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On the Amount of Information Contained 
in a Sequence of Independent Observations 
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In the present paper basic properties of a Chernoff bound established previously are summarized 
and new ones are derived. The Chernoff bound is figuring as an asymptotic parameter in a formula 
for Shannon's information contained in a sequence of independent observations concerning 
a discrete parameter. 

By 9 we denote a random variable taking on a finite number of values 1, 2,... 
and by £ another random variable with a sample measurable space (X, S£). By 
£,UE,2,... subsequent realizations of £, will be denoted; they are supposed to be 
mutually independent for any given value of 9. Finally, 1(9, £lt..., £„) will denote 
the Shannon's information contained in (£l5 <*2, ..., £,„) concerning 9. 

The information 1(9, tfx,..., £„) can serve as an important numerical characteristic 
of the following statistical problem: the statistician is interested in the value of 9 
which is not directly observable but he can observe the values of E,u£,2, ...,£,„. 
It holds 1(9, (j,!,..., c„) = 0 iff (if and only if) the sample (£,u £2,..., £„) is independent 
of 9. In general 1(9, %u ..., Qe [0, H(9)~], where H(9) is the Shannon's entropy 
of the random variable 9; relation 1(9, £,u ..., £„) = H(9) holds iff for any realization 
of (£,u £2, ...,£„) the value of 9 can be uniquely determined with probability 1. 
(Remark that the first equality holds iff 9 and £ are independent whereas the second 
equality holds iff there exists a deterministic relation between 9 and £.) 

It can be relatively very easily shown (cf. Th. 1 in [1]) that* 

(1) J ( 0 , f 1 ) . . . , g « J J ( 0 ) - e x p ( - n J j ) , 

where D e [0, + 00] depends on a conditional distribution P^g of £ only. The parameter 
D has been independently evaluated by A. Renyi [2] and by the author (cf. Th. 2 
in [l]); it was shown that D is the Chernoff bound [3] corresponding to a Bayes 
testing of the simple hypotheses Jf; : 0 = i, i = 1, 2 on the basis of (£,u £2,... 

» We write anxa~ X" instead of an = a - Xn+oW, n = 1, 2,. . . 



..., £„). In [3], D has been interpreted as an asymptotic efficiency of the Bayes test 
suggested above. 

Some basic properties of the parameter D were presented in [3], another ones 
were stated in [1], however, without explicite proofs. Moreover, it is to be noted 
that assertions (d), (e), and (g) in [1] hold only if the probability measures considered 
there are absolutely continuous (this supposition was not explicitly emphasized 
in [1]). Consequently, an analogical investigation of the "discontinuous" case 
which is very interesting too is advisable. Therefore, by the present rather review 
paper we are resuming the subject of [1]. 

In Theorems 5 — 7 and 9, 10 below the assertions of [1] are summarized (including 
the case where the probability measures mentioned above are not absolutely conti
nuous). In Theorems 1—4 basic properties of a modified a-entropy and a modified 
relative Shannon's entropy are established. The modified concepts differ from 
non-modified ones in the "discontinuous" case mentioned above only; it seems 
however that they are not only more suitable than the non-modified ones when 
asymptotic problems of the present type are solved, but also provide tools for a more 
accurate analysis of such problems. (In this respect, compare, for example, (b) and (d) 
in [1] or (2.8) in [2] with Th. 5 below.) Finally, in Th. 8 a convergence property 
od D's corresponding to a sequence of sub-c-algebras of 3C is established. Though D 
is a special version of the a-entropy, this property cannot be deduced directly from 
the semimartingale convergace theorem. 

1. MODIFIED CONCEPTS OF a- AND SHANNON'S ENTROPY 

Already in [3] a functional of the following form 

. . f p y - « d A i , 0(6(0,1) , 

(cf. also [4]) has been investigated, where p, q are the Radon-Nikodym densities 
of probability distributions P, Q on (X, 3C) with respect to another (dominating) 
probability distribution \i on (X, 3C). In accordance with [4], the functional will be 
denoted by HX(P, Q) and called, simply, a-entropy. Some basic properties of this 
functional can be deduced from Theorem 4.Ls in Chap. VII of [5]. 

Before going into a more detailed discussion of a-entropies, let us note that in the 
statistical model itroduced above we shall suppose that 6 takes on two values 1 and 2 
only and that P[6 = 1] = P[6 ~ 2] = £. It follows from what was said in [1, 2] 
that the general case where the number of possible values of 6 is arbitrary finite does 
not present any essential new difficulty. (In the general case D is defined as the mini
mum of the Chernoff bounds corresponding to the pairs of hypotheses 9 = i, 0 = j 
such that P[6 = i] > 0, P[0 = j ] > 0, taken over all such pairs.) In the sequel, 
P or Q will be interpreted as the conditional distribution Pi[g= t or P$|»=2 respectively. 



308 Thus, 

(2) P«i«....,„ie-i = P x P x ... x P(n times), 

p«.?2...4„|8=2 = S x Q x ... x Q(n times). 

