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On Multiple Grammars

JArOSLAV KRAL

A modification of formal grammars, so called multiple grammars, in which rules are (in
various manners) applied in groups are studied. It is shown that classes of languages generated
by such grammars forms a hierarchy between the class of context-free sets and the class of con-
text-sensitive sets. Many further properties of multiple grammars are shown.

1. PRELIMINARIES AND INTRODUCTION

We shall mainly use the notation from [9]. Alphabet V is an arbitrary finite set,
elements of V are symbols, V* is free semigroup of strings over ¥, A denotes an
empty string, A is the unity element of V*, V° = V* — {A}. If x = x,X; ... X, € V*
and y = y,y,...y,€V* then xy = x;X,... X;y,V5... y, is a string formed by
concactenation of x and y. For 4, B < V*is AB = {xy | xed, ye B}. Let A = V*,

Denoting A' = A4, A" = A"4 for n = 1 then obviously V® ={ V", V*=
n n=1

= V= U {4}. Denote A°" = | A/, 4*" = 4°" U {4}. |x| denotes for x e V'* the
=1

length of x. @ denotes an empty sct.
Let A, B be arbitrary sets. Then 4 ® B denotes the cartesian product of 4 and B

n
ie. A® B = {(x,y)| xe 4, yeB}. Denote further X 4; = {(xy, ..., x,) | x; € 4; for
n i i=1

i=12..., n}, A®" =) X A. The following convention will be broadly used:
i=1 j=1

If A is a certain set then the set {7 | @ is for a € A an abstract symbol} = {@ | a & A}

denotes the set disjoint with all the sets discussed in the given proof and there is

one to one correspondence between a’s and a’s.

Formal grammar is quartuple G = (Vy, Vr, R, S) where Vy and V; are nonter-
minal and terminal alphabets respectively Vy n V= @, S € Vy is the initial symbol
and R < V¥ ® (Vy v Vp)* is a finite binary relation. Elements of R are rules, R
is called the set of rules of G. V will denote unless stated otherwise theset V; U V.



The sequence W = (W(,, Wy, ...s W,) of strings over V* is the derivation over G of
thelength nif it holds for i=0, 1,...,n — 1, w; = pugq, w;,, = pvq where p, g € V*,
(u,v) e R. The string y € V* is over G derivable from xe V'* (y is a consequence
of x) if exists a derivation over G of y from x i.e. over G exists a derivation W =
= (X, Wy, +.oy Wy g, ¥)- A derivation W over G is nontrivial if the length of W is at
least 1, a derivation over G is trivial if it is of the length 0. The rule (1, v)e R is
applicable on x € V* if x = pugq, x, € V* is a direct consequence of x if x = pug,
x; = pog, (u, v) € R. Write x = x, if x, is over G a direct consequence of x. x 2* y
if y is a consequence of x.x ="y if it exists nontrivial derivation over G of y
from x. The language (or the set) L(G) generated by G is the set

L(G) = {x|xeV}, S =*x}

a formal grammar G = (V, Vy, R, §) is context-sensitive if |u[ =< |v| for every
(u, v) € R. We define context-sensitive grammars in other way as in [10]. Note, how-
ever, that a set is generated by a context-sensitive grammar G (in our sense) if and
only if it is generated by a Chomsky’s type 1 grammar.

A grammar G is context-free if Re Vy @ V*. A grammar G is A-freeif R = V; @
® V™. Aset A = V7 is a phrase-structure set (context-sensitive set, context-free set)
if A = L(G) for a formal (context-sensitive, context-free respectively) grammar G.
If there will be no danger of misunderstanding we shall say the derivation instead of
the derivation over G and write =, =*, =% instead of g ?*, =G>“°,

