
KYBERNETIKA ČÍSLO 5, ROČNÍK 5/1969

Recursive Functions Computable within
Cflogf

M l HOREJS

The class L of functions/(x) computable on classicial (i.e. one-tape, off-line) Turing Machines
within Cf(x) log/(x) steps is dealt (with f(x) = max (x,f(x), 1)). L is shown to be the simplest
class of functions beyond the abilities of finite automata and it turns out to be sufficiently rich
to comprise polynomials, to be closed under addition, multiplication and exponentiation, but
not under substraction and composition.

INTRODUCTION

We shall adopt the model of "classical" Turing machines, wellknown from the
literature (see e.g. [D]). Every machines is provided with one both-side infinite tape
and is designed for computing the values of a number—theoretic function. As we
shall restrict ourselves to (total, computable — i.e. recursive) functions of one
variable only (a lot of results can be, however, easily generalized, which is left to the
reader), we shall modify the model of [D] by assuming the argument x recorded
by means of x (rather than x + 1) succesive l's. Thus a machine Z computes a total
function f(x) mapping the set N of all non-negative integers into itself iff, whenever
the word 1* (i.e. 11 ... 1, x-times) is written down on the tape, the head is placed
on the leftmost symbol of this word, and the computation is started, it will finally
halt, leaving/(x) symbols " 1 " printed (not necessarily in adjancet squares) on the tape.

Let T(x) (or, more precisely, Tz(x) or Tf(x)) denote an upper bound for the number
of steps in which Z computes/(x); i.e. let the length of computation performed by Z
when this starts from the instantaneous description q0l

x do not exceed T(x), for
x = 0, 1, 2, ... We shall say that in this case/(x) is computable within T(x). It will be of
our main interest the class L of all such functions/, for which Tf(x) = Cf(x) log/(x),*

* We shall not explicitly round off the non-integer values of log x; this is supposed to be
performed automatically whenever needed. Also, due to the use of the multiplicative constants,
the base of logarithms need not be specified. Moreover we put log 0 = l 0 g 1 = 1 .

where f(x) = max(x, / (x) , 1). Namely, we shall show that the class L comprises
in some sense the "simplest" functions (theorem 1); on the other hand, L turns
out to be sufficiently rich (theorems 2, 3) though not closed under all usual
operations (theorem 5). The consideration of more comprehensive classes is post
poned to another work.

An important role is played by the notion of the crossing sequence (c.seq.) at
a border between two adjacent squares of the tape, this being defined as a (finite)
sequence of internal states (of a machine Z computing a function /) in which the
machine crosses succesively the given border. Main properties of crossing sequences
are described and utilized both in [H] and in [T] and we shall assume that the reader
is familiar with at least one of these papers.

The present work aims to add some results in the direction of the mentioned
papers for the Turing machines (and their tasks) which seem still to be used most
frequently.

A function f(x) is called quasi-periodic, if there is a number k ^ 1 and numbers
xu ..., xk, du ..., dk, ru ..., rk, x ; < xi+1 for i = 1, ..., k — 1, such that

(1) f(Xl + nd.) = f(Xl) + nrt (i = l,...,k)

and every x > xk can be written in the form x = x ; + ndt for at least one i e {1, ..., fc}
and suitable n. For dt = d and r ; = 0 (i = 1 , . . . , fc) we obtain an ultimately periodic
function, for fc = 1 an ultimately linear step-function.

Quasi-periodic functions are rather special. In spite of their apparently complex
structure, they are easily manageable; they can even be processed by a special sort
of finite automata, e.g. in the following way: Let a quasi-periodic function/(x) from
the definition be given; consider a finite automaton A with input sequences of the
form 1*; A controls the input sequences (i.e. it is permitted to delay accepting the
input l's when necessary). The values/(0), . . .^(x^) are remembered in the internal
memory of A and are handled separately in a suitable way. For x ^ xk, the resulting
f(x) is placed on one of fc output tapes (which serve for recording the result only,
not as a memory). This is enabled by the following algorithm, which describes the
activity of A: After accepting first x ; input signals, A prints / (x ;) output l's on the
i-th tape, while every next d; steps, r ; another l's are added on the same tape
(i = 1, ..., fc). For every x ^ xk, f(x) is thus written on (at least) one output tape,
the number i of which can be (for given x) specified according to the relation x =
= x ; + nd{ (i.e. by the d; which was just counted).