In a connection with an evaluation of the parameter D, the following slightly 
modified concept of the a-entropy will be useful 

(3) K(P, Q) = f 
JC(P, 

where C(P, Q) = {p# > 0} e 3C is a set of absolute continuity of P, Q. 
It is to see at the first sight that H'a = Ha if P, Q are mutually absolutely continuous 

and 

(4) K(P, Q) = Ha(P, Q) a + 0 , 1 , 

for every P, Q. (Let us note that, unless the contrary will be explicitely stated, we shall 
consider the a-entropies for a e [0,1] only.) Further, it is fruitful to notice (cf. [4,6]) 
that Ha(P, Q) is the real restriction of 

p"qx "ăß, 
0) 

p+co 

H(z) = e z u dF(u), 
J - 0 0 

where z = a + ijS is a complex number and F(u) = Q({p < q exp (u)}) is the 
distribution function of the likelihood ratio coresponding to the simple hypotheses P 
and Q. It follows from the theory of bilateral Laplace transform (cf. [7]) that Ha(P, Q) 
is finite for a e [0, 1] and that Ha(P, Q) is an analytic function of a on (0, 1) with 
derivatives (cf. [4]) 

(5) — Ha(P, Q)= I p Y "• (log ?•) d/z for every a e (0, 1), k = 1, 2,... 
d^ Jx V <d 

which, however, need not be always continuous at a = 0, 1. 
Using (4) these results may be immediately applied to H'a; as we shall prove below 

(cf. Th. 2, where properties of H'a as a function of a are summarized), H'a(P, Q) 
is continuous on [0, 1] (or, more generally, on the set J of all a for which H'a(P, Q) < 
< oo; it follows from the theory of bilateral Laplace transform that J is always 
an interval on the real line). 

Since 

(6) H'a(P,Q) = EQXc{PiQ)(P)\ 

the semimartingale theorem cannot be applied to H'a unless XCI.P,Q) = 1 [ 6 ] - Never
theless we shall see that H'a possesses all the convergence properties, which can 



be derived for Ha from the semimartingale convergence theorem. Of course, in view 
of (4), we may restrict ourselves to the case a = 0 or 1. 

Let &! <= 3C2 c . . . be sub-a-algebras of 3C and let P„, Qn be restrictions of P, Q 
on 3Cn, n = 1, 2 , . . . Clearly, C(Pn, Qn) e 3Cn. 

We shall say that a sub-a-algebra 3f„ c # is C(P, g)-sufficient if P(C(Pn, Qn)) = 
= P(C(P, Q)). Obviously, if 9C„ is C(P, g)-sufficient, it need not be also C(Q, P)-
sufficient, but if it is sufficient with respect to P and Q, then it is C(P, Q)- as well 
as C(Q, P)-sufficient. 

Theorem 1. For every a. e [0, 1] 

(7) H'JfuQjZHfa.QjZ... 

and, if 3C is generated by the algebra 

#"0 = U ^ n > 
n = l 

then 

(8) Hm„ H'a(P„, Qn) = H'a(P, Q). 

If as (0, 1) then H'a(Pn, Q„) = H'a(P, Q) iff (if and only if) 3Cn is sufficient with 
respect to P and Q. If a = 0 or 1 then this equality holds iff 3Cn is C(Q, P)-sufficient 
or C(P, Q)-sufficient respectively. 

Proof. By (4), the assertion stated here for a e ( 0 , 1) has been proved in [5]. 
If a = 0, 1 then, it may be easily deduced from the inclusion 

(9) C(P„, Qn) =» C(P, Q) 

and from the fact that {1 — Xc(p„,Q„yi> n = 1, 2, ... is a semimartingale with respect 
to both P and Q. 

To prove (9) it will suffice to prove that the conditional densities 

(10) Pn = E(p | 3Cn) , qn = E(o | 3Cn) 

may be defined in such a way that p(x) q(x) > 0 implies pn(x) qn(x) > 0, xeX. 
If E = {pn = 0} e 9Cn, then the equality defining pn implies that the set F a E of all 
x e X for which p(x) > 0 is of P-measure zero, i.e. we may put p„ = 1 on F. Thus 
p„(x) = 0 implies p(x) = 0 for every x e X. Since we may analogically proceed with 
q, qn, the implication requested above is true. (9) implies that {1 — ZC(P„,Q„)}> 
n = 1, 2 , . . . , oo is a semimartingale, Q.E.D. 

Theorem 2. H'a(P, Q) is continuous convex function on [0, 1] with 

(11) 

- j - ; « ; (P, Q) - . [ p« f l i -«/ log £ y d / i / o r e i ; e r> . fc = 1,2,. . . and a 6 [0, 1] , 
J C(P,2) \ qj 



310 where the integrals in ( l l ) are finite for a e (0, l) and well-defined for a = 0, 1, and 

0 g H'a(P, Q) = 1 , 

where H'a(P, Q) = 0 /o r some a e [0, 1] (and, consequently, for all a e [0, 1]) 
ijTE JL Q and H'a(P, Q) = 1 for some a e (0, 1) (and, consequently, for all a e [0, 1]) 
iff p = Q. For a = 0 or 1, H'a(P, Q) = 1 iff Q < P or P < Q respectively. H'a is 
strictly convex if neither P 1 Q nor P = Q. 

