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On Optimum Time Bounds for Recognition 
of Some Sets of Words by On-line Turing 
Machines 

PAVEL STRNAD 

In the paper optimum time bounds (up to a multiplicative constant) on recognition of some 
sets of words by on-line Turing machines are given. The activity of Turing machines which 
recognize the sets within these time bounds is described. 

INTRODUCTION 

In this paper we consider multitape on-line Turing machines in the sense of [1]. 
An on-line Turing machine begins its computation in a fixed state s0 with all tapes 
completely empty. (The input symbols of the machine form the input alphabet, 
the output symbols form the output alphabet and symbols used on tapes form the 
internal alphabet of the considered machine.) 

The machine produces an output symbol as an answer to an input symbol. This 
answer need not be immediate, it may come after several steps of the activity of the 
machine. The machine does not accept any further input symbol during that activity 
(during the elaboration of an answer). The (i + l)-st input symbol is accepted by the 
machine at the time which follows the time of the production of the i-th output 
symbol. 

If the output alphabet of the machine is {0, 1}, the machine may alternatively 
be thought of as recognizing the set of those input sequences for which the last 
symbol in the corresponding output sequence is a 1. 

In the whole paper the term "machine" always means an on-line Turing machine. 
The activity at a given step of the computation of the machine depends on the 

symbols read by the heads on the tapes, on the state of the control unit of the machine 
and on the input symbol (at the steps at which an input symbol is accepted). At every 
step of its activity the machine can rewrite the symbols under the heads on the tapes, 
shift every of its heads one square to the right or to the left, change its state and 
produce an output symbol. There is one head on every tape. 



The machine M recognizes (represents) a set A of words over an alphabet X if 

1. the input alphabet of the machine M is Y => X and the output alphabet of M 
is {0, 1}; 

2. for every word w over the alphabet Yit holds: 
w e A if and only if the machine M assigns to the input word w an output word of the 
length \w\ and the last symbol of that output word is a 1. (\w\ is the length of the 
word w.) 

Let us denote xM(w) the time (i.e. the number of steps) of the processing of the 

input word w by the machine M and let xM(n) = max xM(w). We call xM(n) the com­

putation time of the machine M. 

Definition. Let T(n) be an arithmetic function. We say that a set B is T(n)-recogniz-
able if the following conditions are satisfied: 

1. There is a multitape on-line Turing machine X and a constant C such that 

(a) X recognizes B, 
(b) xx(n) < C T(n) for all n. 

2. For any on-line Turing machine Y which recognizes B there is a constant K 
such that for almost all values of n the inequality xY(n) > K T(n) holds. 

Remark. The constant K from the part (b) of the definition depends on the machine Y (on the 
number of its tapes and on the number of the symbols of its internal alphabet). In concrete cases 
it is possible to decrease this constant by an increase of the number of the tapes or by an increase 
of the number of the symbols of the internal alphabet. 

1. TIME BOUNDS ON THE RECOGNITION OF THE SET A 

Let us consider the alphabet {0, 1, *}. A word over this alphabet of the length 
i + 1 which consists of 0's and l's and which is terminated by * will be called an 
/-block (i = 1, 2, . . . ) . A sequence of 2' i-blocks will be called an i-base. 

Let us define the sets A(l) : w e A(,) if and only if there exists k ^ 1 such that w 
is a sequence of 2' + k i-blocks and the last ('-block of the word w is equal to one 
of the initial 2' i-blocks of the word w. 

Then A = U A0) is the set A from [1]. 
. / '=1 

Hennie proved [ l ] that for any on-line Turing machine M that recognizes the set A 
the inequality xM(n) > n2/(48i log s log2 n) holds for almost all values of n (t is the 
number of tapes and s is the number of symbols of the internal alphabet of the 
machine M). Throughout this paper log means log2. 

First we shall describe a machine N which recognizes the set A and for which the 
inequality xN(n) < C . n2/log2 n holds for each n, where C is an appropriate constant. 



(Hennie [ l ] states the possibility of a recognition of the set A by a machine using 
that computation time, but without a detailed proof.) As a consequence, the set A is 
;i2/log2 n-recognizable (according to our definition of T(n)-recognizability). 

