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On the Problem of Separability of Some 
Pattern Recognition Learning Systems 

LUBOMIR OHERA 

The separating capacity of a certain class of pattern recognition learning systems is investi 
gated. The systems of that kind learn from given labeled sample patterns in such a way that afte 
the learning period is over all the given sample patterns are placed exactly to the same category 
as they were labeled to belong to. This paper gives estimations of the upper bound of the number 
of dichotomies separable by those systems. 

Many pattern recognition learning systems are based on the following principle. 
The learning system is given labeled sample patterns from all categories and then 
during the learning period the system is to find the proper values of variable para­
meters (often called weights) so that after the learning period is over the system 
places all the given sample patterns exactly to the same category as they were labeled 
to belong to. 

This very broad class of pattern recognition learning systems includes such well-
known examples as simple perceptrons, perceptrons with some weights of connections 
randomly chosen before the beginning of the learning period, layered machines, 
ADALINE and MADALINE (as far as the exact separation of all categories is 
required after the learning period), etc. 

In order to learn general regularities of this class of pattern recognition learning 
systems, there are, besides practical realization, two main problems to be investigated: 

1. to decide whether with a given structure of the learning system all possible 
situations may be learned, i.e. whether for any of all possible configurations of labeled 
sample patterns there exists a set of values of variable parameters such that the 
system separates the sample patterns in such a way that the decision of the system 
is always strictly in accordance with the labeling of the patterns; 

2. to study the learning period, i.e. to find an algorithm by means of which the 
system with the given structure may be taught the situation provided that the given 
situation is separable by the structure of the given system. 



The second problem was studied by many researchers [1 — 3] and many interesting 421 
and important results have been obtained to this date. Leaving that problem apart, 
this paper deals with the first problem. 

Let us have two sets of vectors in a subspace / of an ^-dimensional Euclidean 
space and let us denote 

1 7 1 7 
- • 1 , • • - , -"P l 

those of them which belong to category w1, and 

2 7 2 7 

those which belong to category w2. Let us further define discriminant function G 
as follows. 

Definition 1. We shall call discriminant function G any scalar-valued function 
defined over the entire subspace x and satisfying the following system of inequalities: 

(1) G C Z ; ) > 0 , i = l , . . . , P l , 

G ( 2 Z ; ) < 0 , i = l , . . . , p 3 . 

We shall now define the decision according to the discriminant function in the 
following way. Having chosen a function G satisfying (l), we may compute for any 
given vector X from x the value of G(X) and decide as follows: 

if G(X) > 0 then X belongs to wL 

and 
if G(X) < 0 then X belongs to w2 . 

Note. Equation G(X) = 0 defines a boundary between all vectors X which are decided upon 
as belonging to category w1 and all vectors X which are decided upon as belonging to category w2. 
As for the points lying on the boundary, we may either reject them, i.e. let them undecided upon„ 
or we may place them into any of the two categories. If X is one of sample pattern vectors, the 
decision is always correct, as follows directly from (1), and in case of the other vectors of x the 
decision depends on the choice of function G, i.e. on the choice of the decision boundary. 

We shall now generalize the considerations for k categories. Let us denote the 
vectors belonging to category wy-

% , . . . , % . , j = l , . . . , f c . 

We shall call a set of discriminant functions any set of scalar-valued functions 
Gu . . . , •<?„ defined over the entire subspace x, where any of the discriminant functions 
satisfies an appropriate system of inequalities. In order to find functions Gh, we divide 
all categories into three groups Ah, Bh and C,,. Not considering group Ch, we find 
a boundary between groups Ah and Bh in the very same manner as if we had only two 
categories. Discriminant function Gh is therefore any scalar-valued function satisfying 



the following system of inequalities: 

(2) G ^ Z ) > 0 , 

(3) G A ( B * Z ) < 0 , 

where (2) must be satisfied for all vectors of all categories belonging to group Ah, 

and (3) for all vectors of all categories belonging to group Bh. 

Having done this procedure for h = 1,..., v, we can write the truth table for 

categories wv ..., wk and for discriminant functions G l 5 . . . , Gv(Table 1). The columns 

w i w2 щ 

Gi X X X 
G2 X X X 
Gv X X X 

of the truth table are the code words of categories corresponding to our system 

of dividing categories into groups; xby are binary numbers " 0 " or " 1 " , or "d", 

where d's mean don't care conditions introduced in switching theory. Numbers 1, 

0 and d stand for the fact that category wy belongs to group Ax, Bx and Cx, respectively. 