Remark. The derivatives in (11) for a = 0 or 1 are to be considered as those on the 
right or left respectively. 

P roof . We shall prove firstly that H'a is continuous on [0, 1]. One of the methods 
to prove this is to form a sequence of sub-tr-algebras f , c f 2 c . . . o f f generated 
by finite measurable decompositions of X. As it was shown in [8], the decompositions 
may be defined in such a manner that the cr-algebra SC' a <% generated by the cor
responding algebra 3Ca (cf. Th. 1) is sufficient with respect to P and Q. Since, evidently, 
every H'a(P„, Q„) is continuous and convex on [0, 1], it follows from Th. 1 that 
Ha(P, Q) is a limit of continuous and uniformly converging (on [0, 1]) functions, 
i.e. it is continuous as well. The convexity will follow from (11) for k = 2 and the 
assertions following (11) can be deduced from (3) and (11). 

Thus it remains to prove that the integrals in (11) are finite or well-defined res
pectively and that (11) holds. But, according to (5) (see also [4]), the integrals ( l l ) 
are finite for every a e (0,1) and fc= 1,2,. . . Since the functions u(log u)k are 
bounded from below for every u e ( 0 , +00) and k = 1, 2 , . . . , the integrals in ( l l ) 
are well-defined for a = 1 as well. The same is true also for a = 0 and k = 2, 4, 6 , . . . 
If k is odd, then we can write 

f a(log^Yd/< = - f aAog^Ydp 
Jc(P,Q) \ lj Jc(P,Q) V pj 

so that, interchanging the role of P and Q in the case a = 1 above we obtain the 
desired assertion. 

Relation ( l l ) holds for every a e (0, 1) and fc = 1, 2 , . . . by (4) and (5). If a = 0 
and fc = 1 (for a = 1 as well as k = 2, 3 , . . . a similar argument can be used), we can 
write 

H'0(P, Q) - Ha(P, Q) = a f uiM log u do. for every a e (0, 1) , 
Jc(P,Q) 

where £(u) 6 [0, a] is a Borel function of u e [0, + 00] and u = p\q on C(P, Q). If 

dQ log u 
J C(.P,Q) 



is finite the proof is obvious. Now, since log u <. u — 1 for every real u, the fol- 311 
lowing inequality holds 

f log M dQ = P(C(P, Q)) - Q(C(P, Q))< +00 
JC(P,Q) 

and it remains to investigate the case 

log u dQ = - c o , 

where the set C* e 3C is defined by C* = {w = 1} n C(P, 0). Since £(u) e [0, a ] , it 
holds 

M̂  log M ^ M" log M on C* 

and it remains to prove that for every A > 0 there exists a e (0, l) such that 

ux log u dQ < — A . 

If we F„ - {u = 1/n} n C » e l , then 

lim„ log M dQ = - oo 
JF„ 

so that, for some n, 

| logMdQ ^ - 2 A . 
JF„ 

If now 0 = a < log 2/log n, then 

" u01 log u < \ log M on F„ , 

and we can successively write 

M* log M d g = A M * l o g u d Q < i l o g M d Q ^ - A . 
J C, JF„ JF„ 

The same modification as above we shall also consider in connection with the 
generalized entropy of Shannon (or discrimination information) of P, Q introduced 
into the literature by S. Kullback and A. Perez, i.e. instead of 

H(P,Q)- [ plog-dn 
Jx q 

we shall consider 

(12) H'(P, Q)=[ p\ogP-dn = P(C) log %& = - I, 
JC(P,Q) 1 Q(C) e 



312 where C stands for C(P, Q). Let us notice that H'(P, Q) may take on negative values 
as well and that H'(P, Q) < 0 implies H(P, Q) = +00. 

Theorem 3. / / H'(P, Q) < 0 then H'(Q, P) > 0 where the strict inequality holds 
unless either P 1 Q on X or P = Q on C(P, Q) n SC. 

Proof. From (12) we obtain 

(13) H'(P, Q) + H'(Q, P) ;> (P(C) - Q(C)) log g ^ ^ 0 

so that H'(P, Q) <: Oor < 0 implies # ' ( 2 , P) St 0 or > 0 respectively. If H'(P, Q) = 
= i f ( 2 , P) = 0 then, by (13), P(C) = g(C) so that, according to Lemma 1.1 in [9], 
either P(C) = Q(C) = 0 (i.e. P 1 Q on %) or P = Q on C n X. 

The following identity (14) was found for discrete distributions by A. Renyi [10] 
(cf. also [11]). 