Now we can turn to the main topics of this paper. The very important feature of the
grammar G = (Vy, ¥, R, S) is the following property: If W = (wo, wy, ..., W,
is a derivation over G and w, = pug and moreover (u, v) € R then W' = (wg, wy, ...
vy Wy, puq) is a derivation over G. A rule can be therefore applied in the n-th step
of derivation independently (in certain sense) on what was the rules applied in
previous steps or indenpendently on that whether an another rule (u', v') can be
applied on w,. This assumption of indenpendency can be weakened in several ways.
One way to realize this idea is discussed in [8] Idea discused there can by roughly
described in the following way. A partial ordering < is defined on the set R of rules
and a rule (u, v) € R is applicable on x € V* if x = pugq (i.e. (u, v) is applicable on R
in “normal sense”) and no rule (u’, v') e R for which it holds (u’, v') > (u, v) (i.e.
which is “greater” than (u, v)) can be applied on x. Now we can define a derivations
over such a grammar and a language generated by it similary as it is defined for
“normal” grammars described above. It was shown that the indicated facility in-
creases the generative power of context-free grammars (i.e. there exists a contex-
free grammar G” = (Vy, V., R, >, S) with ordering of rules for which L(G”) is not
a context-free language) but does not increase the generative power of context-
sensitive or formal grammars.

- The main feature of grammars with ordering of rules is that a rule can be applied
only if another rules can not bs applied. We shall go in another direction. We shall

-
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study grammars for which rules are applied in groups so that if a rule is applied in the
given step of a derivation then, roughly speaking, some rules must be applied in the
“following™ steps. We shall show that formal (context-sensitive respectively) grammars
with this facility generates phrase-structure (resp. contex-sensitive ) sets meanwhile
the classes of sets generated by context-free grammar with this facility forms a hierarchy
between the class of context-free and class of context-sensitive sets.

2. DEFINITIONS AND BASIC PROPERTIES

Definition 1. Relational grammar G is the quintuple G = (n, Vy, ¥y, Q, S),
where n is. a positive integer, the multiplicity of G, Vy = (Vr,, V,, ..., Vi) is an
n-tuple of ierminal alphabets, Vy = (Vy,, Vay .- ., V,) is an n-tuple of nonterminal

alphabets, Q XR where R; < Vzv. ® (VN, V] Vrl)* is for i=1,2,...,n a finite
binary relation, S (Sy, .- Sp)e X Vy, G is a context-sensitive or a context-free
i=1
or a A-free grammar if R; are for i = 1,2, ..., n context-sensitive or context frec
n
or A-free relations respectively. Let V; = Vy U Vr,. For x, ye X V¥ write x Zy
i=1
if x = (ux 1U X y2s XaUX225 +ens xnlunan)’ y = (x“leu, X2102X23, -5 xnlvnxnz) and
"
((u1s 01), (2, 03), ..., (u,, v,)) € Q. The sequence (wo, Wy, ..., W), w; € X V7, is a deri-
j=t

vation over G if it holds for i = 0,1,2, ..., m — 1, w; =T Wit We write w, =G>* Wi
if there exists a derivation W = (wo, Wy, ..., W,,_y, w,,) over G. The relation R(G)
generated by G is the set

n
R(G) = {x| xei):(l Vi S=*x}
Denote further
n
= (el xe (0w,
there exists (xy, X3, ..., X,) € R(G) s0 that x = x,X, ... X,}.

Ac ( U Vr.)* is a R-set (resp. a context-sensitive R-set resp. a context-free R-set) of

the multlphclty n if there exists a relational (resp. context-sensuwe relational
resp. context-free relatlonal) grammar G of the multiplicity n so that 4 = LR(G),

Definition 2. The multiple grammar is a fourtuple G = (Vy, Vr, Q, S) where Vy, 1.
are terminal and nonterminal alphabets respectively; Vy N ¥y = 0; Q € R®", where
R c V¥ ® V*is a finite binary relation, Q is the set of multirules, the elements of Q
are multirules; S € V. The multiplicity of G is the least integer n such that @ < R®",
A grammar associated with G is the grammar G = (Vy, V3, R, ). A multiple



grammar G is context-sensitive or context-free or A-free if G@ is context-sensitive
or context-free or A-free respectively. We shall write for x, yE | (Vr U VN)*:

(i) x = y if there exists a multirule ((uy, v,), (42, v3), ..., (ug, v,)) € @ and a deriva-
tion (wo, Wy, ..., wy) over G of the following properties: x = wo, ¥ = W, and
for i =0,1,2,...,5s — 1 there exists x;€ V* so that w, = X;U;41Vi Wiry =
= Xiliv1Yis

(i) x =, y if there is a multirule ((u;, v,), ..., (ug, v,)) € Q s0 that x
coe XXy g, Y = XU X505 .. XVsXs+ 15

(iii) X =3 y if there is a multirule ((ug, vy), ..., (ug v)) € Q 5O that x = X1 XU, ...

c XUX L1, Y = X UXo0s ... UXg g and it holds forno i = 1,2,...,5, x;u; =
= xu,x; where x] #+ A.

XU XUy ...

A sequence (WO, Wiy eens w,,,) of strings over V* is a derivation over G of the type i,
i=1,2,3,if it holds for j =0,1,2,...,m — 1, Wi 2 Wity For x, ye V* write

x =G>}‘< y if over G there exist a derivation W = (wg, wy, ..., w w,,) of the type i

m—1»
such that x = wy, y = w,,. Further

Li(G)={x|erT*,S?’fx}

A < Viisa M-setof thetype i (i = 1,2,3) if 4 = L{(G) for some multiple gram-
mar G.

Proposition 1. If A, B are M-sets of the type i then A U B is M-set of the type i.
If A, B are R-sets of the multiplicity n then A U B is a R-set of the multiplicity n.

Proof. Proof can be obtained by a slight modification of the proof of the theorem
that the union of context-free sets is a context-free set.

Definition 3. CF(G,, G,) is an abbreviation of the following proposition. If G,
is a relational or a multiple grammar which is context sensitive or a context-free
or A-free then G, is a relational or a multiple grammar respectively which is context-
sensitive or context-free or context-free A-free respectively.

Lemma 1. To every relational grammar G there exists a multiple grammar G,
the multiplicity of which being equal to the multiplicity of G, so that CF(G, G,) and
L(G,) = Lg(G).

Proof. Without loss of generality we may assume that it holds for G =

=(n, (Vyp Vg oo Vao)s (Vegs o0 Vi) @5 (St -, Sp)) that (Vy,u V) n Wy, =0
for 1 < i #+ j < n. Putting :

G, = ({S} w UVNJ" UVT)" Qu {(S’ Si8;... Sn)}, S)
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where S is a new symbol we can easily verify that it holds CF(G, G,) and L,(G,) =
= LR(G)'

Remark 1. Let Q be a finite set of multirules (of rules). Index of a (multi)rule is a positive
integer. There is one-to-one correspondence between (multi)rules in Q and their indexes. A multi-
rule (7, g)) will be often denoted (p, ¢).

Lemma 2. To every multiple grammar G exists a relational grammar G, of the
multiplicity at most two such that Lp(G,) = Ly(G). In the case that L,(G) < V> —
— Vi then there exists a relational grammar G, of the multiplicity two such that
Ly(G;) = Lg(G) and CF(G, G,).

Proof. Theorem obviously holds if the multiplicity of G is 1. Let us put for G =
= (Vv Y, 0, S), Gy = (V. V), (V2. 0), @', (S, 5)) where V = {[},i]| [}, 1] is for
a multirule ((uy, vy), ..., (u,, v5)) € @ with the index j and for 1 < i £ s an abstract
symbol } u {§}.

" To every multirule ((uy, v,), (42, v,), ... (ug, ) € Q, Q" contains a set of multi-
ruls of the form ((uy, v,), (5, [/, 2D)s ((up v2), ([7, 2] [ 3D)s s (s 05)s
([j,s ~ 17, 5)) and the multirule ((u,, v} ([j, s — 1], A)). Especially for (p, g) € Q,
Q' contains the multirules ((p, 9), (S, §)) and ((p, 9), (5, 4)). It is straightforward
matter to verify that R(G,) = L,(G) ® {4} so that Ly(G,) = L,(G) and the first
assertion of the lemma follows.