The description of the activity of the machine N. The machine N has 8 tapes. 
The input alphabet of the machine N is {0, 1, *} . The activity of the machine N 
is divided into several stages. 

The first stage begins with accepting the first input. Within this stage 

(a) the machine determines the length of the first block and marks this length 
on the tape T4. In this way the machine obtains the information to which set A(1) the 
given word could belong. During its further activity the machine still compares 
the lengths of the blocks of the input word with the length of the first block. If some 
block has a different length the machine will give out a 0 as an answer to every sub­
sequent input symbol. 

(b) As soon as the machine finds out the length i + 1 of the first block, it begins 
to mark, on the two tapes T5 and T6, groups of 1, 2, 4,...., 2 ' - 1 squares. The machine 
simultaneously transfers these groups onto the tapes T2 and T3. It is possible to do 

« - I 

this within £ 2' = 2'" — 1 steps, in the following way: Let 2J squares on the tape T5 
1 = 0 

and groups of 1,2, 4 , . . . , 2J squares on the tapes T2 and T3 be already marked. 
The head on the tape T5 goes from the left end of the group of 2J marked squares 
to the right end of that group and then returns to its initial position. That activity 
takes 2 . 2J' = 2J + 1 steps; simultaneously, the head on each of the tapes T2, T3, T6 

marks a group of 2J + 1 squares. Afterwards the heads on the tapes T5 and T6 inter­
change their roles and the head on the tape T6 passes twice through the group of 
2J+1 marked squares; the heads on the tapes T2, T3, T5 simultaneously mark groups 
of the 2J+1 squares, e.t.c. The total number of groups which are marked on the 
tapes T2, T3 is i, the machine compares it with the record on the tape T4. On the 
tape T2 the groups of marked squares will be separated (the last symbol of every 
group will be indicated), on the tape T3 the groups will not be separated. The length 
of the record on each of the two tapes T2 and T3 is 2l — 1. 

(c) From the beginning of its activity the machine successively writes down on the 
tape T7 input symbols. On the tape T8 the machine marks the number of the accepted 
and recorded blocks. We shall consider only the case i S; 2 because A(1) can be re­
cognized by a finite automaton. 

(d) As soon as the machine finishes the activity described in (b), it continues 
working in this way: it stops writing on the tape T8 and, on the tape T3 it successively 
erases one symbol for every further accepted block. Simultaneously, the machine 
erases on the tape T3 the same number of symbols as are written down on the tape T8. 
As soon as the head on the tape T3 erases all its record, 2' — 1 blocks are accepted. 
The machine then accepts two blocks more and writes them down on the tape T7. Up 
to this moment the machine has accepted 2' + 1 blocks, i.e. (2' + l) (i + 1) input 



symbols and has written them on the tape T7. The machine has produced 2'(Z + l) + / 
output symbols O's. (During the first stage of its activity the machine receives an 
input symbol at each step of the computation, the output symbol being all the time 0.) 

The second stage begins with the ((2' + l ) ( / + l) + l)-st step of the computation. 
During this stage the machine will not receive any input symbol and will not give 
out any output symbol. During the second stage the machine encodes the blocks 
written on the tape T7. First the head on the tape T7 returns to the begin of its record. 
The head on the tape T, begins its operation on a marked square of the tape and 
encodes successively 2' /-blocks from the tape T7 as follows: if the first symbol of the 
block is 1, the head makes a shift 1 square to the right; if on the second place of the 
block there is 1, the head makes a shift 2 squares to the right, ...; if on the t-th place 
of the block there is 1, the head makes a shift 2''1 squares to the right. If on the t-th 
place of the block there is 0, the head keeps its position (i.e. no shift is done). The 
shifts 2k~l (k = 1,2,..., /) squares to the right are realized using the groups recorded 
on the tape T2. As soon as in the process of encoding of the block the head on the 
tape T, comes to a square on which * is written, the head on the tape Tx marks its 
position (by a special symbol of the internal alphabet) and then returns to the left 
to the marked beginning square. Simultaneously the head on the tape T2 returns 
to its starting square and the head on the tape T7 begins to process symbols of the 
next block and the whole procedure is repeated until 2' /-blocks are coded. To two 
different blocks there correspond two different total shifts to the right, the coding 
is one-to-one. No shift (i.e., the beginning square) is assigned to the /-block 00 ... 00* 

the maximum shift is 2' — 1 squares and it corresponds to the /-block 11 ... 11*. 