The following theorem shows thus the relative "triviality" of functions which

can be computed "faster" than in C/(x) log/(x):

Theorem 1. If f(x) is computable within T(x), where

T(x)
lim = 0 ,

f(x) log/(x)

then f(x) is quasi-periodic.

Proof. Let/(x) be computed by a machine Z. Consider the segment Sx of the

tape, where 1* is initially written, as pictured on fig. 1. It is \SX\ = x (for every word

or segment of a tape u, \u\ denotes the length of w). Let us denote by Lx or Rx the

Sx

L X=LXI Sx,

\
-, •" . d, Чi J^ J i \ J^ J i

'S 'S' 'S' 'S'

Яx = Rx,

Fig. 1.

actually used parts of the tape to the left or to the right of Sx, respectively (i.e. every

square of Lx and Rx will be visited at least once during the computation of Z). Lx or

Rx may turn out to be empty.

First of all we prove:

(i) For every x it holds: all c.seqs. inside Rx are mutually different (it is understood

that we speak about c.seqs at different borders): if there were — for some x - two

of them, say Qt and Q2, such that Qt = Q2, then there would exist other'borders

with c.seqs Q3, Q4, . . . such that Q(= QX and Qi+1 — Qt = Q2 — Qi (i — 2, 3, ...)

and this would mean that Z would never halt, which is in contradiction with the

totality of j(x). (g,- - Q;- denotes the number of squares between borders, at which

Qi and Qj are considered.)

(ii) For every x it holds: all c.seqs inside Lx are mutually different; this is seen

in the same way as (i).

(hi) If/(x) is not quasi-periodic then for infinitely many, x there are at least x/3

mutually different c.seqs in Sx.

To prove (hi), consider the following construction. Denote by G the set of all x

such that in Sx there occur (during the computation of f(x) by Z) at least two equal

c.seqs.

Define succesively:

x1 = min {y \ y e G} .

Let ' S b e a subsegment of Sx such that: • 387

(a) the c.seqs at the ends of iS are equal (during the computation off(x l)), but
inside lS, there is no pair of equal c.seqs;

((3) there exists no other segment with the property (a) with its left end to the left
of ' S . Such XS evidently exists as soon as xt does; denote \XS\ = dt and define

Xt = {*! + n d . | n = 0 , 1 , 2 , . . . } , Yt = Z x ,

x2 = min {y | y e G, y £ YJ .

Let 2S be a subsegment of SX2 such that

(a) the c.seqs at the ends of 2S are equal (during the computation of f(x2)), but
inside 2S, there is no pair of equal c.seqs;

(P) there exists no other segment with the property (a) with its left end to the left
of 2S. Denote | 2 S | = d2 and put

X2 = {x2 + nd2\n = 0 , 1 , 2 , . . . } ,

Y2 = y. u X2,

xt = min {y \ y e G, y $ Y(_i} .

Let 'S be a subsegment of SXf such that

(a) the c.seqs at the ends 'S are equal (during the computation of/(x ;)), but inside
'S, there is no pair of equal c.seqs;

(P) there exists no other segment with the property (a) with its left end to the left
of 'S. Denote | !S| = d; and put

Xi = {x, + ndt\ i = 0 , 1 , 2 , . . . } ,

Yi = y _ i u x ; ,

Finally, put S£ = {x,} and Y= uY ; . Distinguish now the following cases:

(1) 3C may turn out to be empty. In this case G is empty and (iii) trivially holds,
as for all x all c.seqs in Sx are mutually different.

(2) 9C is nonempty, but finite. Three subcases are considered:

(a) Y = N. Let 9,' = (x l 5 . . . , xk}. In this case every x e N can be expressed in the
form x — X; + ndi for suitable is { l , . . . , k), and / (x) = / (x ; + ndt) = / (x ;) + nrt,
where r. denotes the number of l's left-after the computation of f(x) ends-inside
(every copy of) the segment 'S (see fig. 1, where 'S ' denotes the copies of 'S).
f(x) is thus quasiperiodic.