Theorem 4. For every P and Q, 

(14) lim — — log H'X(P, Q) = H(P, Q) , 
a - l - a - 1 

(15) lim - - log H'X(P, Q) = H(Q, P) . 
a-»o+ a 

Proof. We shall prove (14) only; (15) may be proved analogically. If P «$ Q, 
then H(P, Q) = +00 and H[(P, Q) < 1 (see Th. 2) so that (14) holds. If P <§ Q, 
then, by Th. 2, H[(P, Q) = 1 so that we can succesively write 

lim ~H'X(P, Q) 

l im _ i _ log H'JLP, Q) = '--I- dg - - = - J ^ ! - =H(P, Q) 

(cf- (11), (12))-
It is to see that (14) and (15) may be replaced by 

±HX(P,Q)\X=0=-H(Q,P), 
da 

±HlP,Q%ml = H(P,Q), 
da 



where the derivatives are to be considered as those on the right or left respectively. 313 
Analogical relations 

~K(P,Q)\^0=-H'(Q,P) 
dx 

~K(P. Q)\a=1 = H'(P,Q) 
da 

follow immediately from (11) and (12). 

2. D-DIVERGENCE 

Now our attention will be paid to D(P, Q) which is a parameter of convergente 
in (l). The fact that D(P, Q), as it will be defined in this section, is identical with 
that of the formula (1) will be proved, for the sake of completeness, in the following 
section. 

Let us put* (cf. (e) in [1]) 

(16) D(P, Q) = sup - log Ha(P, e ) = - l o g min H'a(P, Q). 
K E [ 0 , 1 ] a e [ 0 , l ] 

According to (4) and Th. 2, the minimum in (16) exists and the second equality holds. 
Th. 2 also implies the following two theorems (cf. (b) and (d) in [1]). 

Theorem 5. H'(P, Q), H'(Q, P) > 0 iff 

(17) D(P, Q)= - l o g K(P,Q), 

for K e (0, 1) which is a unique solution of the equation 

(18) [ i > V " a l o g - d K = 0 , 

H'(P, Q) = Qiff 

(19) D(P,Q)= -log H[(P,Q), 

and H'(Q, P) g 0 iff 

D(P,Q)= -log H'0(P,Q). 

According to Th. 3, H'(P, Q), H'(Q, P) S 0 iff H'(P, Q) = H'(Q, P) = 0 which 
is equivalent to P 1 g or P = Q. By Th. 2, both later conditions imply H'0(P, Q) = 
= H[(P, Q) so that Th. 5 is self-consistent. Let us recall that H'(P, Q) 4= H(P, Q), 

* By log we denote in this paper the natural logarithm. 



i.e., particularly, H'(P, Q) < 0, may appear only if P % Q, so that if P = Q, P * Q, 
then (17) is true. 

Theorem 6. D(P, Q) is symmetric non-negative extended real valued function 
ofP, Q. D(P, Q) = 0 iff P = Q and D(P, Q) = +oo iff P 1Q. 

The symmetry stated in this theorem follows from (16) and from the identity 
K(Q, P) = IIi-Xf, 6) which is true for every a e [0, l ] . 

In [3] it was proved that (cf. (f) in [1]) 

IxriI^ne^nIxI^Qi) 
i = l i = l i = l 

and 

IX I ! p» II 6.) = « D(P, Q) if P, = P, Qt = Q, i = 1, 2, ... 
i = 1 i = 1 

Th. 1 together with Th. 2 (cf. (11), (12)) yields the following result (cf. (g)in[l]). 

Theorem 7. / / P', Q' are restrictions of P, Q on a sub-a-algebra 9C' of 9C, then 

(21) D(P', Q') < D(P, Q) 

where the sign of equality holds iff X' is sufficient with respect to P, Q or C(P, 0)-
sufficient or C(Q, P)-sufficient depending on whether H'(P, Q), H'(Q, P) > 0 
or H'(P, Q) g 0 or H'(Q, P) <, 0 respectively. 

The following assertion is new. 

Theorem 8. If' 9Cn, P„, Qn are defined as in Th. 1, then 

(22) D(P1,Q1)^D(P2,Q2)<... 

and if 9C is generated by the algebra &0 (cf. Th. 1), then 

(23) lim„ D(Pn, Q„) = D(P, Q). 

Proof. According to (16) and Th. 7, 

- l o g H'a(Pn, g„) S D(P,„ Qn) ^ D(P, Q) 

where a is defined by D(P, Q) = - l o g H'a(P, Q). Now it remains to apply Th. 1. 
Next we shall prove that D(P, Q) as defined by (16) is identical with that defined 

by a different manner in (3.2) of [1]. The definition (3.2) was merely based on the 
concept of generalized Shannon's entropy. As a by-product the inequality D(P, Q) 5£ 
S min [H(P, Q), H(Q, P)] will be obtained. This result becomes evident if compared 
with the Chernoff-Stein asymptotical formulas for the power of Neyman-Pearson 
tests of 6 = 1(2) against 9 = 2(1) based on {., £2 , . . . , £„. In these formulas H(P, Q) 



(or H(Q, P)) is figuring in the exponent of convergence analogically as D(P, Q) in (l). 315 
For a deeper insight into these questions we refer to [13, 11] (cf. also the following 
formula (36)). 