After having coded the /-base (the initial 2' /-blocks) the machine controls the 
(2' + l)st block (i.e., it verifies whether this block is equal to any block from the 
base or not). The head on the tape T, moves similarly as when coding the block but 
now it does not mark the square but finds out whether it is yet marked or not; the 
head then returns to the beginning square and the machine gives out the output 
symbol 1 (or 0). By this last step of computation the third stage begins. 

The third stage. To the input the symbols of the next blocks come and the head 
on the tape T, codes them again by shifts to the right. In the step in which the input 
symbol is * the machine finds out whether the square under the head on the tape Tj 
is marked or not, the head on the tape Tx returns to the beginning square and the 
machine gives out the output symbol 1 (or 0). 

The Estimation of the Computation Time of the Machine At 

The words from AU) are recognizable by a finite automaton, consequently we shall 

consider the set U AO> only. If / + 1 is the length of the first block received by the 
J'=2 



machine, then the processing of an input word of the length n < (i + 1) (2' + 1) 
takes n steps. Let the input word be of the length n 2: (i + l) (2' + l). Then there 
exists an integer k such that the inequalities (i + l) (2' + k) < n < (i + 1) (2' + 
+ k + l) hold. Then for the computation time of the machine N we have: 

TN(n) < i + 1 . . . this number of steps corresponds to the coding 
of the length of the first block of the input word 
on the tape T4; 

+ 2' — 1 . . . the realization of the record on the tapes T2 and T3; 

+ (2' + l ) ( i + 1) . . . the record of the initial T + 1 i-blocks on the 
tape T7; 

+ 2£(2 .T) . . . the coding of the initial T /-blocks on the tape T^ 

+ (k + 1) (2 . 2') . . . the coding of the next k + 1 /-blocks on the 
tape Tt. 

Therefore (for / ^ 2) 

rN(n) < 2 . T . (T + k + 1) + 3 . i. T < 4 . T . (T + k) = 

= 4 . T . (i + 1) (T + k)/(i + 1). 

If we compare the bounds for n we see that 

rN(n) < 4 . 2 ' ' . nj(i + 1) < 4 . n . T/i. 

To each given value of n it is possible to find an integer m such that the inequalities 
(m + 1) . 2m < n < (m + 2) . 2 m + 1 hold. Surely it will be m g 1. Further log n < 
< log(m + 2) + m + 1 < 3m, because m ^ i 2£ 2; consequently 1/m < 3/log n. 
As the function T\i is increasing for / ^ 2, the proved inequalities yield 

T\i < 2m/m < 3 . 2m/log n < 3 . (m + 1) . 2m/(m log n) < 9n/log2 n . 

Therefore xN(n) < An . 9n/log2 n = C . n2/Iog2 n holds. 
As a consequence of the Hennie's estimation and the construction of the machine N 

just described, the set A is n2/log2 n - recognizable (see Definition). 

2. TIME BOUNDS FOR RECOGNITION OF SOME SUBSETS 
OF THE SET A 

For simplicity of writing, let us introduce the denotations log(,c) x and exp(fc) x 
(where k is a nonnegative integer) in the following sense: 

log(0) x = exp(0) x = x , 

log w x = log2 (log(t-l) x ) , expW x = 2exp(k'l>x for k ^ 1 . 



In this chapter we shall determine-similarly as for the set A — for some other 
sets the time which is necessary and sufficient (up to a multiplicative constant) for 
them to be recognized by an on-line Turing machine. So we obtain a hierarchy of sets 
which have different time complexity. These sets are subsets of the set A. Each of them 
is a set of words all the i-blocks of which fulfil some restrictive condition. If r is 
a real number then [r] denotes an integer such that [ r ] <. r < [r] + 1. The sets 
are as follows: 

Ap/q — the beginning [(<j - p) i/q] symbols of an i-block of a word from Ap/q 

are O's, the other symbols are arbitrary, i.e. O's or l's; p, q are positive 
integers, 0 < p\q = 1; 

Ak
u „ — the number of l's of each i-block of a word from Ak „ is just u + 1 and u 

of l's are on the places (within the block) of the type exp(fc) p", where 
p = 1, 2, ..., [(logw i)1!"]. The set Ak

UiV is defined for k = 0, 1, 2, ...; u = 0, 1, 2, ...; 
v = 1 ,2 ,3 , . . . ; v + k> 1. 