The proof of the second assertion of the theorem is rather cumbersome so the main
ideas of it only will be given. Details can be found in [14].Let aC be for ae Vy U Vi
and C € Vyan abstract symbol. Let further B be any symbol from ¥Vand A4 any symbol
from V. The grammar G, from the first half of the proof can be modified so that
a grammar G, is obtained so that it holds.

(S.5) 5% (4,B) ifandonlyif (S, S)=*(4, B),
(8, 8)=*(vaC,B), aeV, CeVy, ifandonlyif(s,5)= (yaC,B),

j.c.a pair (x, B), x € V*Vy, is over G, derivable if and only if it is over G, derjvable
a pair (X, B), where X is x with two last symbols joined into one abstract symbol.

(5.8 G:A* (vb,B), beVy, BeV, ifandonlyif (S,5) = fv. [b, B]),

where [b, B], be V,, Be V, is an abstract symbol. It gives the possibility to use the
multicules ((p. 9) ([b, B]. b)) instead of ((p. q), (B, 4)).

(S,8)5* (vb, 4) ifandonlyif (S, 5)*(r, b).

Obyiously L(G2) = Li(G). G, can be constructed so that it holds CF(G,, Gy).
QED.



Corollary 1. To every multiple grammar G there exists a multiple grammar G,
of the multiplicity at most two such that L,(G) = L,(G,) and CF(G, G,).

Proof. If the multiple grammar G is a general (a context-free respectively) multiple
grammar the assertion of the theorem is a direct consequence of lemmas 1 and 2.
Let G be a context-sensitive (A-free respectively). Then L,(G) = ¥;* and using the
ideas used in the second part of the proof of lemma 2 it can be shown that there is
a context-sensitive (A-free respectively) grammar G’ so that L,(G') = L(G) — Vp.
But then L,(G) = L,(G') u 4, where 4 = V;. But A = L,(G,)for a context-sensi-
tive (respectively A-free) grammar and the theorem follows from the proof
of proposition 1.

Lemma 3. Let 4 = L(G) where i is equal to 2 or 3. Then there exists a multiple
grammar G, of the multiplicity at most 2 so that L{(G) = L{G,) and CF(G, G,).

Proof. Let G = (Vy, Vr, @, S). We put ¥ ={a|d is for aeVyuVp="Van
abstract symbol}. Let further A = A and for x = x,%,...X,,, & = %%, ... %
Let V have the same meaning as in the proof of the lemma 2. Put further ¥, =
= {[j, i1 [7» 1] | [/, 11s» [j» 1] are for [j, i]€ V abstract symbols}. Let G, =
= (V{", Vr, @y, S) where V" = VUV oUW, uVyu{S, %, #,}and let Q contain:

(a) rules (5, %5), (%, 4)
(b) to every multirule ((u(1 Ay, v1)s -+ (U1 4y v5)) € Q, where ;€ Vyfori = 1,2,...
..., S, with the index j a sequence of multirules
(310 (% #0) (waadys @[5 11)
(132 ([, 1, [» 110, (#2142, %24 [, 27))
(j; s — 1) (([j» s — 2], [j, s — 2]1), (us-—l,IA:-b ﬁs«l.l{j: s — 1]))
(55) (([ss = 110 s — 112), (w045 0)
(j’é s — 1) (([1’ s — 2]17 [j, s = 2]2), (as—l,l[j) S = 1]2; ”s—l))
(]"; 1) ((#1, #)s (’Zu[j, 1129 Ul))
(¢) toeachrule(u, v) e Qthe multirule (4, #), (p, 9)).

It can be easily verified that if S ?,': Rgixe Vf then R = ¢£Z, Ee {3, #4}-
If a multirule of the type (j; 1) is used in the i-th step of a derivation W = (wo, ..., w,),
w,€ V of the type 2 or 3 then all the rules (j;2),..., (j;s — 1), (j; 5), ..., (j’; 1)
must be successively used in the following steps of W. The obviously L(G) = L{G,),
i = 2,3. As the reverse inclusion is obvious we have proved the first assertion of the
theorem.