(b) N —* Y is finite; considerations of (a) apply to every x > x0 for some x0,
showing that f(x) is quasi-periodic again (note that in (1), the x's need not be the
minimal ones with the stated properties).

(c) N — Y is infinite. Hence, there are infinitely many x, for which only mutually
different c.seqs occur in S^ during the computation of f(x), so that (iii) is satisfied
again.

(3) SC is infinite. Now we shall show that for all x(e 9E, there are at least x;/3
mutually different c.seqs in SXj; this will conclude the proof of (iii).

Consider an SXi (fig. 1); denote by q{ (p;) the number of squares between the right
(left) end of'S and the right (left) end of SXi. Logically, there are two possibilities:

(a) a; < dt so that either p ; >j x;/3 or di = x ;/3. But both to the left of 'S and
inside ;S only mutually different c.seqs occur (see (a) and ((3) clauses above) so that
(iii) is established;

(b) q ; 2; dt; consider x\ = xt — d{, as q{ 2: dh it is x\ e G and due to the definition
of xt further x\ e Y,- for some j < i, so that the leftmost pair of equal c.seqs of Sx..
is precisely that of SXJ. Because Sx.t and Sx. have the leftmost pair of equal c.seqs
common again, we conclude that SXi and SXJ have the same ones and hence dt = dj
and Xj e Yy, the contradiction with the definition of x ; shows that the case (b) cannot
take place.

Having (iii) established, we summarize, that whenever f(x) is not quasiperiodic,
there are infinitely many x such that the number of mutually different c.seqs in Sx

is proportional to | S j = x. The same holds — even unconditionally — for Lx, Rx.
Put l(x) = \LX\ + \RX\ + \SX\ and m(x) = max(|Lx | , \RX\, \SX\). Trivially, 3m(x) =

= l(x). With respect to the proved inequality of c.seqs it is (see [T]) Tz(x) >j K' m(x).
. log m(x) for suitable K' — 0 and infinitely many x as soon as f(x) is not quasi-
periodic. Hence, for non-quasiperiodic functions

(3) T(x) = K l(x) log l(x)

and because l(x) = f(x), we have T(x) = Kf(x) logf(x) for suitable K > 0 and
infinitely many x, so that

, i m = iw=
/ (x) Iog / (x)

cannot equal zero. The contradiction concludes the proof.
Theorem 1 shows that the class L splits in two subclasses, one of which is formed

by functions, for which the upper bound Cf log f is overestimated - but these func
tions can be but quasiperiodic — and the other by functions the computation of which
utilizes the allowed time limit fully. Especially these are dealt with in what follows.
Let us, however, remark to the end of this paragraph that neither of the functions
from L can use too much of the tape. Namely, using (3) we prove:

Lemma 1. Let l(x) denote the length of the tape, actually used during the comput- 389

ation of f(x),f(x) e L. Then l(x) g Lf(x)for suitable L and all x.
(This reminds partially the definition of linear bounded automata by Myhill [M].)

Proof. For a function/ which is not quasiperiodic this follows from

Tf(x) ^ K l(x) log l(x) (cf. (3))
and

Tf(x) = Cf(x) log/(x) (definition of L) .

In the case of a quasiperiodic function/ we proceed analogously, but only Lx and Rx

are utilized and instead of (3) the inequality Tf(x) — K(l(x) — x) log (l(x) — x)
is obtained. It suits, however, as well.

Thus, the resulting l's cannot be dispersed on the tape too infrequently.

§2.

Now the question arises, what can really be done within Cf log f, which functions
belong to L and which do not. We shall try to give some characterizations in this
direction. First we prove few closure properties of L.

Theorem 2. (a) f(x) = x e L,

(b)f(x) = KeL(KeN),
(c) iff(x), g(x) e L thenf(x) + g(x) e L,
(d) if fix), g(x) 6 L andf(x), g(x) ^ f(x) g(x) for all x, then f(x) g(x) e L.

Note. The additional assumption f(x), g(x) sj f(x) g(x) is not too restrictive. It is satisfied if
f(x) = g(x) — 0 whenever f(x) g(x) = 0 (especially for f(x) = xm, g(x) = x", m, n ^ 0). Yet
it may be weakened a little more by supposing that it holds for almost all x.

Corollary. Polynomials over N (with nonnegative coeficients!) belong to L.