Theorem 1. The sef Ap/(? is (n/log n)l+plq-recognizable. 

Remark. With respect to the definition of T(rc)-recognizability the statement 
of Theorem means the following: 

(a) If an on-line Turing machine M recognizes the set Ap/q, then for almost all 
values of n the inequality xM(n) > cM(n/log n)l+plq holds, where CM is a constant 
depending on the number of tapes and on the number of symbols of the internal 
alphabet of the machine M. 

(b) There exists a constant C and an on-line Turing machine N which recognizes 
the set Ap/q and for which the inequality xN(n) < C(n/log n)l+p/q holds for each n. 

Proof, (a) This part of the proof is similar to the Hennie's proof for the set A [1]. 
We shall consider two /-bases as "different" if and only if there exists an i-block 

which is a part of one i-base and is not a part the other. It is possible to choose 
22'~liq~p)ilq'i _ l pairwise different /-bases from Ap/q. Denote by a , (j = 1,2,. . . 
..., 2 2 ' " 1 ' " " " " 1 — 1) the /-bases which correspond to a certain fixed choice of 
pairwise different /-bases. Further let bj (j = 1,2, ..., 22'~Uq~p,''q~s - l) be arbitr­
ary /-words (an /-word is a word consisting of a finite number k = 0, 1, 2 , . . . of 
/-blocks) those consist of /-blocks, satisfying the condition imposed on the /-blocks 
in the set Ap/q. First we prove two lemmas. 

Lemma 1. / / an on-line Turing machine L recognizes the set Ap/q, then for each 
i = 1 there exists an integer j (1 = j < I2' " ' " ) , and an i-block d so that at 
processing the word afijd the machine L needs a time (the number of steps) larger 
than v( for the processing of the last i-block d, where 

v. = (2'-'(9-P)iM _ i0g Q _ t i o g s _ j_)/(2f log s) ; 



here Q is the number of internal states, t is the number of tapes, s is the number 
of symbols of the internal alphabet of the machine L. 

Proof. 1. Let Qs' > 2
2i~Uq'p>i'ql~1. Then log Q + t log s > 2'- [ («-p ) i / ' ' ] - 1, 

therefore 2i~Uq-")iM - log Q - t log s - 1 < 0. It follows that (2i~u«-ri'M _ 
- log Q - t log s - l)/(2i log s) < 0. 

2. Let Qs' > 22 ' I<9 vU,~~~l
- We introduce the concept of an x-configuration 

of the given Turing machine. This x-configuration includes the machine state, the 
symbol under the head on each tape and x symbols to the left and to the right from 
it (altogether 2x + 1 symbols on each tape). Therefore there are at most Qs,(2x+1> 

different x-configurations of a given machine. Let x,- be the greatest integer satisfying 
2 s , (2* i + i) ^ 22.-t(€-,>./.]-i < 2a.-ic-,>./« _ . . C e r t a i n l y Xj -> 0 > b y a s s u m p t i o n 2 . 

Passing to logarithms we obtain log _ + 2xtt log s + t log s < 2'~l(q~~)i/ql — 1. 
From the last inequality and from the fact that x, was the greatest integer/ satisfying 
the inequality Qs">2J+1> < 22 '"[<"""P)i/ , I~1, the inequality 0 _ x,- < (2'~l<-~~ MM -
- log _ - t log s - \)l(2t log s) < x, + 1 follows. As gs'(2jCi+«I < 1

2i~Uq-p)i"'1 - l, 
the number of /-words Ojbj (for j = 1, 2, ..., 2 2 ' u" P)'/"1 - l) is-greater than the 
number of different xrconfigurations of the considered machine. Thus there exist 
two /-words arbr and asbs (for r =f= s) such that for the input words arbr and asbs 

the Xj-configurations of the machine are in the both cases equal at the time at which 
the last output symbol is given out. But the bases a„ as are different, thus there 
exists an /-block d which is a part of one and is not a part of the other base. Assume 
that the time of processing the block d is shorter than x ; + 1 steps, i.e., that during 
processing the block d by the machine no head leaves the squares of the initial x r 

configuration. The machine then works in the same way when processing the last 
/-block d of the input words arbrd, asbsd. Thus it either receives both of the words 
arbrd, asbsd or rejects them both simultaneously. This is a contradiction, because the 
/-block d is a part of one of the bases ar, as and is not a part of the other. Thus the 
time of processing the /-block d of the input word arbrd (and simultaneously also 
the time of processing the /-block d of the input word a Ad ) is greater than or equal 

to X; + 1 > tfj. 