Let P and Q be arbitrary fixed probability measures and denote by 9 or J the 
set of all probability measures R on (X, 3L) such that 

(24) H(R, P) = H(R, Q) 

or 

(25) H(R, P) < H(R, Q) 

respectively. The definition we beared in mind above is as follows: 

(26) D(P, Q) = min [inf H(R, P), inf H(R, QJ] . 

The next our aim will be to prove and precise (26)*. 
Let 90 c 9 or M0 c J denote the subclasses of all R such that H(R, P) < + oo 

or H(R, Q) < + oo respectively and let 01 stands for the set of all measures R domin
ated by \x and concentrated on C(P, Q), i.e. R(C(P, Q)) = 1. 

Lemma 1. 9>0 u J20 cz 9>, i.e. ifRe0>uM- 01, then H(R, P) =x H(R, Q) = + oo. 

Proof. Let Re 0> — 9 and let us distinguish two alternate cases: R <g \x, R(C) = 1 
and R « /<, R(X - C) > 0, where, here and in the sequel, C denotes C(P, Q). 
If R ^ /(, then also R <f§ P so that, by the definition of the generalized Shannon's 
entropy, H(R, P) = +oo. If R(X - C) > 0, then either R % P or R M Q- The 
first case we have just investigated above and if R <jg Q, then H(R, Q) = +oo. 
This together with the condition (24) for R e 9> implies H(R, P) = + oo, Q.E.D. 

Lemma 2. If Re 01, then Re 9 0 or % iff 

(27) J r l o g ^ d / . = 0 or ^ 0 

W Re90nl0 ijf 

:^d/, = 0, 

where r = dRjdpi. 

Proof. If R e ^ 0 c: ^?, then r = dR/d/i exists by Lemma 1. It follows from the 
definition of C that the integral in (27) or (28) exists. The remainder is clear. 

* During a preparation of this manuscript for printing, A. Renyi has published analogical 
definition of D in the printed version [2] of his lecture. 



316 Lemma 3. For every Re@( and a e [0, l] 

(29) H(R, P) = (1 - a) (* r log -1 dn - log H'X(P, Q) 
Jc P 

with equality iff 

m /(K(P,Q))-ifq^ onC 
V0) r~\0 out of C. 

Proof. S. Kullback proved in Chap. 3 of his book [12] that for every extended 
real-valued measurable statistic Tdefined on (X, &), for every real x and non-negative 
P, and for every R 4 fi the following inequality holds 

H(R, P) = x J rTdfi + log fi + 1 - p J exp (tT) dju 

if only the corresponding integrals exist and that the equality takes place iff r = 
= exp (iT). Putting x = a - 1, 

/ log - on C , 
P = < x ? 

— co out of C , 

and P = (H'J(P, Q))1 we obtain (29). The rest of the proof is now clear. 
On the basis given by these lemmas, (26) can be easily proved. Let us consider 

firstly the case where H'(P, Q), H'(Q, P) > 0. Here P(E n C), 0(C - E) > 0 and, 
since P, Q are absolutely continuous on C n 3C, P(C — E), Q(E n C) > 0, where 
E = {log p[q ^ 0} e 5F. It is easy to see that these facts enable us to argue that 
3P0 n J 0 4= 0. Further, the definition of ^»0, 2,0 yields 

(31) inf H(R, P) = inf tf (R, P ) , inf H(R, Q) = inf H(R, 0) . 
& &o Z So 

However, we shall prove more, namely, 

(32) inf H(R, P) = inf H(R, P) = inf H(R, Q) = inf H(R, Q) . 
»o PonMo 3»onHo 3o 

Theorem 9. / / H'(P, Q), H'(Q, P) > 0, then 0>o n J 0 + 0, (32) holds and 

D(P, Q) = inf H(R, P) = H(R, P) , 
SPonZa 

where R&3P0r\ 3,0 is uniquely \yi\ defined by (30) for a e (0, 1) given by (18). 

Proof. Let a in Lemma 3 be defined by (18) and let R e 3P0 n 2,0 be arbitrary. 
Then, by Lemmas 3, 2 and Theorem 5, H(R, P) ^ D(P, Q) with equality iff (30) 
holds. Q.E.D. 



Theorem 10. If H'(P, Q) £ 0 and P, Q are not mutually singular, then 0>o + 0 
and 

D(P, Q) = inf H(R, P) = H(R, P) < inf H(R, Q), 
0>O % 

where _ e # 0 is defined uniquely [jtt] by (30) for a = 1. 

Proof. If P and Q are not singular, then P(C) > 0 and r defined by (30) for a = 1 
is a probability density function. By Lemma 2, R e f given by r belongs to _? (and, 
consequently, to 0>o) iff H'(P, Q) ^ 0. The equalities in Th. 10 now follow from 
Lemma 3 (for a = l) and from (19). As to the inequality, let us notice that, replacing 
P and Q in Lemma 3, we may write 

H(R, Q) __ ľ r log 2 áџ + Ð(P, Ô) 
Jc _ 

for every Reffi, where £>(P, Q) is defined by (19) again. But (27) and Lemma 2 
imply that the integral is non-negative for any Re Si, i.e. the inequality is true. 