The proof of the second assertion is rather cumbersome so let again the main
idea of it only will be given (see [14] for details). By a modification of the grammar
G, a grammar G, = (V{?, V¢, 05, [#, S]) can be obtained so that § ?l',* «ay,
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where o e {#, #,}, aeV, ye V* and i = 2,3, if and only if [S, %] z:;,-[a, aly,
[, a] being for a & Vand a €[4, 4} an abstract symbol. It can be shown that G,
can be constructed so that CF(G, G,)and L{G) = L(G,). Adding the rules ([ #, a], a)
to G, we obtain the assertion of theorem.

It holds therefore

Theorem 1. Let A = Li(G) where G is a relational grammar. Then there exists
a relational grammar G, of the multiplicity at most two so that it holds CF(G, Gy)
and Lg(G) = Ly(G,). To every multiple grammar G and i = 1,2,3 exists a two-
multiple grammar Gy such that CF(G, G,) and Lg(G,) = Lg(G).

Lemma 4. To every multiple grammar G = (Vy, Vr, @, S) there exists a multiple
grammar G, such that L;(G) = L,(G,) and CF(G, G,).

Proof: Theorem 1 imply that it can be assumed without any loss of generality
that G is of the multiplicity two. Put G; = (Vy, V1. Q1> S) where @, = {(u, v)l
| (. v) € @} L {(u, v) |u| < 3v, there is a multirule ((us, v1) (42, v2)) € @ so that u =
= ausf, av,B = a'uyfs v = a'v,8'} O {((ug, v1), (s v2)| either ((us, v,), (uz, 05)) €
€ Q or ((uz, v;), (uy,v,)) € @}, v = max {Jyf v) € @, ((u, v), (uy, v))) e O}
It can be easily verified by induction that L,(G) = L,(G,). It is obvious that it
holds CF(G, G,)). QED.

Lemma 5. To every multiple grammar G = (Vy, V1, Q, S) there exists a multiple
grammar G, so that L,(G) = Ly(G,) and CF(G, G,)-

Proof. It can be again assumed that G is two-multiple. Let us put G, = (Vy U 7,
Vi, Q1 S;) where V = {[j, 11,7 11, [» 21 | [j. 13 [7> 11, [, 2] are for a multirule
with index j abstract symbols}.

Let further:

(a) ©Q, contain the following multirules
(w, [, 1] w). (> 1] @)y (w, [, 1] ), ([, 1] s 0)
for each (u, v) € Q with the index j, u = au’, a € Vy,
(b) Let r = ((auf, vy), (bu’, v,)) € Q and let r have the index j. Then Q, contains
the following multirules:
(aula []’ 1] u1) s
([j. 11, @), (aus, [, 11 w3))
(0, 11, [, 110 (bug, [, 2] w2))
(([}, 2]’ b)’ (bulz» [Jv 2] ulz)) >
(T, 1w, 1), ([ 2] ui 22)) -

It can be easily verified that if xu, yu,z T2 X¥01yv,z Where u; = auy, u, = bu),

then xu,yu,z :3 x[j, 1] wiyli, 2] uyz =>3 X01y0;7, ie. Ly(Gy) = Ly(G). By in-



duction according to the length of derivation it can be shown that if S 2’5‘ xe
e(VyUVr)* then S =7 xand it follows L,(Gy) < L,(G). Obviously it holds CF(G, G,),
QED.

Lemma 6. Ly(G) is a context-sensitive set for arbitrary context-sensitive multiple
grammar G.

Proof. We can again assume that G = (Vy, ¥y, Q, S) is two-multiple, We shall
construct a context-sensitive grammar G, = (Vy, ¥, R, §) so that L(G,) = Ly(G).
As the proof is rather cumbersome we shall describe the framework of it only. We
put V = {[u,j, i} | fu,j,i]is for i = 1,2, 3,4 and a multirule r € @ with index j
where r = (u, v) or r = ((u, v;), (3, v,)) or r = ((uy, v,), (u, v,)) an abstract sym-
bol}.