Q.E.D. 

Lemma 2. / / an on-line Turing machine L recognizes the set Ap/q and aj (j — 
= 1, 2, ..., 22 '"I< ' ,~P)"' ,1 — 1) are pairwise different i-bases then there exist a po­
sitive integer k < 22' * P"lql and an i-word h such that 

(a) the i-word h consists of 2' i-blocks satisfying the condition imposed on the 

i-blocks in the set Ap/q. 
(b) In the course of the processing of the word akh by the machine L the time 

of processing of each of the 2' i-blocks of the word h is larger than vt (see Lemma l). 

Proof. Let us have pairwise different /-bases a, (j = 1,2, ..., 22''"1"'"'''""3 - 1). 



Then according to Lemma 1 there exist positive integers r, s and an /-block dr so that 
at processing the words aTdu asd^ the processing of the last /-block dx lasts longer 
than vt. Let us take /-words a] (j = 1,2, ..., 22i'Uq~p)l/'I) - 1), where a'r = ard{, 
a's = asdl and aj = aj for all other values of j , and repeat Lemma 1 with them. 
We obtain the same number of /-words a"j again, etc. The whole procedure will 
be finished when we obtain a group of /-words, at least one of which has the length 
2' + 1(i + 1); i.e., it consists of 2i + 1 /-blocks. The /-word thus obtained evidently 
has the properties stated in Lemma 2. 

Q.E.D. 

Now we return to the proof of the part (a) of Theorem 1. 
Let us denote n,- = 2J + 1(j + i)_ For each positive integer n there exists a positive 

integer * such that n ; = 2 i + 1(/ + l) _g n < 2i + 2(/ + 2) = n i + 1 . Then r(n) > r(n;) 
and according to Lemma 2 

T(n) _> T(«.) > 2''. Vl = 2l{2i~m~p}iM - log Q - t log s - l)/(2/ log s) ; 

Q, t, s are constants, plq > 0, then 

T(H) > 2l. 2'-to-p)'/?]/(3. log s) > 22i-(-«-p)i/ql(3t log s) 

for large values of /, since 2i"^q-p)i/<t]
 = 2 i" (p"« , ' ' / '1. 

It is easy to change this last inequality into 

t(n) > 2i<1 + ^ / ( 3 t log s) = (2i + 2(/ + 2)/(22 . (/ + 2)))1+ ' /«/(3/ log s) ; 

then 

T(«) > nl+p/-l((22(i + 2)Y+p/q . 3/ log s) > (n/(/ + 2))1 + ̂ / ( 48 / log s ) . 

Passing to logarithms of the bounds within which n lies we obtain / + 1 + 
+ log(/ + l) g. log n, thus i + 2 < log n for almost all values of /.Altogether for almost 
all values of n the inequality T(n) > cM(n/log n)1+p/« holds, where CM = 1/(48/logs). 

Q.E.D. 

The proof of the part (b) depends on the description of the activity of the machine N. 
The activity of the machine JV is similar to the activity of the machine N recognizing 
the set A (see § l), so we describe the activity of N only briefly. In the first stage of the 
activity the machine first marks the length of the first block. During its whole activity 
the machine compares the lengths of the blocks with the length of the first block. 
On one of the tapes the machine writes down symbols from the input; altogether 
in the first stage the machine records 2' + 1 /-blocks (i.e. it writes down (2' + l ) . 
. (/ + 1) symbols). During its activity in the first stage the machine produces 
2'(/ + 1) + / output symbols 0. The machine computes the number [(l - p/q) / ] ; 
the initial [(l — p/q) /] symbols of every /-block of a word from Ap/q must be 0's 



and with every accepted /-block the machine verifies this condition. In the second 

stage the machine codes 2' /-blocks of the base. The number of squares needed for 

coding an arbitrary /-block of a word from Aplq is 2i~l(-1~p,*)(i, the coding is similar 

as in the machine N. In the third stage of the activity of the machine N the activity 

is similar to the activity of the machine N from § 1 again. 