The code chosen for the description of categories must not be ambiguous, i.e. 

any combination of v binary numbers 1 and 0 must indicate at most one category. 

Since the number of possible combinations of v binary numbers may be greater 

than the number of code words indicating categories (taking into consideration that 

a code word containing "d" is an abbreviation for two code words indicating the 

same category, one of them having " 1 " and the other " 0 " in the same position, 

where "d" occurred), we can, given a combination of v binary numbers obtained 

as the result of the investigation of a given vector X be means of functions G x, ..., Gv, 

either decide which category this v-dimensional binary vector corresponds to, and 

thus which category the given vector X belongs to, or finding no category with the 

same code, let the vector X be undecided upon. 

Note. Instead of the set of discriminant functions, another set, the set of functions ffu ...,Hk 

may be introduced, where the functions Hx, ...,Hk are defined over the entire subspace x and 
satisfy the following system of inequalities: 

-ff/Z,) >Hs(
rZt), r= 1, ...,k, s== 1 k, s=5= r, i= l,...,pr. 

Choosing a convenient system of dividing the categories into groups Ah, Bh and Ch, the system 
of discriminant functions can be readily obtained. 



In accordance with various ways of dividing categories into groups we have 423 

various code words corresponding to categories w.,..., wk. We shall mention only 

three of them. Table 2 shows the truth table for storing boundaries between 

any pair of categories, while Table 3 shows the truth table for storing for every category 

w l w2 

w

3 
wk-2 wk-i wk 

Gг 1 0 d d d d 
G2 1 d 0 d d d 

Gv-i d d d 1 d 0 

G
v 

d d d d 1 0 

Table 3. 

w i 
w 2 

wз wk 

-м 1 0 0 0 

Gг 
0 1 0 0 

• Gk 
0 0 0 1 

w i w2 

w

3 
И-4 w5 w6 и 

Gy 0 0 0 1 1 1 1 

G2 
0 1 1 0 0 1 1 

G3 
1 0 1 0 1 0 1 

the boundary between this category and all remaining categories. If we want to 

decrease the number of boundaries as much as possible, we use one of the codes 

allowing encoding k categories by means of e code words, where 

e - 1 < k <є. 

One of the possibilities to accomplish it is to prescribe to every category the code 



word that can be read as the name of the category in binary numbers. For 7 catego­
ries, for example, the code words are shown in Table 4. 

In order to solve our system of inequalities, we have to admit only special families 
of functions so that the boundaries will be, for example, hyperplanes, hyperspheres, 
piece wise linear hypersurfaces or so. 

Before treating separating capacity of some pattern recognition systems of this 
kind we shall define some important terms and prove a few theorems. 

Definition 2. Let us have two categories wt and w2 defined as follows: 

( 4 ) v v . ^ l 1 ^ , i = l,...,Pl}, 

(5) * ^2 = {2Z{, i = \,...,p2}. 

The two categories are said to be homogeneously linearly separable if there exists 
a vector g satisfying 

(6) g.lZt>0, i = l,...,Pl, 

(7) g . 2 Z < 0 , . = l , . . . , j> 2 . 

Note. Vector g defines separating hyperplane 

(8) g . X = 0 , 

which passes through the origin of the space and is perpendicular to g, which is clearly seen from 
(8). 

Having p points in j_, there are 2" possibilities how to divide the points into two 
categories. Any of these possibilities will be called a dichotomy. If the points belong­
ing to categories wt and w2 are defined by (4) and (5), (p = pt + p2), we denote 
this dichotomy as 

[U'Z,.; U2Z,], 
i = l i = l 

or briefly [wx; w2]. We agree further that [ ; w2] denotes the dichotomy defined 
by placing all p points into category w2 and letting no point for category wt. Out 
of all 2P dichotomies, only a smaller number, as usual, may be realized by a hyper-
surface of a certain type, e.g. by an n-dimensional hyperplane. 

To illustrate the concept of dichotomies by a very simple example, we give an 
account of all dichotomies of four points A, B, C, D lying in a plane (Fig. 1). There 
are altogether 16 dichotomies, namely [ ; A u 8 u C u D], [A; B u C u D], . . . 
..., [4 u B u C u D; ] . Out of all these dichotomies, there are 14 dichotomies 
separable by a straight line, two dichotomies, namely [A u C; B u D] and 
[B u D; A u C], being unseparable by a curve of that type. 