Proof, (a) and (b) is evident. Before the proof of (c) and (d), we shall prove three
lemmas, which express the properties of the "unary" coding of numbers, underlying
following considerations. Let us note the fact that an arbitrary working alphabet
is at our disposal; it is often useful to consider the tape divided into a fixed number
of tracks along the length of the tape, and, correspondingly, the term: "a symbol is
written on the tape (in the square)" may mean "a symbol is written in a track of the
tape (in a place where a track meets a column of the tape)".

Lemma 2. ("Encoding" lemma). Let S denote a marked (by suitable markers
placed on both ends) segment of the tape, such that it contains precisely s symbols
" 1 " (s = 0) and the head is scanning some square of S. Then the words s, represent
ing a binary code of s can be written down on a prescribed (by pointing out its

first or last square) place in S within E \s\ log \s\ steps.

The p r o o f is not difficult and for the special case, when all squares contain the
symbol 1, was already described elsewhere. Let us therefore mention the rough idea
only. The head moves repeatedly through S from its leftmost symbol to its rightmost
symbol and back, crossing out in any such movement from the left to the right
every even 1; if the last 1 (the rightmost one) is not crossed out according to this
rule, it is crossed subsequently and the symbol 1 is attached to the s which is being

S

1 І 1

1

I

1

1

=
1

0

1 I 1 1 1 1 1 1 Ì

Fig. 2.

t
prescribed last square of .v

formed; in the other case, the symbol 0 is added. The process goes on as far as there
are some of the original l's on the tape; it is repeated at most log2 |S[times and every
single move lasts 2|S[steps; the assertion follows. Fig. 2 illustrates the case s = 14,
|S| = 17.

From lemma 1 and lemma 2 it follows:

Lemma 3. If f(x) e L, then within Cf(x) logf(x) steps the result of computation
of f(x) can be printed on the tape (not only in the form of f(x) symbols " 1 " spread

over the tape but even) in the form f(x).

Lemma 4. ("Decoding" lemma). Let a marked word s be written down on the
tape and the head scan its leftmost symbol equal to 1. Then the marked word Is

can be printed on the tape within D. s log s steps such that the left (the right) ends
of both words coincide.

Proof. Let a "loop" consist of the performance of the following two activities:

(1) shift of a given (marked) word p (over the alphabet (0, l}) one square to the
right and inserting 1 in the released square;

(2) transformation of the newly placed word p into the marked word q, where
q = p — 1, |tj| == |pj. At the end, the word q is considered as "given". One loop
can be performed in 2|p| steps (see fig. (3)). Now let us perform successive loops,
starting with the word s (and the head scanning its leftmost symbol) and repeating
them until the word s' is obtained with s' = 0. In this case the head is s squares
far from its initial position and this number of l's remains between its original and
present position. The time spent equals 2|sj. s steps, which does not exceed Ds log s,
fors > 2 | s i _ 1 .

Let us return to the proof of (c). According to the lemma 3, f(x) can be printed

on the tape within Cff(x)\ogf(x) steps, and a(x) can be printed within another

Cg g(x) log g(x) steps for suitable Cf and Cg. Both words can be supposed to have

common right end and to be written on different tracks of the tape (see fig. 4). During

the next Cmax(| / (x) | , |o(x)|) steps the word / (x) + g(x) can be obtained (simply

Fig. 3.

p

0 1 0 1 0

T P T
-,

(1)-shift, insertion
l 0 ì 0 1 0

. *

(2)-transformation l 0 i 0 0 1

T

by means of the binary adding algorithm) and during next D(f(x) + g(x)).

. log(/(x) + g(x)) steps, according to the lemma 4, the word l^x)+g<-x) results. (In
the fig. 4 this word is printed only in one track of the tape.)

Fig. 4.

Һ 1 . . . 1* ... 1 1 B
\ [... в ш в

\ * ÍÏS) в I
8

f(x)+g(x) в l
/ - 1

и . . . \П*)+г (*) ••• | 1 | 1 | в

The total time spent by a machine following the outlined algorithms and com

puting thus the function /(x) + o(x) does not exceed

(4) CfJ(x) logTW + Cg ~g$) log gjxj + C max (|/(x)| ,

W)\) + *>(/(*) + g (x)) l o g (/ (x) + a(x)) g

^ (C, + Cfl + C + D) (/(x) + j-(,)) log (/ (x) + *(*)),

because /(x) ^ /(x) + g(x), g(x) g /(x) + g(x), |/(x) | ^ /(x) g /(x) + a(x) ^

^ (/(*) + g(^)) log (/(*) + 9(x)) and similarly for \%t)\, and /(x) + g(x) £

g / (x) + g(x). Thus, / (x) + a(x) e L.