The estimation of the computation time of the machine N 

In the activity of the machine N there are only two essential differences in comp­

arison with the activity of the machine N. The first is the computation of [(1 — p/q) /] . 

This computation can be realized in Ti steps, where Tis a constant. For almost all 

values of / it is possible to realize this computation in the first stage of the activity 

of the machine. The second difference concerns the coding (and the control) of /-blocks. 

To the coding of the /-blocks of words in Ap/q, 2 '~ [ ( 1 ~ p / 9 ) , ] squares are sufficient 

on one of the tapes. Then for the computation time of the machine N the inequality 

rN(n) < i + 1 + T - 1 + (T + l) (i + l) + 2;(2 . 2 i- [ ( 1-- /«" ]) + 

+ (k + \)(2.2i-l(l-p/q)i\ 

holds (the relations between n, i, k are introduced in § 1, where the estimation of the 

computation time of the machine N was made). By similar arrangements as in § 1 

we have tN(n) < 8n . 2(p/q)iji and further xN(n) < C(n/Iog n)1+I"q. By this, the proof 

of Theorem 1 is finished. 

Theorem 2. The set Ak

uu is n(log(* + 1 ) n)u/"-recognizable. 

Proof. See Remark after Theorem 1; we again divide the proof into two parts. 

(a) This part of the proof is similar to the proof of the part (a) of the Theorem 1. 

Let us denote a the number of different /-blocks of the word from Ak„ „. Then 

.-O-Kь^O'"])^ 0 "" 1 ) . 

It is possible to choose 2" — 1 pairwise different /-bases from Ak

uv. The two lemmas 

from the proof of Theorem 1 can be formulated in this way: 

Lemma 1'. If an on-line Turing machine L recognizes the set Ak

v then for each 

i ^ 1 there exist an integer j ( l < / < 2*) and an i-block d so that at processing 

the word afijd the machine L needs for the processing of the last i-block d a lime 

(the number of steps) larger than v{, where 

Vi = (a - log Q - t log s - l)/(2f log s) ; 



here Q is the number of internal states, t is the number of tapes, s is the number 275 
of symbols of the internal alphabet of the machine L. 

Lemma 2'. / / an on-line Turing machine L recognizes the set Ak
u>c and a3 (j = 

= 1, 2, ..., 2a - 1) are pairwise different i-bases then there exist a positive integer 
k < 2" and an i-word h so that 

1. the i-word h consists of 2' i-blocks satisfying the condition imposed on the 
i-blocks in the set Ak

uv. 
2. In the course of the processing of the word akh by the machine L the time 

of processing of each of the 2' i-blocks of the word h is larger than vt (see Lemma 1'). 

The p roofs of these two lemmas are similar to the proofs of the lemmas from the 
proof of Theorem 1; we shall not repeat them. Now we come to the proof of the 
part (a) of Theorem 2. Let us denote n} = 2J+1(j + 1). For each positive integer n 
there exists a positive integer i such that nt = 2' + 1(i + l) g n < 2' + 2(i + 2) = 
= ni+1 holds. Then r(n) > T(H;) and, according to Lemma 2', 

T(;?) > T(H() > 2'v; = 2'"(a - log Q - t log s - l)/(2f log s). 

Q, t, s are constants, v + k > 1, therefore for large values of i the inequality x(n) > 
> 2' . af(3t log s) holds. Further, for large values of i the inequality a > i(log(!c) i)"1": 
: (2U+1 (u!)) holds,consequently T(«) > i . 2'(log(,l) i)u/"/(3.2"+1. t(«!) logs). For large 
values of i also the inequality i > (j) log n holds, thus the last inequality can be re­
written in the form T(/)) > KL n(log (k+1) n)"1", where the constant KL depends on 
the machine L. 

(b) This part of the proof of Theorem 2 consists in the description of the activity 
of a concrete machine that recognizes the set Ak „ and on the estimation of its comput­
ation time. Let us divide the activity of this machine into stages, similarly as we did 
when describing the activity of the machine N that recognizes the set A. 

