KYBERNETIKA ČíSLO 4, ROČNÍK 5/1969
 Bounded Push Down Automata

Branislav Rovan

The bounded push down automata, a special kind of push down automata, are defined in this paper. Bounded push down automata accept exactly bounded context-free languages, defined and studied in [6], [7].

The central problem of the theory of grammars and languages is that of determining for a given class \mathscr{E} of languages a class of automata which accept exactly the languages in \mathscr{E}. This problem was solved for regular events [1], linear languages [2], context-free languages [3], [4] and context-sensitive languages [5]. In this paper we are going to introducea utomata (the so called "bounded push down automata"bpda) which accept bounded languages, defined and studied in [6]. By this one of the Ginsburg's open problems [7] is solved.
The basic ideas and notations of the theory of context-free languages are used just in the sense of those in [7]. From [7] is also the definition of bounded language:

Definition 1. A context-free language L (briefly "language L " in the next) on alphabet Σ is said to be bounded, if there are words w_{1}, \ldots, w_{n} in Σ^{*} such that $L \subseteq$ $\subseteq w_{1}^{*} \ldots w_{n}^{*}$.
In the next we define a special class of push down automata which will accept exactly bounded languages. bpda which accept language $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$ will contain n parts which will work sequentially. The i-th part of automaton will accept for a given x in L exactly that subword of x which belongs to w_{i}^{*}.

Definition 2. A bounded push down automaton (bpda) is a 7-tuple $M=(K, \Sigma, \Gamma$, $\delta, Z_{0}, q_{0}, F \cup Q$), where K is a finite nonempty set of states, Σ is a finite nonempty set of input symbols, Γ is a finite nonempty set of auxiliary symbols, δ is a mapping of $K \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$ into finite subsets of $K \times \Gamma^{*}, Z_{0}$ in Γ is a start auxiliary symbol, q_{0} in K is a start state, $F \cup Q \subseteq K$ is a set of final states, Q contains at most
one element and the following properties are satisfied:
1° There exists a partition of the set $K-\left(\left\{q_{0}\right\} \cup Q\right)=K_{1} \cup \ldots \cup K_{r},\left(K_{i} \cap K_{j}=\right.$ $=\emptyset$ for $i \neq j)$ such that if $\left(t, Z_{1}\right)$ is in $\delta(q, a, Z)$ for q in K_{i} and t in K_{j}, then $i \leqq j$, where a is in $\Sigma \cup\{\varepsilon\}, Z$ in Γ, Z_{1} in Γ^{*}.
2° Let there be an ordering $\left\{q_{1}^{(i)}, \ldots, q_{k_{i}}^{(i)}\right\}$ of the set K_{i} and let the following conditions be satisfied:
A) $\delta\left(q_{0}, \varepsilon, Z_{0}\right) \subseteq\left\{\left(q_{1}^{(i)}, Z_{0}\right) ; 1 \leqq i \leqq r\right\}$ and $\delta\left(q_{0}, a, Z_{0}\right)=\emptyset$ for all a in Σ.
B) If $1 \leqq i \leqq r, 1 \leqq j<k_{i}$, then for exactly one a in Σ there is at least one Z in Γ such that $\delta\left(q_{j}^{(i)}, a, Z\right) \neq \emptyset$ and is $\delta\left(q_{j}^{(i)}, a, Z\right) \subseteq\left\{\left(q_{j+1}^{(i)}, Z^{\prime}\right), Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\}$.
C) If $1 \leqq i \leqq r$, then for exactly one a in Σ there is at least one Z in Γ such that $\delta\left(q_{k_{i}}^{(i)}, a, Z\right) \neq \emptyset$ and is $\delta\left(q_{k_{i}}^{(i)}, a, Z\right) \subseteq\left\{\left(q_{1}^{(s)}, Z^{\prime}\right) ; i \leqq s \leqq r, Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\} \cup Q^{\prime}$, where $Q^{\prime}=\{(p, Y)\}, p$ in Q, Y in Γ^{*} (i.e. $Q^{\prime}=\emptyset$ if $\left.Q=\emptyset\right)$.
D) If q is in $K-\left(\left\{q_{0}\right\} \cup Q\right), Z$ in Γ, then $\delta(q, \varepsilon, Z) \subseteq\left\{\left(q, Z^{\prime}\right) ; Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\}$. $3^{\circ} F \subseteq\left\{q_{1}^{(i)} ; 1 \leqq i \leqq r\right\} \cup\left\{q_{0}\right\}$.

