
10-7 -1-2900 2-3175 - 0 1 3 3 1 0-2085 
10-8 -1-3030 2-3383 - 0 1 2 8 5 0-2091 
10-9 -1-3155 2-3592 - 0 1 2 4 0 0-2095 

110 -1-3276 2-3802 - 0 1 1 9 8 0-2097 

c* = 0 , ct^c^,. 

The same root as in Example 1 was chosen. 

The examination was done for the alterations of the coefficient c* again on a digital computer 
by application of (13) and with iterative steps Ac* = 0.02. The results are given in Tab. IV. 

It was not necessary to calculate the variations of the roots, produced by alterations of other 
coefficients, as may be seen from the following consideration. 

By differentiation of 

(2C) g(p) = p-f(p) 

we get 

(2D) 9'(p)=f(p) + p.f'(p). 

But for the roots of the equation (1 A) 

f(p,) = 0, 

Designating by qm the variation of the root of equation (1 A), defined by (13), and by rm the 



c2 
Pí 921 

c2 
Re Im Re Im 

4-0 -10000 + 20000 -01000 -0-5500 
4-1 -10084 1-9449 -00651 -0-5479 
4-2 -10129 1-8898 -0-0247 -0-5445 
4-3 -10132 1-8354 + 0-0177 -0-5338 
4-4 —10095 1-7823 + 0-0546 -0-5185 

4-5 -10020 1-7312 + 00898 -0-4959 
4-6 -0-9912 1-6827 + 0-1201 — 0-4686 
4-7 -0-9777 1-6372 + 01445 -0-4380 
4-8 -0-9620 1 -5949 + 01624 -0-4061 
4-9 -0-9449 1-5558 + 0-1745 -0-3741 

50 -0-9269 1-5199 + 0-1816 -0-3438 
5-1 -0-9084 1-4869 + 01848 -0-3156 
5-2 -0-8897 1-4567 + 0-1848 -0-2901 
5-3 -0-8712 1-4289 + 0-1825 -0-2670 
5-4 -0-8530 1-4032 + 01790 -0-2465 

5-5 -0-8352 1-3795 + 0-1744 -0-2283 
5-6 -0-8180 1-3576 + 01692 -0-2122 
5-7 -0-8013 1-3371 + 01634 -01979 
5-8 -0-7851 1-3180 + 0-1577 -01852 
5-9 -0-7696 1-3001 + 0-1520 -01737 

60 -0-7546 1-2832 + 01464 — 01636 

1 

1 1 
= —ЧOІ 

variation of the root of equation (2A), we find out from (14), (15), (16) and (2D) 

(2E) 

and further 

( 2 F ) r u = pi. r0i = q0i 

Generally 

(2G) 

Example 3 

0І ~ 7~\ ~ ~ 
Pi-f(Pi) PІ 

Гmí = « - , - ! . . 

Analysis and synthesis of feedback for the system with the characteristic equation 

(3 A) f(p) = ick.p
k~Q 
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4 
P\ 'oi 

4 
Re Im Re Im 

00 -1-0000 + 20000 00000 -00500 

01 -1-0000 1-9950 00000 -0-0504 

0-2 -10000 1-9899 00000 -0-0510 

0-3 -10000 1-9848 00000 -0-0515 

0-4 -10000 1-9796 00000 -00521 

0-5 -10000 1-9743 00000 -0-0527 

0-6 -10000 1-9690 00000 -00533 

0-7 -10000 1-9637 00000 -0-0539 

0-8 -10000 1-9582 0-0000 -00546 

0-9 -10000 1-9527 0 0000 -00552 

10 —10000 1-9472 00000 -00559 

1-1 -10000 1-9416 00000 -00566 

1-2 -10000 1-9359 0 0000 -0-0573 

1-3 -10000 1-9301 00000 -00581 

1-4 -10000 1-9242 00000 -00588 

1-5 -10000 1-9183 00000 -00596 

1-6 -10000 1-9123 0 0000 -00604 

1-7 -10000 1-9062 00000 -0-0613 

1-8 -10000 1-9000 0 0000 -00622 

1-9 -10000 1-8937 00000 -00631 

20 -10000 1-8874 0-0000 -00640 

c 0 = 1 , Cj = 4 , c2 = 6 , c 3 = 4 , c 4 = 1 , 

i.e. with a quadruple real root. 
The Hurwitz criterion gives for this case the stability condition [compare [6]) 

c 0 ѓ ^ c 2 - ^ c Л . 
c4 (ЗB) 

As far as we are concerned only with the alteration of c 0 in the realization of feedback setting, 
the admissible value of c 0 is limited by 

c0 = 5. 

For simultaneous setting of c 0 , c,, i.e. for PD feedback control, we get the admissible limit 
values from 

(ЗC) 
d c j c 3 V cъ 



whence 

c 0 = 9 , c. = 12 . 

The setting range of c 1 ; given by (3C), may be too wide for most practical purposes. By limiting 
the range of c1 to, let us say 

we get 
4 й »i ś 6 

c 0 ^ 6-75 . 

With respect of the quality of transients we are limited to about one half of this value, which 
gives for practical application 

Co ^ 3-5 . 

This value is too low with respect to the static deviation. It is therefore advisible to use a feed
back including the integral action, i.e. of the type PI or PID. 

Fig. 2. 

Fig. 3. 

By the introduction of the integral action, the degree ot the characteristic equation is raised 
by a unit, so that the characteristic equation will get the form: 

(3D) 

with 

øG>) = LЧ • / = o 
k=0 

ck = ak+1 . 