Vy = {a|aisfor ae Vyan abstract symbol} ,
Vi=VyuPruPu{#, 1001 5}).

Let us put further for x = XX, ... X, € V¥, £ = %%, ... %, where A = 4, %, = X;
for x; € Vr and X; = x; for x; € Vy.
Let R contain the following rules.

(1) (al, la), (alolslola)s (alolols Jolola) for each ae Vi — (VU {#, Lo, To});

(2) (BA?ay,,aBAty,)foreach A = [u,,j,1]€ 7,
B = [u,,j, 2] €V, [us] = |ays|, avy % uy, ap e (Vy v V)%

(3) (Blays, aBy,) for cach B=[us,1,2]e ¥, |an,| = fus)y av,e(Vi 0 ),

ay, * uy,aeVyu Vp;

4y (B[u, j, 1] Tu, u[u, j, 3] BY), ([, j, 2] tu, u[u, j, 4] |) for each Be V;

(5) (u[w, 7,41 L, Lol®), (#10Tols % Tolu, j, 2]1) for each (u,v)e @ with index j;

(6) (#Totol, 3 [tz o 2] [ur, Jo 111), (waluz, 7,414, LodBy), (ua[uts, j, 3] Lods JododBs)
for ((uy, v1), (2, v5)) € Q with index j;

(7) (@, a)forcachae Vr;

®) (4. ) (To, 4). (1, )

9) (#Llolols #ToTo?), (#Todols # Totol),

(10) (5, #1oTo1S).

Ifs ?g x =3 y where X = Xu,yu,z, y = xv;yv,z then § ET* FToTolXu  Ju,z =
= 3 [uzs gy 2] [u1, J, 1] RugJu 2 ?;* H#%u,[uy, j, 3] Jus[us, j, 4] L2 ﬁ* #ToToT -
. %, 9,Z. where X, is not expressible in the form %ju,%;, £/ + A. It can be easily
verified that if S =* #1115, Je(Vr, U Vy)* then S ?ﬁ y, ie. L(G,) = Ly(G).
The more detailed discussion can be found in [14].

Lemma 6 in [8] implies that L{(G) is a context-sensitive set. QED.

Theorem 2. Let M,(CS) be the class of R-sets generated by relational context
sensitive grammars. Let M(CS) be for i = 1,2, 3 the class of M-sets of the type i
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generated by context-sensitive multiple grammars. Let further CS be the class of
context-sensitive sets. Then

CS = M(CS) = M,(CS) = My(CS) = My(CS)

Proof. Asevery context-sensitive grammar is a relational grammar we have CS <
< Bip(CS). Lemma 1 implies Mx(CS) < M,(CS). By lemma 4 M, (CS) = My(CS).
By lemma 5 M,(CS) = M5(CS). Lemma 6 implies M,(CS) = CS. QED.

Theorem 3, Let My(G) be the class of R-sets, let M{(G) be for i = 1,2, 3 the class
of M-sets of the type i. Let RE denotes the class of recursively enumerable sets.
Then RE = 9,(G) = %,(G) = N,3(G) = NK(G).

Proof. It can be shown by a modification of the proof of lemma 6 that M5(G) =
< RE. Using this fact the proof of the theorem is very similar to the proof of the
previous theorem. )

Remark 2. We shall use the following notation CFis the class of context-free sets not containing
the emply string, CF4 is the class of context-free sets, Nr(CF) is the class of sets generated by
context-free relational grammars, M(CF) = {4 | A = Lg(G) for some relational context-free and
A-free grammar}. Let further for i='1,2,3, MACF) = {4 | A= L(G) for a multiple context-
free and A-free grammar G}, i .

N(CF)= {4 | A = LG) for a multiple context-free grammar G} .
Lemma 7. CF § My(CF).

Proof. Obviously CF < M(CF) because to every context-free set not contain-
ing A there exists a context-free A-free grammar G so that A = L(G) (see [9]) and
G is obviously a multiple grammar. The fact that CF = M(CF) follows from the
following example. C .