The proof for (d) proceeds analogously, it takes only a bit more time to obtain

word f(x) g(x). The well known algorithm for binary multiplication is to be slightly
adapted here: the words, resulting from successive shifts of one operand are added
as soon as they are created because only a limited number of tracks of the tape is at
our disposal (see fig. 5, where f(x) = 11, g(x) = 46). The needed time for it does

not exceed C|/(x)| (|/(x)| + \g(x)\) (in the parantheses, the length of the product

Fig. 5.

+ <
1 0 1 1 1 0

1 0 1 1 1 0

0 0 0 0 0 0

1 0 1 1 1 0

is expressed). Taking Cf, Cg and D in the sense of the previous part, the inequality (4)
now converts to:

(5) Cff(x) logf(x) + Cg fa) log fa)+C | / 5) | (\f(x)\ + \fa)\) +

+ D(f(x) g(x) log (f(x) g(x)) ^ (Cf + Cg + C + D)f(x) g(x) log/(x) fa)

for suitable C because f(x) ^ f(x) g(x) and g(x) ^ f(x) g(x) (here the assumption

f(x), g(x) ^ f(x) g(x) is utilized); further \f(x)Jj& C, log/(x) g Ctf(xj, |a(x)| g

g C2 logfl(x) and hence C\f(x)\ (\f(x)\ + | fg)[) = CC.fa)^ log/(x) + C2 .

. log g(x)) £ Cf(x) (log/(x) + log g(x)) g C f(x) log (f(x) g(x)) ^ C f(x) g(x).

. log/(x) g(x) and finally, f(x) g(x) ^ f(x) g(x).

A generalization of the idea involved in the proof of lemma 4 will enable us to prove
the part (a) of the following theorem, which in turn shows that the class L is not
exhausted by polynomials:

Theorem 3. (a) If f(x), g(x) e L and f(x) > 1 and g(x) ^ 1 for all x, then
f(x)gix) £ L;

(b) i / / (x) , g(x) e L and g(x) ^ x for every x, then g(f(x)) e L.

Note. The requirement f(x) > 1 and g(x) 2s 1 is (analogously as similar assumption
in theorem 2) not too restrictive and it may be weakened again by assuming that it holds for
almost all x.

Proof, (a) According to the lemma 3,/(x) can be printed within tt(x) g Ci/(x) .

. log/(x) and g(x) can be printed within (2(x) fS, C2 g(x) log g(x) for suitable Cx

and C2. Together with f(x), the word l l / (: t) l can be easily generated and within

another f3(x) steps the word u = | / (x) | can be written down (on a suitable track

\ • ?(*)

\ •
/(*) v 1 ...li/ïíн... 1

•
u

/ •
1 [1] ••• ľ"

l > m Ш -• m
Fig. 6.

as seen from fig 6), where t3(x) ^ C3|/(x)| log |/(x) | for suitable C3 according
to lemma 2. The word u gives a binary representation of the length of the binary

representation of the value f(x). Our next task is to construct the word v = / (x) 9 (x)

(i.e. /(x)/(x), . . . ,/(x), f(x) concatenated g(x)-times), which represents the value

f(x)9M — 1 in a/(x)-adic system, the numerals of which are 0 0 . . . 1, 0 0 . . . 10,

00 ... 11, ...,/(x) (these numerals — as words in the alphabet {0, 1} — have the
same length; we can suppose that their ends are suitably marked so that by a juxta
position of them, a representation of a number in the /(x)-adic system is obtained).

Let us find out the length of v: \v\ = |/(x) | . g(x). According to theorem 2 part (d)

(note that both g(x) and |/(x)| belong to L, the first according to the assumption,
the second due to the estimation of t3(x) above) the word l1"1 can be obtained within

C g(x) |/(x)|log(fif(x).|/(x)|). As |/(x) | < C"log/(x), the word l1"1 can be printed
within t4(x) g C4 g(x) log/(x) log [g(x) log/(x)].