Definition 3. A set of p vectors in n-dimensional space is said to be in general 425 

position if every subset of n or fewer vectors is linearly independent. 

Fig. 1. Four points in general position 
in a plane. 

Theorem 1. Let us have in n-dimensional space two categories w\ and w2 defined 

by (4) and (5), let further be p = p x + p2 and Z p + 1 a point other than the origin 

of the space. Then the dichotomies 

O i U z p + i J w2] 
and 

[w i ;w2Uzp+ 1] 

are homogeneously linearly separable if and only if 

[wr.wj 

is homogeneously linearly separable by an (n — l)-hyperplane passing through 

-•p+i-

We shall follow here main ideas of the p r o o f presented in [4]. According to 

Definition 2, there exist vectors g, and g 2 satisfying the following inequalities: 

g1.
iZl > 0 , i = l,...,Pl, 

g l . 2 Z ; < 0 , i = l , . . . , p 2 , 

g l - z p + ! > 0 , 

g2.'Zi > 0 , i = l , . . . , P l , 

g 2 . 2 z ; < o , i=T, . . . ,p 2 , 

g2 . zp+, < o. 
Therefore for vector 

gз = ( - g 2 - z p + l ) g l + ( g l - z p + l ) g 2 



426 the following inequalities hold: 

g 3 . 1 Z ; > 0 , i = l,...,Pl, 

g 3 . 2 Z ; < 0 , i = l, ...,p2. 

Since further 

g3-Zp+1 = 0 , 

the hyperplane dividing the two categories passes through Z p + 1 . Conversely, accord­
ing to Definition 2, there exists a vector g 3 satisfying 

g3.
1Zi > 0 , i = \,...,p1, 

g3.
2Zi < 0 , i = \,...,p2, 

g3-Zp+X = 0 . 

Choosing a positive real number e 

e < • g 3 • 1 Z ' , , i = 1,..., p. , 
Z X Z 

z p + 1 . 2 z ; 

, І = 1, ..., p 2 ; 

and defining 

we have 

gi = gз + e Z p + 1 , 

#2 = ?3 — £ Z p + Ł , 

ř i • Z p + 1 = (g3 + є Z p + 1 ) . Z p + 1 > 0 . 

Further, 

g l . »Z ; = g 3 . ' Z , + e - Z , . Z p + 1 > e ( | ' Z ; . Z p + 1 | - 1 Z ; . Z p + 1 ) ^ 0 , 

i = 1, . . . , > ! , 
and 

g l .
 2 z ; = g 3.

 2 z ; + £
2z ; . zp+1 < g3. -zJi - 'f/'fr1,) ^ o, 

V I z ( . -^p+i|/ 

i = l,...,p2, 

where we used inequality |a| — a ^ 0. Since it is possible to show in the same manner 
that 

g2.Zp+1 > 0 , 

g2.
lZi > 0 , / = 1, ...,Pl, 

g2.
2Zi < 0 , . — 1 Pa. 

according to Definition 2 the theorem is proved. 



Lemma 1. For natural numbers n, p the following identity is valid: 

« %C:ViC:Vm-
Proof. For n = 1 and any natural p Lemma 1 is valid, namely 

VMVMV 
Assuming that Lemma 1 has been established for n — 1, we show that it is valid 
also for n. In order to do it, we shall write (9) in the following way: 

%C:H:UC:n:ym+ 

Since according to our induction assumption 

it is enough to prove that 

P\ (P ~ l \ _ (P ~ í 

n - 1 

which may be clearly seen from the definition of combination. Q.E.D. 

Theorem 2. Let us have p points Zu ..., Zp in general position in n-dimensional 
Euclidean space. There are then 

C,(p,n) = 2 T V p - *) 

dichotomies by hyperplanes passing through the origin of the space and n 
(0 S n _ n — 1) points different from the origin of the space and such that all 
n + p points are in general position. 

This theorem as well as Theorem 3 may be found e.g. in [4]; we shall prove these 
theorems in a different form. 

I. It may be readily verified that for p = 1 and for any natural n and 0 ^ i] rg 
^ n, — 1 Theorem 2 is valid, namely 

»- i?- l /r>\ 

C„(l,") = 2 E Q - 2 . 



428 The theorem is also valid for n = n — 1 and for any natural p and n, namely 

C n _ 1 ( p , n ) - 2 ^ - 1 ) = 2 . 