In the first stage of its activity the machine writes down 2' + 1 i-blocks (i.e. 
(2' + l ) ( i + 1) input symbols) on one of the tapes and gives out 2'(i + l) + i 
output symbols 0. Further, in the first stage, the machine determines, within an 
i-block, the places of the type expct) p" for p = 1,2,..., [(logCk) i)1 /0]. With every 
i-block, the machine finds out whether just u of l's are on these places and whether in 
the whole i-block just u + 1 of l's are contained. In the first stage, on one of the tapes, 
the machine marks (i — [(log(lt) i)17"]) groups of squares, the groups being pairwise 

/T(log(k) i)1/vl 
separated by auxiliary symbols. Each from these groups contains ( LV J 

V -
squares. 

In the second and the third stage the machine codes /-blocks. The machine codes 
every i-block of a word from the set AUtV on the tape on which the groups are made. 
This is done as follows. The 1 (just one) which is not on a place of the type exp(k) p" 



can be on the i - [(log((° i)1/u] places. In accordance with the position of this 1 the 
machine chooses one from the i — [(log^1 i)1/u] groups. Within this group of squares 
it is possible to code an arbitrary w-tuple of l's, which are positioned on places 

f[(\og{k) 0 1 / B 1 \ 
of the type exp(,° p", because this group contains ( LV I s c l u a r e s - Let us bring 

the head on the left-most square of this group. Let us consider the (expw l")-th 
/rYlogW ;W"1 - l \ 

symbol of the i-block. If it is a 0, the head shifts LV ' J ) squares to the 

right, if it is a 1, the head stays on its position (i.e. no shift is done). Then the machine 
considers the (exp(A° 2")-th symbol, etc. If on the (exp(*' / ) - t h place within the con­
sidered i-block there is a 1, the head stays on its position. If on this place there is a 0 
and on the places exp(t) x" (for x < j) there are altogether y of l's (y <. u — l), 

/ [ ( log* i)1/"l - i\ 
then the head shifts ( LV ' J ] squares to the right. If on the places of the 

V « - y - 1 j 
type exp w xv (for x < j) there are altogether w of l's, then the head stays on its 
position. In this way it is possible to assign unambiguously to every i-block of a word 
from Ak

v a certain square; the machine marks this square. When the coding of the 
base is finished the machine verifies whether the following individual i-blocks are 

equal to any block of the base or not. The shifts of ( ) squares (a, b are positive 
\b) 

integers, a < [(log(*J i)L/B], b < u) to the right are realized by using the record that 
the machine made during the first stage. The time needed for production of these 

/ [ ( log w iW"! + 1\ 
records is shorter than ( L J ] for almost all values of i. The coding 

of an arbitrary i-block lasts at most 2(i - [(log00 i)llvJ). ( Lv °8 *' J ) time units. 

The finding of the places of the type exp(fc) f (for p = 1, 2, ..., [(log(fe) i)1'"]) lasts 
at most (k + l) i time units. The realization of the system of groups of squares lasts 

at most (i - [(log<» i)1/vJ). ( W ' ^ " A time units. 

The estimation of the computation time of the machine R 

If i + 1 is the length of the first block accepted by the machine R then the processing 
of the input word of the length n < (i + l) (2* + l) lasts n time units. Let the input 
word be of the length n 2i (i + 1) (2' + 1). Then there exists an integer m such that 
(i + 1) (21 + m) ^ n < (i + l) (2' + m + l). According to the description of the 
activity of the machine R for its computation time we have: 

tR(n) < (2' + l)( i + 1) . . . this number of steps corresponds to the recording 
of the initial T + 1 i-blocks; 



+ (fc + 1) i . . . the finding (for the given value of i) of all places -77 
of the type expw f for p » 1, 2 , . . . , [(log<*> J)-!"]; 

/ [ ( log* 01/B1 + 1\ 
+ I LV ' J J . . . the unary coding of the possible shifts by the 

V M / coding of i-blocks; 

+ (RW- 0'"]) ( i - [ ( l o g M «)"•]) 

+JP-BW" 0"-]) ([<l08"u' ° '" ]). 2' 

. . . the coding of 2' i-blocks of the base; 

+ 2(i - [(log"> i)^])A(l0g^ ' ^ V m + 1) 

. . . "control" (i.e., the verification whether the 
given i-block is equal to any block of the base or not) 
of the following m + 1 i-blocks. 