The word 1 | v | being established, v itself can be constructed by succesive adding

of copies of the word f(x) to the right of the initially written f(x) (the process is
repeated as far as the right end of l | w | is not reached). Because an arbitrary word
can be copied in a time proportional to the square of its length, this process can

3 9 4 be completed within t5(x) ^ C'"|j(x)|2 . g(x) ^ c 5 g(x) log2 j(x) steps. By this
construction of the word v, the first stage of the computation ends; let us call it
preparatory stage (only this stage is pictured on fig. 6).

Now let a "loop" (cf. the proof of lemma 4) consist of the performance of the
following two activities over two words: v and a given word p, which both are placed
in the same columns of the tape (but, of course, in different tracks), both consisting

of g(x) adjacent numerals, i.e. words in {0, 1} of the length |j(x)|:

(1) shift of the words v and p one square right and inserting 1 in the released
square (now in the whole square — auxiliary division into tracks vanishes for this
square);

(2) transformation of the newly placed word p as follows: the numerals of p are
succesively scanned from the right to the left; those which are of the form 00 ... 01

are replaced byj(x) (which is, for this purpose, at disposal in the word written above
p), while the first one from the right not of this form is considered as binary code
of a number, which is in turn diminished by 1. Other numerals remain during the loop
untouched. The resulting word is considered as "given". One loop can be performed

in no more than c*|t>| = c*| j(x)| g(x) ^ c** g(x) log/(x) steps.
The proper computation (after the preparatory stage) consists now of succesive

performances of loops, starting with p = v and ending with p = 00 ... 019(jc).
The described construction ensures that exactly f(x)g(x) steps will be performed
and this number of l's will be left on the tape (the other auxiliary l's may be left,
as they are written in some tracks of the tape only, and do not represent the "true"
l's). With respect to the estimation above, this part of computation can be accom
plished within t6(x) £ C6f(x)g(x) a(x) logj(x) steps.

The proof of the part (a) of our theorem will be concluded as soon as it will be

shown that the total time spent, £ tt(x) £ C f(x)a(x) log (f(x)g(x)) = C cp(x).
i = l

This will be done by showing that for all i = 1, ..., 6: f;(x) £ C{ (p(x) and putting
6

c = £ c,
i = l

(1) fj(x) S C1f(x)logf(x) S c i (p(x) because j(x) g f(x)9(x) (as g(x) is supposed
to be ^ 1);

(2) t2(x) g C2 gjx)"log oTx) g C2 <p(x) because g(x) g f(x)g(x) (as f(x) is sup
posed to be ^ 2) ;

(3) t3(x) = C-l/001 log | j(x) | == c 3 j W l o g j W S C3 <p(x);
(4) tA(x) = C4 g(x) logj(x) log [g(x) logj(x)] = C4 <p(x), because g(x) logj(x) ^

=i f(x)9(x) (recall that the casej(x) = 0, which could be suspected of making troubles
because we put log 0 = 1, cannot appear, as j(x) J> 2);

(5) t5(x) = C5 g(x) log2 f(x) = C5 log j(x) log j(x)*w ^ C5 <p(x), because
logj(x) = f(x)g(x);

(6) t6(x) = C6f(x)aMg(x)logf(x) = C6/(x)»<*>log/(*)*<*> = C6 <p(x).

(b) According to lemma 3 and 4, l / w can be printed within Cf f(x) log f(x)

steps. Put y = f(x). Starting from V, the word 19(J,) can be similarly obtained within

another Cg g(y) log g(y) steps. Let us compare g(y) with fl(/(x)) (= g ° (/(x)); it is

$(y) = max (y, a(j;), 1) = max (f(x), g(f(x)), 1) while gjfjx)) = max (x, g(f(x)), 1).

We see that in the assumed case, when

(6) g(f(x))=f(x),

it is g(y) ^ g(f(x)) and the total time spent does not exceed Cff(x) log/(x) +

+ Cg g(f(x)) log g(f(x)), which in turn - due to (6) again - is less or equal to

2Cgg(f(x)) log g(f(x)). This concludes the proof.

§3.