Th. 9 and Th. 10 imply the following 

Corollary. The relation (26) holds. If D(P, Q) < +oo, then the minimum in (26) 
is attained on Re 3k defined by (30) for appropriately defined a e [0, 1]. 

Since P e SI, QeSP, (26) implies the following inequality: 

(33) D(P, Q) <. min [H(P, Q), H(Q, P)] . 

3. TOTAL VARIATION 

In [1] an estimate of D(P, Q) in terms of a more simple functional V(P, Q) was 
given. V(P, Q) was denoting the total variation of P and Q (cf. (h) in [ l]) . The total 
variation is defined by 

(34) V(P, Q) = f \p - q\ d/x « 2 sup [P(E) - Q(E)] = 2[P(F) - Q(F)] , 
Jx EeX 

where F = {p ^ q} e 3C. The estimate was of the following form* 

(3!) _I l o g(1__5ie))S D (p,e ) s .1og(1-__ie)). 

The right hand inequality follows directly from the following formula (36) and from 
the inequality 

1 - i F ( P \ Q") ^ (1 - iV(P, Q)f n = 1, 2 , . . . , 

* My thanks are due to Prof. O. Kraft for calling my attention to the fact that this estimate 
occurs also in Ch. Kraft, Univ. California Publ. Statist. 2 (1955), 125—142 (added in proof). 



(cf. (37)) which is the proof of Th. 1 in [1] based on. The left hand inequality may 
be proved by a method indicated in [14] (cf. the proof of the inequality (15) in [14]; 
in this proof it is indifferent whether the measures P, Q are discrete or not), but here 
another idea will be used. 

Let X' be the sub-c-algebra of 3C consisting of two elements F, X — F e SC, where F 
is defined as in (34) and let P', Q' be reductions of P, Q on T. Then, by Th. 7, 
D(P', Q') = D(P, Q), where 

D(P', Q') = - l o g inf = фa(U, V) for V = Q(F) , V = V(P, Q) , 
яє(0,l) 

ere 

ФІU, V) = / - + UY U1-* + [l - - - UY(1 - U)1_", 

0 < U < 1 - - , 0 < V< 2 . 
2 

Thus it remains to prove that 

sup inf ^ ( U , V ) g / ( 1 - — ) for every Ve(0,2), 
l/6r0,l-K/2] ae(O.l) \j \ A J 

sup ým(V, V) < lil -
0,1 -V/2] fij \ 

But, however, iAi/2(*f V) is strictly concave function of U on the interval [0, 1 — V/2] 
with maximum on U0 = i(l — V/2), for any Ve(0, 2) so that the desired result 
follows from this identity: 

w.v-jfi-ty 
The main idea of [1, 2] was based on the fact that a relation between the variation 

V(Pn, Q") and the quantity H(6) - l(d, £. Q (cf. (3) and the assumption fol
lowing it) exists. This relation is represented by a both-sides estimate which is "best 
possible", i.e. for any value Vof V(P", Q"), Ve [0, 2], one can find two nonnegative 
numbers Ln(V), U„(V) such that 

Ln(V) g H(9) - 1(0, £ , , . . . , Q < U„(V), n = 1,2,. . . 

provided that (3) and other related assumptions hold and, moreover, both the bounds 
considered here are attainable, for any n = 1,2,... 

We do not aim to discuss this relation explicitly here; it will be important for 
us only that on the base of such an estimate one can argue that (l) holds iff 

(36) 2 - V(Pn, Q") x exp (~n D(P, Q)) 



for D = D(P, Q), where 

(37) P" = P x P .. . x P(n times) , Q" = Q x Q x . . . x Q(n times) . 

But, as it was shown in Th. 1 of [1], one can very easily show that (36) always holds 
for some D(P, Q). 

Unfortunately, these considerations do not yield that D(P, Q) figuring here satisfies 
(16) for every P, Q. However, this statement together with (36) has been proved 
firstly by H. Chernoff [3]. For the sake of completeness we next reproduce the proof 
of Chernoff in a slightly modified way using the definition (26) instead of (16) (cf. also 
Sanov [15]). 

Let us suppose, firstly, that P = (pup2, ...,ps), Q — (qu q2,..., qs) are two 
discrete distributions, i.e. that 

p[£ = i | 0 = l ] = i , . , p[£ = i | 0 = 2] = fl£, i = 1,2, ..., s, 

(cf. (2)), where 

!>.-=£ </. = !• 
i = l i = l 

It follows from (34) that 

1 - 1V(P", Q") = X min [p(ji, • • ,js), 9(h, • • -,/,)] = 
ji,ji,.-.,j. 