Example 1. The set B = {a""" | n = 1} belongs to M(CF) because B = Ly(G).for the
grammar
G = @3, {4}, {8}, {C}. {a}, {6}, {c}), 0. (4, B, O
where
Q = {((4, a), (B, bB), (C, cC)), (4, a), (B, b), (C, ¢))} .

Theorem 4. .
CF § M(CF) § M,(CF) = M,(CF) = M,(CF) = CS.

Proof. It follows from the above given Temmas that it suffices to prove that
Me(CF) + M,(CF). If G is a relational grammar which is A-free and have the multi-

plicity n then it.holds for every x € L(G) that ]xl = n. The example 1 indicates that
there is A € Mp(CF) — CFie.if A = Lg(G) for a relational context-free and A-free



grammar G then the multiplicity of G must be 2 at least. The set {a"b"c" [ nz 1} v
v {a, b, ¢} = B s not a context-free set and it can be easily shown that B € M,(CF).
If B were generated by a relational grammar then it would be |x| = 2 for any x¢ B
— a contradiction. Therefore B ¢ Mg(CF). QED.

Theorem 5.
CF* § Mp(CF) = M, (CF) = N,(CF) = N3(CF) = RS
where RS is the class of recursive enumerable sets.

Proof. Directly from above proved lemmas and the following remark.

Remark 3. If follows from the theorem 4 and from the lemma 2 that there exists B € Mg(CF)
to every 4 € M(CF) so that 4 © B, A — B © V. The question how “great” are the classes
MACF) — ML{CF)for 2 = i ¥ j = 3 is, however, open.

3. SOME FURTHER PROPERTIES OF MULTIPLE GRAMMARS

In order to illustrate the properties of multiple grammars two examples will be
given.

Example 2.
®
P = {CICL...Cq|n 21, Cyy=a, Cyj4q = b} €M,(CF).
k=2

Proof. Let we have the multiple grammar G = (Vy, {a, b}, Q, S) where Q contains the fol-
lowing multirules.

(A) (S, #A45,), (81, 45)), (51, K) .

These rules generate the set {#A"‘ K, nz 2} if {#, A, K',,} is assumed to be the terminal
alphabet.

(B1)  ((F; 4b), (4, @), (K, K| BKy)),

(B2) ((#, #), (4, @), (K, Ky), (K, BK))
(B3) ((#, @), (Ky, ),

(CH (39, (4, @), (K, K4 K5))

(C2) ((#, #), (4, @), (K4, Ky), (K, bKS))
(C3)  ((#, a), (Ky, b), (K5, b)),

(D1)  (FFps Fp)s (B, b), (K, KgAKY))

(D2)  ((Fy, Hy): (B, b), (K, Ko), (K, AKD)),
(D3 ((Hp b), (Kg, D),

(BI)  ((Fhp, F)» (B, b), (K, K7K)) ,

(E2)  ((Fp Fhp), (B, b), (K. aKg)) ,

(E3) ((:ﬁ:b, b), (K7, a), (st a)).

It holds for any derivation of the type 2 over G:
(@) Ifx=yp# A" 1K, x =G>’§ y €{a, b}* then y = yp Where H4"" 1K, =% ¢ and moreover
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any derivation of the type 2 over G of the string ¢ from #4"~1K, contains either an element
a"##4B8" 1K, or it holds that ¢ = a"p".

(b) 1f x = y#,B" 1K, then it holds similary for y = {a, bY*: if x ?jy then y = 70,
#,B""1K, =% ¢ and either ¢ = b"a" or any derivation of ¢ from y#B"~ 1K, contains the
element yb"H A" K,

1t follows from (a) and (b) that P, = L,(G).

Example 3. P, = {a”*!|n = 1} e M,(CP).