Now we give some negative results, especially by showing that the class L is not
closed under substraction and composition. Let us stress that the additional assump
tions required for the theorems 2, part (d) and (3), part (a) hold, are not substantial
and could be removed by suitable changes in definitions of corresponding operations,
which would not destroy the character of the operations. On the other hand, it
does not seem possible to "save" in such a way the operations of substraction
and nonrestricted composition (cf. theorem 3, part (b)); their anticlosure proper
ties seem to be inherent.

We begin by applying the diagonal method to construct a function not belonging
to L; its special form is utilized subsequently.

Theorem 4. There exists a total computable function f(x), f(N) = {0, l} , such
thatf(x)£L.

Proof. Let Z t , Z2, Z 3 , . . . be a sequence of all classical Turing machines and let

represent an effective enumeration, in which every of the machines from the pre
ceding sequence occurs infinite many times: Z; as Z\, Z\, Z\, ...

Consider a machine Z, which computes a function f(x) in the following way:
for a given j it produces (i.e. prints in a suitable track of its tape) the code (e.g. the
set of quadruples) of the machine Z'j = Zf, which in turn computes some function
fj(x). Z subsequently simulates the activity of Z'j in its computation of the value
fj(j) and this simulation lasts until

either (a) Z'j would stop leaving on its tape (simulated of course by a suitable
part of the tape of Z again)//; ') symbols " 1 "

or (b) the number of steps of Zj would exceed Kj \ogj; this value is computed
by Z beforehand and after the simulation of a step of Z'j this number is decreased
by 1 so that the comparison can be effectively performed.

In the case (a), Z finds out, whether fjj) + 0; if so, Z puts f(j) = 0 (i.e. erases
all l's from the tape); otherwise it puts f(j) = 1. Thus , / (/) + fjj).

In the case (b) there are two subcases (which are, however, treated by Z in the same
way):

either (ba)/j(x) is not computable within Kfj(x) log fj(x) (this does not automatic

ally imply fj$i- as fj can be computable within K'fj(x) logL /x) for suitable

K' > K),

or (bb) fj(x) is computable within Kfj(x)\ogfj(x), but in this case necessarily

fj(x) > j (for Kfj(x) log fj(x) to be greater than Kj log;'). In both subcases, Z puts

f(j) = 0, which ensures that / (; ') * / / j) (note that in the case (bb) / , (/) > j > 0!).

The construction ensures f(x) $ L; indeed, every function from L is computed
by a suitable machine (even by infinite number ones) from the list (7). But the function
fj(x) computed by Z] differs from f(x) at least in one point: f(j) + fj(j) for all j .
By construction, f(x) - 0 or 1 for all x.

Utilizing the just proved result, the following one can be derived:

Theorem 5. There exist functions f,(x), ai(x),/2(x), g2(x) e L such that:

(a) / i (x) -« i (x)^L,

(b) g2(f2(x)) 4 L,

(x — y — x - y for x >, y, x — y = 0 for x < y).

Proof. Let us take a total computable function h(x) £ L, h(x) = 0 or 1 (theorem 4).
Further, consider a function H(x), which determines the number of steps, in which
a fixed machine Zh (computing h) will compute the value h(x). H(x) is of course
computable as well. Consider the machine ZfI, which computes H(x) in the following
way: ZH simulates the computation of Zft in one of its tracks, but after every one
simulated step it marks the position of the simulated head, performs some additional
movement —, let us call it a "loop" (to be described immediately) — and returns
to the marked square to perform the simulation of the next step of Zft. The mentioned
additional movement enables to note the required number of steps of Zh: in the loop
in which the n-th step of Zh is simulated, the head (of ZH) runs to the right until
the n-th square of the tape is reached and marked (the squares being counted from
the zero square, which was scanned by the machine at the beginning); then it retuns
to the left until the (—n)-th square is reached and marked, changes the direction

again and finally comes to the marked square (see fig. 7; the symbols] and [mark
the n-th and (- rc)-th square, respectively, to enable proper behaviour of Z H during
the next loop). In this way the distance of the right (as well as of the left) marked
square from the O'th square determines the number of hitherto simulated steps
of Zh. Note that the simulated head always remains within the markers. The simul-

-л -л+1

—Г
-1

position of simulated head at the end of
the //-th sim. step of Z,,

0 1 f n-\ n

[CĽ

- n - 1 -it -n+\

the head of Zh moves in the (/; + l)-st step
of Zh one square left

- 1 0 1 y B-l

•ш

move belonging to the //-th loop

(/; + l)-st simulated step

(// + l)-st loop

Fig. 7.

ation of the rc-th step of Z,, requires An steps of the machine ZH, so that during the
simulation of first n steps of Zh the number of steps performed by Zu makes

(8) X Aì = 2n(n + 1) .