II. Assuming that the theorem has been established for p — 1 points, we show 
that it is valid for p points, for any natural n and 0 <. n < n — 1. Let us add to the 
p ~ 1 points a point Zp, which is in general position with all other points. All of the 
Cn(p — 1, n) hyperplanes existing according to induction assumption may be divided 
into groups: those which pass through the point Zp and those which do not. According 
to induction assumption there are Cn+1(p — 1, n) hyperplanes passing through 
the origin of the space and the point Zp and dividing the p — 1 points into two 
categories wx and w2. According to Theorem 1 there exist for any hyperplane passing 
through Zp two hyperplanes dividing 

\wx U Zp; w2] 
and 

K , w2 U Zp] , 
respectively. Thus 

Cn(p, n) - Cn(p - 1, n) + Cn+1(p - 1, n) . 

Further, according to induction assumption 

n-n-t /„ _ ->\ n-„-2 /p _ 2 

and according to Lemma 1 

C,(p,n) = 2 £ (P . ) + T 
i=0 \ l ] i=0 

Q.E.D. 
Putting n = 0 the following Theorem 3 immediately follows. 

Theorem 3. There are C(p, n) homogeneously linearly separable dichotomies 
of p points in general position in n-dimensional Euclidean space, where 

*,,)-î_!(,71) 
Theorem 4. The number of homogeneously linearly separable dichotomies of 

p points in any position in n-dimensional space C'(p, n) is always less than or equal 
to C(p, n). 

Let us assume that there are p' points (p' _ p) in general position. If p' = p, 
Theorem 4 follows directly from Theorem 3. If p' < p, we may proceed as follows. 



According to Theorem 3 there are C(p', n) dichotomies for p' points. For any two 
categories wt and w2 of the points, for which dichotomy exists, there exists also at 
least one of dichotomies 

[wi U Zp.; w2] [w t ; w2 (J Zp/J , 

where Zp, is any of remaining points Zp.+1, ..., Zp. If the point is not in general 
position, there exists a straight line defined by the origin of the space and one of the 
points Zu ..., Zp, such that Zp. lies on it. Therefore there is no hyperplane passing 
through point Zp. and dividing points Zx , ..., Zp.. Hence, according to Theorem 1, 
there exists at most one of the dichotomies 

[ W l U Z p . ; w 2 ] and [wl;w2\JZp,'\. 

Thus the number of dichotomies remains the same and we may omit point Zp, 
without changing the result. Therefore, the number of homogeneously linearly 
separable dichotomies is 

C'(p, n) = C(p', n) _ C(p, n) . 

Note. The comparing of Theorem 2 and Theorem 3 yields the following identity valid for all 
natural p, n and 0 ^ t; < n — 1: 

C„(p, n) = C(p, n-n). 

Lemma 2. Let us have p points Zu...,Zp in n-dimensional space. There are 
then Ds

n(p, n) dichotomies by s different hyperplanes passing through the origin 
of the space with the additional condition that one of the hyperplanes passes 
through 0 _ n _ n — 1 points different from points Zu ...,Zp and provided that 
all n + p points are in general position. Ds

n(p, n) is defined as follows: 

;(«-!)-» s(«-l)-« / _ t \ 

K(P,n) = 2 £ (P . Xj 

The Lemma will be established by the following inductive proof. 

I. For p = 1 and for any natural s, n and 0 _ n _ n — 1 the Lemma is valid, 

namely 
S ( n - l ) - » /A\ 

- * - . » ) - 2 E ( ° ) - 2 . 

II. Assuming that the Lemma has been established for p — 1 points Z l 5 ..., Z p _ t 

and for any natural s, n and 0 _ n _ n — 1, we shall show that it is valid also for 
p points, any natural s, n and 0 _ n < n — 1. Let us add to the p — 1 points 
a point Zp, which is in general position with all other points. All of the sets of 
hyperplanes, dividing points into two categories wt and w2, may be divided into two 



4 3 0 groups: those which pass through the point Zp and those which do not. According 
to Theorem 1, for any hyperplane passing through Zp there exist two hyperplanes 
dividing 

\w1 U Zp; w2] 
and 

[w1;w2 (J Zp] , 

respectively. Therefore also for any set of hyperplanes, one of which passes through 
the point Zp, there exist two sets of hyperplanes dividing 

[Wl U Zp; w2] 
and 

[Wl;w2(JZp]. 
Hence, 

Ds
n(p, n) = D\(p - 1, n) + Ds-+1(/> -l,n). 