Definition 3. Given a bpda M let " F " be the relation on $K \times \Sigma^{*} \times \Gamma^{*}$ defined as follows: For arbitrary q and p in K, x in $\Sigma \cup\{\varepsilon\}, Z$ in Γ, w in Σ^{*}, α and γ in Γ^{*} let $(p, x w, \alpha Z) \vdash(q, w, \alpha \gamma)$ if (q, γ) is in $\delta(p, x, Z)$. Let " \vdash^{*} ", be the reflexive and transitive closure of the relation " r ".

Definition 4. A word w is accepted by a bpda M, if $\left.\left(q_{0}, w, Z_{0}\right)\right|^{*}(d, \varepsilon, \gamma)$ for some d in $F \cup Q$ and some γ in Γ^{*} (i.e. there exist states $q_{0}, q_{1}, \ldots, q_{n}=d$ and auxiliary words $\alpha_{0}=Z_{0}, \alpha_{1}, \ldots, \alpha_{n}=\gamma$ such that for $w=x_{1} \ldots x_{n}$, each x_{i} in $\Sigma \cup\{\varepsilon\}$ holds $\left.\left(q_{0}, x_{1} \ldots x_{n}, \alpha_{0}\right) \vdash\left(q_{1}, x_{2} \ldots x_{n}, \alpha_{1}\right) \vdash \ldots \vdash\left(q_{n}, \varepsilon, \alpha_{n}\right)=(d, \varepsilon, \gamma)\right)$.

Notation. Let us denote by $T(M)$ the set of all words accepted by a bpda M.
Lemma 1. $T(M)$ is a bounded language for each bpda M.
Proof. It clearly follows from Def. 2 and Def. 4 that bpda are only a special kind of pda. Thus by Th. 2.5 .2 of [7$] T(M)$ is a language.

Now we show that $T(M)$ is a bounded language: Consider the same notation for M as in Def. 2. Let us denote $M_{i}=\left(K, \Sigma, \Gamma, \delta_{i}, Z_{0}, q_{0}, F \cup Q\right)$, where ' δ_{i} is a restriction of the mapping δ in such sense, that $\delta_{i}(a, b, c)=\delta(a, b, c)$ for (a, b, c) in $\left(K_{i} \cup\left\{q_{0}\right\}\right) \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$ and $\delta_{i}(a, b, c)=\emptyset$ otherwise. Then clearly $T\left(M_{i}\right) \subseteq$ $\subseteq w_{i}^{*}$ for some w_{i} in Σ^{*}. (We can obtain this w_{i} in this way: Let $a_{1}^{(i)}, \ldots, a_{k_{t}}^{(i)}$ be those elements of Σ for which is $\delta\left(q_{j}^{(i)}, a_{j}^{(i)}, Z_{j}\right) \neq \emptyset, 1 \leqq j \leqq k_{i}$. Then $\left.w_{i}=a_{1}^{(i)} \ldots a_{k_{i}}^{(i)}\right)$. From the definition of the bpda it clearly follows, that $T(M) \subseteq\left(T\left(M_{1}\right) \cup\{\varepsilon\}\right)$. $\cdot\left(T\left(M_{2}\right) \cup\{\varepsilon\}\right) \ldots\left(T\left(M_{r}\right) \cup\{\varepsilon\}\right)$. Thus $T(M) \subseteq w_{1}^{*} \ldots w_{r}^{*}$.
Q.E.D.

In order to prove the converse, we must introduce the notion of the set $N(M)$ for given bpda M, which is similar to that one of $\operatorname{Null}(M)$ in [7].

Definition 5. Given a bpda M let be $N(M)=\left\{w\right.$ in $\Sigma^{*} ;\left(q_{0}, w, Z_{0}\right) \vdash^{*}(p, \varepsilon, \varepsilon), p$ in $\left.F\right\}$, where M is as in Def. 2.

Lemma 2. For every bounded language L there exists a bpda M such that $L=$ $=N(M)$.

Proof. Let L be a bounded language, i.e. $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$, where $w_{i}=x_{1}^{(i)} \ldots x_{j_{i}}^{(i)}$, each $x_{k}^{(h)}$ in Σ. Let G be a grammar generating L, i.e. $L=L(G), G=(V, \Sigma, P, \sigma)$. Let us construct a bpda M in the following way:
$M=\left(K, \Sigma, \Gamma, \delta, \sigma, q_{0}, F\right)$, where $K=\left\{q_{i}^{(k)} ; 1 \leqq k \leqq n, 1 \leqq i \leqq j_{k}\right\} \cup\left\{q_{0}\right\}$, $\Gamma=V, F=\left\{q_{1}^{(i)} ; 1 \leqq i \leqq n\right\} \cup F_{1}, F_{1}=\emptyset$ if ε is not in L and $F_{1}=\left\{q_{0}\right\}$ otherwise. Let us define the mapping δ as follows:

$$
\begin{aligned}
& \delta\left(q_{0}, \varepsilon, \sigma\right)=\left\{\left(q_{1}^{(i)}, u_{j}^{R}\right) ; 1 \leqq i \leqq n, u_{j} \text { in } V^{*} \text { and } \sigma \rightarrow u_{j} \text { is in } P\right\} \\
& \delta\left(q_{k}^{(i)}, x_{k}^{(i)}, x_{k}^{(i)}\right)=\left\{\left(q_{k+1}^{(i)}, \varepsilon\right)\right\}, \text { for } 1 \leqq i \leqq n, 1 \leqq k<j_{i} \\
& \delta\left(q_{i_{i}}^{(i)}, x_{i_{i}(i)}^{(i)}, x_{i_{i}}^{(i)}\right)=\left\{\left(q_{1}^{(m)}, \varepsilon\right) ; i \leqq m \leqq n\right\} \text {, for } 1 \leqq i \leqq n \\
& \delta\left(q_{r}^{(s)}, \varepsilon, \xi\right)=\left\{\left(q_{r}^{(s)}, v_{h}^{R}\right) ; v_{h} \text { in } V^{*}, \xi \rightarrow v_{h} \text { is in } P\right\} \text {, for } \\
& \quad 1 \leqq s \leqq n, 1 \leqq r \leqq j_{s}, \text { all } \xi \text { in } V-\Sigma . \\
& \varepsilon(q, a, Z)=\emptyset \text { otherwise. }
\end{aligned}
$$

It is clear that M is a bpda (with the set $Q=\emptyset$). In the next we show that $L=N(M)$.
Let x be in L, then there is a left-most derivation of x in $G: \sigma \Rightarrow u_{1} \xi_{1} v_{1} \Rightarrow u_{1} u_{2} \xi_{2}$. $. v_{2} \Rightarrow \ldots \Rightarrow u_{1} \ldots u_{n}, \quad x=u_{1} \ldots u_{n}, \quad$ each u_{i} in \sum^{*}. Then $\left(q_{0}, u_{1} \ldots u_{n}, \sigma\right) \vdash$ $\vdash\left(q_{1}^{(i)}, u_{1} \ldots u_{n}, v_{1}^{R} \xi_{1} u_{1}^{R}\right) \stackrel{*}{\vdash}\left(q_{j}^{(k)}, u_{2} \ldots u_{n}, v_{1}^{R} \xi_{1}\right) \vdash\left(q_{j}^{(k)}, u_{2} \ldots u_{n}, v_{2}^{R} \xi_{2} u_{2}^{R}\right) \vdash^{*} \ldots \vdash$ $\vdash(q, \varepsilon, \varepsilon)$, where q must be in F.] Therefore, if $x=\varepsilon$ then $q=q_{0}$. The non- ε word x from L (i.e. from $w_{i}^{*}, \ldots, w_{n}^{*}$) is expended on the input of bpda M just in the moment when M moves from some $q_{j_{i}}^{(i)}$ (expending the last symbol of w_{i}) to one of the final states $q_{1}^{(m)}=q$.] Thus x is in $N(M)$ and $L \subseteq N(M)$.

In order to prove the converse inclusion let x be in $N(M)$, i.e. there exist a_{0}, \ldots \ldots, a_{s-1} in $\Sigma \cup\{\varepsilon\}$ and $\gamma_{0}, \ldots, \gamma_{s}$ in Γ^{*} such that $x=a_{0} \ldots a_{s-1}, \gamma_{0}=\sigma, \gamma_{s}=\varepsilon$ and $\left(q_{0}, a_{0} \ldots a_{s-1}, \gamma_{0}\right) \vdash\left(q_{1}^{(i)}, a_{1} \ldots a_{s-1}, \gamma_{1}\right) \vdash \ldots \vdash\left(q, \varepsilon, \gamma_{s}\right)=(q, \varepsilon, \varepsilon), q$ in F. Now, let $k(0)<k(1)<\ldots<k(t)$ be those nonnegative integers for which $\gamma_{k(i)}=$ $=y_{i} \xi_{i}, \xi_{i}$ in $V-\Sigma, y_{i}$ in V^{*}. (Clearly $k(0)=0$.) From this fact it immediately follows $\gamma_{k(i)+1}=y_{i} z_{i}^{R}$, where z_{i} is in V^{*} and $\xi_{i} \rightarrow z_{i}$ is in P. To this sequence of moves of M corresponds the derivation $\sigma=\gamma_{k(0)}^{R}=\xi_{0} y_{0}^{R} \Rightarrow z_{0} y_{0}^{R}=a_{0} \ldots$ $\ldots a_{k(1)-1} \xi_{1} y_{1}^{R} \Rightarrow a_{0} \ldots a_{k(1)-1} z_{1} y_{1}^{R}=a_{0} \ldots a_{k(2)-1} \xi_{2} y_{2}^{R} \Rightarrow \ldots \Rightarrow a_{0} \ldots a_{s-1}=x$ in G. Thus x is in L and $L \supseteq N(M)$.