Altogether, we have the inequality 

t „ W < ( r + t + 2)(, + 1) + (K l 0 8 < "fT + 1) + 

+ 2(i - [(log<*> i)1'"]) (K l 0 8 ( ' 0 i)UVA (T + m + 2) . 

For large values of i (in dependence on the given values of u, v, k) the inequality 

T,(fi) < (T + k + 2) (i + 1) + 2(i - [(log<*> i)1/B]) ( K l 0 g ( l > ( ) I / " J ] (2L + m + 3) 

holds, thus for a suitable constant iC and for almost all values of i 

xR(n) < K(i - [(log<*> i)1"]) (2' + m) ( [ ( 1 ° 8 ^ ^ ' A . 

Further 

xR(n) < K(i/(i + 1)) ([(Iog« i)17"])" (2' + m) (i + l) ; 

from that last inequality it follows that xR(n) < Kn(logw i)"1". Because of the restric­
tive conditions on the value of n we have that i < log n holds, consequently xR(n) < 
< Kn(log« + v n)ulv. 

Q.E.D. 



278 We shall describe still another class of subsets of the set A and determine the 
corresponding time functions. Let p, q, s, vt (for i = 1, ..., s) be positive integers 
and uh fcj (for i = 1, 2, ..., s) nonnegative integers such that vt + k{ > 1 (i = 1, 2, . . . 
..., s), 0 < pjq < 1. Let us denote AiP'q's'Ui'Vi'kt) such a subset of the set A that 
every /-block of a word from A fulfils the following conditions. Let us suppose the 
/-block divided into q parts of the same length (we shall omit details concerning 
the case that / is not divisible by q). Symbols in the last p parts of the block will 
be arbitrary, i.e. O's or l 's. Let us divide the remainder of the block (i.e., its q — p 
initial parts) into s portions of the same length. The first portion will contain just M, 
of l's on the places (with respect to the first portion) of the type expiki) pVl for p = 
= 1, 2, ...; the second portion will contain just u2 of l's on the places (with respect 
to the second portion) of the type exp(k2) p"2 for p = 1, 2, ...; ...; the s-th portion 
will contain just us of l's on the places (with respect to the s-th portion) of the type 
exp(*s) pVs for p = 1,2,. . . For the just described set the following Theorem 3 holds; 
this theorem will not be proved here because its proof is similar (but technically more 
difficult) to the proofs of the both preceding theorems. 

Theorem 3. The set Aip'q's'Ui'Vi-ki) is T(n) — recognizable, where 

T(n) = (n/log n)1+p/« f ] ( log (^+ 1 ) n)"^ . 
j = t 

Remark. By a similar procedure as in the case of the set Aip'q's'Ui'Vi'ki) it is possible 
to describe, for every function of the type 

T(n) = n'l* f l ( logw »)WA (1 <_ pig < 2; 0 < ijjk; 
k=l 

p, q positive integers; ik, jk nonnegative integers for k = 1,2,..., t), a set AT (a subset 
of the set A) such that 

AT is T(n)-recognizable. 

(Received October 22nd, 1968.) 
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O optimálních časových odhadech rozeznávání jistých množin slov 
Turingovými stroji typu on-line 

PAVEL STRNAD 

Budiž T(«) funkce tvaru 

n"'9 Г ] (log(fc) n) m „\ikih 
к=i 

(1 < pjq < 2; 0 <. ikjjk: p, q přirozená čísla; ik, j k celá nezáporná čísla pro k = 
= 1,2,...,.). 

Pak existuje množina slov AT taková, že 

a) je-li M Turingův stroj typu on-line, který rozeznává AT, potom platí TM(n) > 
> CM T(n) pro skoro všechna n; CM je konstanta, která závisí na stroji M a TM(n) 

je časová funkce stroje M; 
b) lze popsati Turingův stroj typu on-line M r , který rozeznává množinu AT 

a pro jehož časovou funkci platí pro všechny hodnoty n TM r(n) < C T(n); C je 
vhodná konstanta. 

Pavel Strnad, Vysoká škola strojní a textilní v Liberci, Studentská 5, Liberec. 