Using the induction assumption we get 

[ s(n-l)-r, f _ 2 \ « (n- l ) - i f - l / _ _ 2 \T 

£ ( . )+ I. ( I )]' 
Lemma 1 

• s ( « - l ) - l , / ,N 

which yields according to Lemma 1 

s («- l ) - l , 

Since n — 1 points together with the origin of the space define just one hyperplane 
in n-dimensional space, the following identity must be valid for all natural p, n and s: 

Ds
n_1(p,n) = jy0-

x{p,n). 

Therefore, by establishing the Lemma for p points, any natural n, s and 0 <. r\ < 
< n — 1, we have also established it for n — n — 1. Thus the assumption of validity 
for p — 1 points leads to the validity of the Lemma for p points. Q.E.D. 

Theorem 5. Let us have p points in general position in n-dimensional space. 
There are then Ds(p, n) dichotomies by s hyperplanes passing through the origin 
of the space, where 

Ds(p,n) = C(p,s(n - 1) + l ) . 

Lemma 2 for n = 0 yields 

^ - 2 T (';')• 



Hence, according to Theorem 2 431 

Ds(p, n) = C(p, s(n - 1) + l ) . 
Q.E.D. 

Theorem 6. Let us have p points in any position in n-dimensional space. There 
are then at most Ds(p, n) dichotomies by s hyperplanes passing through the origin 
of the space. 

Let us assume that there are p' points in general position. If p' = p, Theorem 6 
follows directly from Theorem 5. If p' < p, we may proceed similarly as we did 
in the proof of Theorem 4. We should get 

D's(p, n) = Ds(p', n) <£ Ds(p, n) , 

where D' denotes the number of dichotomies of p points in any position. Q.E.D. 

Definition 4. We shall call <P-function any single-valued real function 

(10) <!>(*)= I i - i 9n..,txri...xft, 
n = 0 r 2 = r i r t = r t - i 

where 
X S ( x 1 , . . . , x „ ) 

and 
x0 = 1 

for any natural n, t and real constants gri..,t satisfying the following condition: 

I I I - i <7r,..,J>0. 
r i = 0 r 2 = r i r , = r , - i 

Note. The choice t — 1 leads to linear function 

* ( * ) = I 3r*r + d0 ; 
r = l 

and taking additional condition g0 — 0, we get homogeneously linear function 

<P(X) = igrxr. 
r = t 

Both (11) and (12) define then a hyperplane in /j-dimensional space, while the hyperplane defined 
by (12) passes through the origin of the space. 

(H), f > r * r + 00 = 0 , 
r = l 

(12) i grxr = 0 . 



432 Choosing t = 2, we get 

n n n n 

E ^,r,Xr2, + E E 0r.r,Xr,*-, + E 0riO*r. + aoo = 0 , 
r, = l r, = l r , = r , - l r, = 1 

•which is the equation of a hyperquadric in n-dimensional space. 

Note. There are I J constants gri...rt in ̂ -function defined by (10). 

Theorem 7. There are at most C(p, m) dichotomies of p points in n-dimensional 
space accomplished by surfaces 

#(*)- i- i *.......*,. •..*.,-so 
ri = 0 rt = r t - , 

(i.e. ^-dichotomies), where 

(n + t 

To each point Z of the given n-dimensional Euclidean space there exists a point 

4>(Z) in j J-dimensional $-space. Therefore, to each set of points Z . , ..., Zp 

there exists a set of points ^(Zj), ..., <P(Zp) in $-space; and for any homogeneously 
linearly separable dichotomy in $-space there exists a corresponding (^-dichotomy 
in the given n-dimensional space. Since the number of homogeneously linearly 
separable dichotomies of p points in m-dimensional space is according to Theorem 3 
at most C(p, m), Theorem 7 is thus established. 

Note. For t = 1 

(13) 0(X)=O 

defines a hyperplane in n-dimensional space not necessarily passing through the origin of the 
space. Thus the number of dichotomies by hyperplanes defined by (13) is equal to C(p, n + 1). 

Theorem 8. There are at most C(p, s(m — 1) + 1) dichotomies of p points in 
n-dimensional space accomplished by s surfaces 

*<«(X)=£ ... t <e,t*r,-*rt = 0, / , - l , . . . ,5 , 
r, = 0 rt = r t - i 

where m = ( J. 