Consider now the function gt(x) = 2HM; we shall prove that g , e L (note that
theorem 3 (a) cannot be applied directly as it is not ensured H(x) e L). gx(x) can
be computed in the following way: first, lH(x) is established, which requires 2H(x).
. (H(x) + 1) steps according to (8). Having lH{x) written down on the tape, gx(x)
can be computed — now according to theorem 3 — within next C . 2H(x) log 2H(x)

steps; thus the total time spent does not exceed 2H(x)(H(x) + 1) + C . 2H(x) .
. H(x) log 2 S Cg . 2

H(X) log 2mx) steps for suitable Cg, so that really gt(x) e L
(gt grows so "rapidly" that the preparatory computation of H(x) can not influence
the fact g, (x) e L even that H(x) itself need not belong to L).

Consider further the function

(9) fi(x) = 2H" + h(x);

again, /i(x) e L . / . is computed in the same manner as gv with the only exception
that h(x) (which can be easily remembered by the machine, as h(x) = 0 or 1) is
added to the result. Evidently/t(x) e L.

The proof of (a) is now at hand, as L.(x) - gt(x) =/i(x) - gx(x) = h(x) $ L.
To prove the part (b), put/2(x) = / t(x) and note that/2(x) is even (odd) if h(x) = 0

(h(x) = 1) (see (9)). Let further g2(x) = 0 for x even and g2(x) = 1 for x odd.
Evidently, g2(x) e L. But fl2(/2(x)) = h(x) $ L, what was to be proved.

Acknowledgment. I wish to express my gratitude to P. Strnad for his helpful criticism.

(Received November 25th, 1968.)

REFERENCES

[D] Davis M.: Computability and Unsolvability, New York 1958.
[H] Hennie F. C : One-tape, Off-line Turing computations. Inf. Control 8 (1965), 553—578.
[M] Myhill J.: Linear bounded automata. Wright Air Development Division Ohio, Report

(1960), 6 0 - 2 2 .
[T] TpaxTeH6poT E. A.: TbiopHHroBw BHHHcneHHH c JiorapH(J)MHHecKHM 3aMefljieHHeM. Aitre6pa

H nonuca 3 (1964), 3 3 - 4 8 .

399

Rekurzivní funkce vyčíslitelné v Cf log f

JIŘÍ HOŘEJŠ

V práci je uvažován klasický model Turingova stroje pro výpočet funkce f(x)
jedné proměnné zobrazující množinu přirozených čísel do sebe (viz např. [D]).
Hodnota argumentu x resp. funkční hodnota f(x) je zapsána pomocí x resp. f(x)
jednotek. Vyšetřují se funkce, které mohou být vyčísleny vhodným Turingovým
strojem uvažovaného typu během C/(x)log/(x) kroků stroje, kde f(x) =
= max (x,f(x), 1). Ukazuje se, že třída L funkcí této vlastnosti je v jistém smyslu
nejjednodušší třída funkcí ležících mimo schopnost konečných automatů (věta 1
a definice quasi-periodických funkcí), že však je již dosti bohatá; obsahuje např.
polynomy, je uzavřená vzhledem k operacím součtu, součinu, umocňování, (věty 2, 3),
ne však vzhledem k odčítání a superpozici (věta 5). Při důkazu pozitivních tvrzení
se tu využívá lemat ukazujících na možnost poměrně „rychlého" převodu mezi
a-adickými zápisy čísel, negativní tvrzení se opírají o metodu přechodových po
sloupností (crossing sequence z [H] resp. „sled" z [T]) a diagonální metodu.

Doc. RNDr Jiří Hořejš, CSc, Katedra matematických strojů University J. E. Purkyně, Janáč
kovo nám. 2a, Brno.