From both inclusions $L=N(M)$. Q.E.D.

Lemma 3. For every bounded language L there exists a bpda M such that $L=$ $=T(M)$.

Proof. By Lemma 2 there exists a bpda $M_{1}=\left(K, \Sigma, \Gamma, \delta, Z_{0}, q_{0}, F\right)$ such that $L=N\left(M_{1}\right)$. Let us construct a bpda M as follows:

Let Z^{\prime} for every Z in Γ and p be abstract symbols.
$M=\left(K_{M}, \Sigma, \Gamma_{M}, Z_{0}^{\prime}, q_{0}, F \cup Q\right), K_{M}=K \cup Q, K \cap Q=\emptyset, Q=\{p\}$,
$\Gamma_{M}=\Gamma \cup\left\{Z^{\prime} ; Z\right.$ in $\left.\Gamma\right\}$ and define δ_{M} in this way:
For all a in $\Sigma \cup\{\varepsilon\}$, all Z in Γ, all q in $K-Q$ let $\delta_{M}(q, a, Z)=\delta(q, a, Z)$
$\delta_{M}\left(q, a, Z^{\prime}\right)=\left\{\left(t, Y^{\prime} \alpha\right) ;(t, Y \alpha)\right.$ is in $\delta(q, a, Z), Y$ in Γ, α in $\left.\Gamma^{*}\right\}$ if (t, ε) is not in $\delta(q, a, Z)$
$\delta_{M}\left(q, a, Z^{\prime}\right)=\left\{\left(t, Y^{\prime} \alpha\right) ;(t, Y \alpha)\right.$ is in $\delta(q, a, Z), Y$ in Γ, α in $\left.\Gamma^{*}\right\} \cup\{(p, \varepsilon)\}$ if (t, ε) is in $\delta(q, a, Z)$
and let $\delta_{M}(q, a, Z)=0$ otherwise.
It is clear now that x is in $T(M)$ if and only if x is in $N\left(M_{1}\right)$. Thus $T(M)=L$.
Q.E.D.

An immediate consequence of Lemmas 1 and 3 is the following

Theorem. A subset L of Σ^{*} is a bounded language if and only if there exists a bpda M such that $L=T(M)$.

Note. The definition of bpda can be simplified in the sense of using one final state only. It is possible by a little change of the definition of δ in Def. 2 and $N(M)$. The basic idea of the proof does not change.
(Received June 4th, 1968.)

REFERENCES

[1] S. C. Kleene: Reprezentation of events in nerve sets. Automata Studies, Princeton University Press, Princeton 1956.
[2] A. L. Rosenberg: A machine realization of the linear context-free languages. Information and Control $X(1967), 2,175-188$.
[3] N. Chomsky: Context-free grammars and push down storage. Quarterly Progress Report No. 65, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1962.
[4] R. J. Evey: The theory of applications of push down store machines. Mathematical Linguistics and Automatic Translation, Harvard Univ. Computation Lab. Report NSF-10, May, 1963.
[5] S. Y. Kuroda: Classes of languages and linear-bound automata. Information and Control VII (1964), 3, 360-365.
[6] S. Ginsburg, E. H. Spanier: Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113 (1964), 2, 333-368.
[7] S. Ginsburg: The mathematical theory of context-free languages. McGraw-Hill, 1966.

Ohraničené zásobníkové automaty

Branislav Rovan

Jedným z hlavných problémov teórie jazykov a gramatík je: Nájsṫ pre danú triedu jazykov \mathscr{E} triedu automatov, ktoré by príjmali práve jazyky z triedy \mathscr{E}. Článok sa zaoberá touto otázkou pre ohraničené bezkontextové jazyky, ktorých teóriu rozvádza S. Ginsburg v práci [7]. Uvedená je definícia ohraničeného zásobníkového automatu a veta, ktorá zaručuje, že ohraničené zásobníkové automaty príjmajú práve ohraničené jazyky. Ku kažđému ohraničenému jazyku v abecede Σ existujú slová $w_{1}, \ldots, w_{n} v$ abecede Σ také, že $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$. Ohraničený zásobníkový automat, ktorý prijma jazyk L sa potom skladá $z n$ častí, ktoré pracujú postupne za sebou. i-ta čast automatu bude prijmat práve tú čast slova x z L, ktorá patrí do w_{i}^{*}.

Týmto je vyriešený jeden z problémov uvedených S. Ginsburgom v [7].

Branislav Rovan, Matematický ústav SAV, Štefánikova ul. 41, Bratislava.