Let us consider a0, a1 (PI control) or a0, alt a2 (PID control) as setting parameters. 
Let us examine the root trajectories in the proximity of the quadruple root 

p. = - 1 , j = 1,2, 3 , 4 , 

connected with the alteration of the absolute term. The situation for the equation (3A) is shown 
in Fig. 2, for the equation (3D) in Fig. 3. In both cases the star has the same form, but with 



378 opposite sense of the movement. In equation (D3), a double root 

is formed for 
Pđ = - 0 - 2 

o 0 = 0 0 8 1 9 2 

by coincidence of the former roots p1 = — 1 and p5 = 0. 
According to the theoretical considerations, the root trajectories show a high sensitivity in the 

proximity of the quadruple root. To make sure of it, the connection of the variation of the term c 0 

in (3 A) and of ax in (3D) with the variation of the roots was calculated. 
Changing the roots to 

P l = -I + Ap, p2= -\ - Ap, piA= -\±l.Ap 

we find that only the coefficients c 0 , ax undergo variations. Values of these coefficients and of 
derivatives of the functions f(p), g(p) are given in Tab. V. 

Pl c o ; ű i Дc 0; Aa^ f'(j>i) 

i 

9'(Pi) 

0 1 
0-2 
0-3 
0-4 

0-9999 
0-9984 
0-9919 
0-9744 

- 0 0001 
- 0 0 0 1 6 
- 0 0 0 8 1 
- 0 0 2 5 6 

+ 0-004 
+ 0032 
+ 0-108 
+ 0-256 

- 0 0 0 3 6 
- 0 0 2 5 6 
-0-0756 
- 0 1 5 3 6 

As may be seen from Fig. 3, the initial root p5 = 0 remains the dominant one up to the forma
tion of the double root pd = —0-2. Afterwards, the pair of the complex conjugated roots, arising 
from this double root, represents again the dominant pair of roots. 

For the absolute term a0 reaching the value of 

a0cr = 0-56853 

the stability limit with the purely imaginary roots 

Pi,2 = ± 1 . 0 - 4 1 4 2 1 

is attained. 
There exists a pair of dominant roots in (3D) formed by the alteration of the absolute term 

alone, fulfilling the condition 

(3E) 

They are 

corresponding to the value of 

Re PÍ = + I m Pi 

pu2 = - 0 - 1 6 5 8 0 ± i . 0-16580 

fl0 = 0-20891 . 



Let us choose this pair of complex conjugated roots as the starting point of the establishment 379 
of the feedback setting. We get for this pair of roots following characteristic values: 

g'(pu2) = -0-19568 ± i . 0-48262 , 

^ ^ = +0-72151 ± i . 1-77950, 
da0 

ÕPl.2 

дa^ 
= -0-41467 + i . 0-17542, 

dJLL_l ___ +009784 + i . 0 0 3 9 6 6 . 
da2 

The setting diagram is shown in Fig. 4. It allows to find out the necessary alterations of the 
coefficients for any selected direction of an infinitesimal movement of the root. For example 
to obtain the movement of the root in such a direction as to keep up the validity of the relation 

-0,5 i 

'p,„ 

щУ 
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- 0 . 5 
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-0.2 1 
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»a, \ 
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/ / / 
/_^»Pг 
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- 0 , 5 

Fig. 4. 



380 (3E), it is necessary to alter the coefficients of the equation so as to fulfil the relation 

Aa0 

Aa1 

^ = 0-236 

leaving a2 unvaried. 
Fig. 4 illustrates very clearly the relation of root sensitivity with respect to the variations of 

singular coefficients of the equation. As the absolute value of the chosen dominant roots 

| - 1 > a | = 0-23448 

is substantially smaller than unit, the considerations of Chap. X indicate an inferior sensitivity 
of the position of the roots to the variations of higher coefficients of the equation. 

Actually, the absolute values 

'1,2 

дa0 

àPu: 

= 1-92955, 

ð ű j 
= 0-45027 , 

дЉÀ -
дa2 

= 0-10557 

show, for the case given, the sensitivity of the root position to the variations of the coefficient a0 

to be 4-27-times greater than the sensitivity to variations of the coefficient av, and 18-3-times 
greater than the sensitivity to variations of the coefficient a2. Therefore, the PI type of feedback 
appears to be the most appropriate choice for achieving the setting the dominating roots con
sidered in this example. 

It should be emphasized that this fact is a local property of the root, dependent on its distance 
from the origin. The fact of the matter is considerably changed when considering other roots of the 
same equation, situated farther from the origin. For these roots, the influence of proportional, 
and especially of derivative feedback would be much more marked, as a result of the sensitivity 
properties described in Chap. X. N 

The diagram of Fig. 4 is rigidly valid only in the proximity of the root under consideration. 
For wider variations of the root position, an iterative procedure is to be used, taking into account 
the variations of the root as well as those of the coefficients along the trajectory of the root. 

(Received July 30, 1969.) 
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Metoda kořenových trajektorií z algebraického hlediska 

JINDŘICH SPAL 

Článek se zabývá metodou kořenových trajektorií z algebraického hlediska. 
Formuluje problém syntézy zpětné vazby pro lineární systémy jako variaci součini
telů charakteristické rovnice. Rozebírá souvislost změn kořenů algebraické rovnice 
se změnami jejích koeficientů a podává tak algebraickou verzi vyšetřování kořeno
vých trajektorií. Zvláštní pozornost je věnována současné proměnlivosti komplexů 
součinitelů pro případ, kdy každý součinitel komplexu je danou funkcí ladicího para
metru. Vyšetřují se případy trajektorií v místě vícenásobných kořenů pro nulové 
i nenulové kořeny. Uvádějí se některé souvislosti vzájemných vztahů pohybu kořenů. 
Všeobecné zásady jsou znázorněny na příkladech. 
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