For any dichotomy by s hyperplanes passing through the origin of the $-space 433 
there exists a dichotomy by s <P-hypersurfaces in n-dimensional Euclidean space. 
Since according to Theorem 6 there are at most C(p, s{m — 1) + 1) dichotomies 
in m-dimensional space, the Theorem is established. 

In order to illustrate the proved theorems, a simple example will be presented. 
Let 4 points A, B, C, D be given in a plane (Fig. 1). Out of all 16 dichotomies, only 8 
dichotomies, namely [ ; A u B u C u D], [A; B u C u D], [A u B; C u D], 
[A u B u C; D], [A u B u C u D; ] , [B u C u D; A], [C u D; A u B], [D; A u 
u B u C], are separable by a straight line passing through P, while using two straight 
lines, both passing through P, another 6 dichotomies, namely [A u B u D; C], 
[A u D; B u C], [A u C u D; B], [C; A u B u D], [B u C; A u D], [B; A u 
u C u D], become separable, and finally, using three straight lines, all of them 
passing through P, there may be all 16 dichotomies separated. 

Using a straight line without any restriction, there are, as has been shown above, 
14 dichotomies separable by a curve of that type. Finally, using a quadratic curve 
without any restriction, all 16 dichotomies may be separated. 

We shall now investigate a few typical pattern recognition systems with discriminant 
functions from the point of view of their separating capacity. 

x„ 

pattern weights 

LZH 

summing threshold element 
device with threshold = 0 

Fig. 2. Simple perceptron. 

Example 1. Simple perceptron (Fig. 2) [5] uses a hyperplane defined by (12) and passing through 
the origin of the space. Therefore it follows directly from Theorem 4 that the number of separable 
dichotomies is at most C(p, ri). 

Example 2. AD ALINE (Fig. 3) [6] uses a hyperplane without any restriction, defined by (11). 
Therefore, as has already been shown, the number of separable dichotomies is at most C(p, n + 1). 

Example 3. The pattern recognition system with a quadric processor (Fig. 4) uses hyperquadrics 
as decision boundaries. Applying Theorem 7 and noting that 

m = i(« - 1) (« - 2), 

we get the maximum number of separable dichotomies equal to C(p, \(n — 1) (n — 2)). 
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Fig. 3. ADALINE. 

Fig. 4. Pattern recog­
nition system with augmented quadric 
quadric processor. P a t t e r n processor 

weights summing 
device 

Fig. 5. Committee machine. 
majority 
element 

Example 4. The decision boundary of the committee machine shown in Fig. 5 is a set of i 
hyperplanes. If we admit any logic function of the element M, then according to Theorem 8 and 
taking into consideration that m = n — 1, we get immediately the maximum number of separable 
dichotomies of p points equal to C(p, sn + 1). Since the element M realizes majority operation, 
only a few of all possible 2s different logic functions are allowed, and therefore only a fraction 



of the maximum number of separable dichotomies may be realized by the system shown in 
Fig. 5. C(p, sn + 1) serves thus as a rough estimation of the upper bound of the number of sepa­
rable dichotomies. 

CONCLUSION 

We have studied some general aspects of a certain class of pattern recognition 

learning systems. The maximum number of separable dichotomies derived above 

is the main limitation of those systems. This limitation becomes very important 

in case of many sample patterns. Therefore many pattern recognition learning 

systems succesfully tested with a few sample patterns compared with the number 

of variable parameters may be expected to fail in case of requiring many sample 

patterns to be taken into consideration. 

(Received November 11th, 1968.) 
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O separabilitě úloh při použití některých učících se systémů pro 
rozpoznávání obrazců 

LUBOMÍR OHERA 

Mnohé učící se systémy pro rozpoznávání obrazců jsou založeny na následujícím 
principu: Systém se učí na základě znalosti vzorových obrazců tak, že po skončení 
trenovací doby rozpoznává správně všechny vzorové obrazce. Příklady takových 
systémů jsou různé typy perceptronů, ADALINE, MADALINE a mnohé další. 
V článku jsou zkoumány systémy tohoto typu z hlediska schopnosti učit se různým 
situacím a jsou odvozeny odhady počtu situací, které mohou být systémem naučeny. 

Ing. Lubomír Ohera, Fakulta jaderná a fyzikálně inženýrská ČVUT, Břehová 7, Praha l. 