= 1P(JU-Js) + I9(ju-Js), 

where 

and 

PÜu-Js)^^- ПPÍ ' . 9(Һ,-JS) = ~F- ÏІ9Ï 

wГ1 wУmí 

An = {h,h, -Js ji = o, EI* =», n pi' = n 9i'}, 
i = l i = l i = l 

Bn = {h,h, -Js Ji >= 0, th = n, n vY > tl 9V} • 
i = l i = l i = l 

Let us now denote by SP u 3. the set of all discrete probability distributions R = 
= (ru r2, ..., rs), where 3>, J are defined by (24), (25), and let 01' <= 0 u 2. be the 
set of all R such that for every r; there exists an integer k such that r; = kjn. Let 
us put 0' = 0 n <%', 2! = J n <%'. Clearly, 

p(n?ls..., nr5) + q(nru ..., nrs) = 1 - iV(P", S") ^ 

g card (A„ u P„) [p('»':i, •••> "iv) + tj(n'Ti, •••> n^sJ\ , 



where R = (ri,f2,...,rs)e0>', R = (ru r 2 , . . . . rs) e J ' are choosen according to 

p(nru ..., nrs) = max p(nru ..., nrs), 
R<E&' 

q^T^,..., nrs) = max q(nru ..., nrs), 
RsS.' 

and R = (ru r 2 , . . . , fs)e0>', R = ( r , , r2, ..., rs) e 2.' — &>' are arbitrary. Since 
card (A„ u B„) ^ ns and since, according to the formula of Stirling, 

p(nry, ..., nrs) = exp ( - n H(R, P) + o(n)) , 

q(nru ..., nrs) = exp ( - n tf(R, £>) + o(n)), 
we can write 

(39) 1 - -}V(P", Q") S exp ( - n £>(P, g) + o(n)) 

(cf. the inclusions ^ ' c # , £' a £ and (26)). If R = (r,, r 2 , . . . , rs) e ^ u J is such 
that 

(40) Z)(F, g) = min (#(R , P), H(R, Q)) 

then, in view of that one can always choose R e 0>', R e 2! — 0>' such that \ft — r ; | ^ 

^ 1/n, | r ; - r ; | g 1/n, i = 1,2,..., s, i.e. 

H(R, P) ^ H(R, P) + o(n), 

H(R, Q) ^ H(R, Q) + o(n), 

the following inequality can be written 

1 - W(P", Q") > exp (-nH(R, P) + o(n)) + exp (-nH(R, Q) + 0(n)). 

Thus, by (40), 
1 - |V(P", Q") ^ exp ( - n D(P, Q) + o(n)). 

This together with (39) implies that (36) holds for D(P, Q) defined by (26) (and, 
consequently, by (16)) provided that P, Q are discrete distributions with a finite 
number of atoms. 

To prove that (36) holds for D(P, Q) given by (16) (or (26)) for every P, Q let 
us denote by D*(P, Q) the quantity figuring in the exponent of, (36) in order to 
distinguish it from that given by (16) and denote, further, by P s , Qs restrictions 
of P, Q on a sub-ff-algebra 9£s <= SC generated by a decomposition of X consisting 
of s sets from ST. Since, evidently, V(P", Q") ^ V(P", Q") for every n = 1,2,..., 
on the base of (36) and on the base of the result we have proved above one can argue 
that 

(41) D(PS, Qs) 5S D*(P, Q) . 



As it is proved in [8], for every P, Q there exists a sequence 2£x <= 9£2 <=. ... o f 
sub-c-algebras such that the <r-algebra 9£' c 3C generated by 

\JXS 
s = l 

is sufficient with respect to P and Q, so that, by Th. 7 and 8, 

lims D(PS, Qs) = D(P, Q) 
and, by (51), 

(42) D(P, Q) S D*(P, Q) . 

To prove that the strict inequality cannot appear here we shal need the following 
fact, which follows from what we have already proved for discrete distributions 
and from results of Sec. 2: If P, Q are two discrete distributions, then 

(43) P"(Fn) x exp ( - n D(P, Q)) 

if H'(Q,P) > 0 (cf. (36)) and 

(44) 1 - iV(P", Q") = P"(F„) + Q"(X" - F„) 

(cf. (34)), where 

(45) F„ = {nK^) = ll^)}^n. 
; = i ; = i 

Finally, we shall use the fact that 1 - iV(P", Q") « e x p ( - n D(P, Q)) holds 
for D(P, Q) evaluated by (16) if we replace P, Q by arbitrary totally finite discrete 
measures (pu p2,..., ps), (qu q2,..., qs). Indeed, in what preceeds the norming 
conditions P(Z) = Q(X) = 1 never have been used. 

Put Pi = P(E,), qt = pi exp (-ei) for Et = {q exp e(i — l) < p < q exp ei} for 
every i = 0, + 1 , ±2,... and e > 0. It is easy to see that q* < p" exp a £(1 — i) 
for x e £ ; , i = 0, ± 1 , ... so that 

+ 00 

H[_a(P, Q) < exp £a £ pt exp (— asi) for every a e [0, l ] . 

Thus, for appropriately chosen £ and r we can write (cf. (16)) 

£ PiexP(-a*ei) > exp ( -D (P, Q) - S), 
i= -r 

where S > 0 is an arbitrary number given in advance and a* e [0, l ] is minimizing 
the sum 

£ p,exp( —a£i) on a e [0, l ] , 



322 i.e. 

(46) D(P, Q) = D(P, Q) + d, 

where P, Q are totally finite (discrete) measures defined on by the following Radon-
Nikodym densities (with respect to the dominating measure n): 

n(Ei) n(Et) 

and 
p(x) — 1 , q(x) = 0 otherwise . 

It follows from the definition of £ ; that p/q ^ Villi on £ ( (if these ratios exist), 
i = 0, + 1 , . . . , so that Fn c £„ for 

i = l i = l 

and for Fn defined by (45) and, consequently, 

(47) P"(F„) = P\Fn) = P"(Fn). 

In the case we have considered H'(Q, P) > 0, so that, according to what was said 
in a remark above, 

P"(Fn)xexp(-nD(P,Q)) 
(cf. (43)), i.e. 

(48) - - log P"(£n) = D(P, Q) = D(P, Q) + 6 
n 

(cf. (46)). On the other hand, taking into account (44) and (36), we can write 

- - l o g Pn(F„) ZD*(P, Q). 
n 

This together with (47) and (48) yields the inequality 

D*(P, Q) = D(P, Q) + d. 

Since 5 may be chosen arbitrarily small, the desired equality between D*(P, Q) 
and D(P, Q) is proved. 

We remark that A. Renyi, using a more accurate relation 

2 - V(P", 0") = O (-L exp [ - „ D(P, Q)j\ 



following from a more general result of R. R. Bahadur and R. Ranga Rao [16], 323 
stated in [2] the following sharpening of (1): 

1(9, £,,..., Q = H(6) - 0 (-L eXp [-„ D(P, Q)]̂  . 

(Received December 18, 1969.) 
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O množství informace obsažené v posloupnosti nezávislých 
pozorování 

IGOR VAJDA 

Nechť 9 značí náhodnou veličinu nabývající hodnot 1,2,... a £, jinou náhodnou 
veličinu s měřitelným výběrovým prostorem (X, 3C). Nechť dále £i> š2,... jsou po
stupné realizace veličiny £,, o kterých budeme předpokládat, že jsou navzájem ne
závislé pro každou hodnotu 9. Nechť nakonec 1(9, šu..., £,„) je množství Shannono vy 
informace o veličině 9 obsažené v (£,, £2> • • •> £„)• 

Je známo, že 1(9, £,u ..., £,„) e [0, #(#)], kde H(0) je entropie veličiny 9, a že infor
mace nabývá hodnot 0 resp. H(9) právě když 9 a(šu £2,..., £„) jsou nezávislé resp. 
deterministicky závislé. Je tedy informace jakožto míra statistické závislosti mezi 9 
a (Ši> £2, •••> Š„) důležitou číselnou charakteristikou statistického problému, který 
spočívá ve stanovení neznámé hodnoty parametru 9 pouze na základě znalosti 
hodnoty náhodného výběru (£., £2, •••> £„)• 

Poměrně velmi snadno (viz věta 1 v [1]) lze dokázat, že existuje parametr 
D e [0, + oo] závislý toliko na podmíněné distribuci P^g pro který platí vztah (1). 
Explicitní analytický výraz pro D byl nezávisle nalezen a současně publikován 
v referátech A. Rényiho [2] a autora [1]. Jak bylo možné intuitivně očekávat, 
D je totožné s tzv. Chernoffovou mezí [3], příslušnou Bayesovu testu ke stanovení 
správné hypotézy 9 — i, i = 1, 2,... na základě (č,u č,2,..., £„). 

Předložená práce shrnuje vlastnosti parametru D odvozené v pracích [1, 2, 3] 
a dále je prohlubuje. Ve větách 5 až 7 a 9 a 10 jsou v poněkud zobecněné podobě 
shrnuty a dokázány ty vlastnosti parametru D, které v [1] byly vysloveny bez důkazu. 
Věty 1 až 4 stanoví vlastnosti modifikované a-entropie a modifikované relativní 
Shannonovy entropie (nazývané též diskriminační informace). Obě modifikované 
entropie jsou ve většině případů totožné s nemodifikovanými, avšak v jistých rovněž 
velmi významných případech se tyto pojmy liší. Jejich zavedení umožňuje nejen 
formální zjednodušení úvah, ale poskytuje též možnost přesněji popsat a jemněji 
klasifikovat statistické problémy uvažovaného typu. Nakonec, ve větě 8 je stanovena 
jistá konvergenční vlastnost funkcionálu D, která neplyne přímo z konvergenčních 
vlastností a-entropií. 

lng. Igor Vajda, CSc, Ústav teorie informace a automatizace ČSAV, Vyšehradská 49, Praha 2. 