Proof. P, = Ly(G) for a grammar G = (Vy, {a}, Q, S) where Q contains the following
multirules:

(AY (S, # A4S,
(S;, 4D, .
(Sy, Ka)s
(B ((#, ), (4, @), Ky, Ky BoKy)
(B2)  ((4, #0), (Ag, @) (Ky» K1 By)),
(B3 (2, ). (4, @), (Ky, Ky), (Ky, BK))
(B ((H, a), (Kp, #1)»
(CD (3, ), (4o, @) Ky K3)),
(C2) (&, 4, (4g, @) (K3, K3)) ,
(C3) ((3, @) (K3, 2)
DY (3, 0 (B, @) Ky, K1 40K)) ,
(D2)  (($,, 1) (Bo» a), (K4, K44p)) ,
(DI) (3, 1), (B, ah (K, K, (K, AR,
(D4) (3, @), (Ky, D)5
(E1) (3, 1), (Bo» D (Kp, K5))
(B2) (3, 1), (Bo» D (K5, Ks))
(E3) (3, D), (K5, D) -

Now if W = (%, Wy» -+ Wn—1, ¥) is a derivation of the type 2 over G where y € {a}* and x =
== B HATATT 11{‘1 then the following conditions must be fulfilled:

(@ y= o,

(b) #HAZA K, Fh e,

(c) W must contain the member fa"+45,BF*1B"~™~2K,. Similar conditions hold for x =
= ﬂ.#bB’O"HB"‘”"ZK,, and it holds therefore P, = L,(G). (See also [14] for a more detailed
discussion).

Definition 4. A string x = x;X, ... x, € V* where x;e V*! is equal to a ye V*
mod. permutationif y = x; x;, ... x;, for some permutation iy, iy, ..., i, 6f], 2, ..., N
A set A = V*is equal to a set B < V* mod. permutation if to every x € A there is
y € B equal to x mod. permutation and vice versa each ye B is equal to a xe 4
mod. permutation. A set 4 < V*is regular mod. permutation if it is equal mod.
permutation to a regular set.

Corollary 2. M,(CF) and therefore CS contains sets which are not regular
modulo permutation.



Proof. The set P, from example 3 is not regular modulo permutation.

Remark 4. It would be interesting to find some properties of functions f for which it holds
that the set {af® | n = 1} belongs to CS.

Remark 5. It is interesting to study in more details the differencies between derivations of
various types over multiple grammars. We can limit the considerations to grammars of the
multiplicity two. It can be shown that to every multiple grammar G = (Vy, ¥V, Q, ) there
exists a multiple grammar G, = (Vy, Vg, @y, S) so that L,(G) = Ly(G) = {x | x e V§, § Gﬁ;
?;?;E x}. X FY if and only if x = fu; wu;,z, y = tv; wo;,z where {il, iy} is a permutation of
{1,2} and ((u, v,), (up, v3)) € Q; or x = tuz, y = tvz and (4, v) € Q. The derivations of the
type 2 differs from derivations of the type 1 in such a way that the rules are applied in the given
order from left to right. This property was considerably used up in the examples 2 and 3. There-
fore it seems that Py, P, ¢ M (CF). In derivations of the type 3 is furthermore reguested to “‘use”
the lef-most occurencies of the left hand sides of rules in multirules. It can be shown that a con-
text sensitive grammar G, can be constructed to every context-sensitive grammar G such that
L(Gy) = L(G) where L;(G) = {x|xe V}, S ?z x} is the set of terminal strings which are
generated over G by such derivations in which rules are applied on left most occurencies of their
left hand sides only. Let us write for multiple context-free and A-free grammar G =
=V V0,9, x =G>4y if x=tAyAyz, y= toyyvyz, (44, v)),(4;,v,)) € Q, t does not
contain 4, and y = A (we use parallel formulations to those from def. 2). It is a straighforward
matter to construct to G; a multiple context free and A-free grammar G, such that § ?;f x if
and only if § 22 x. We can therefore write CS = M,4(CF) in an obvious notation. Applying
some theorems from [11] we can show that the assumption I, (CF) = M, (CF) implies that any
contextsensitive set can be generated by an “almost context-free grammar” i.e. by a grammar
the rules of which are context free but the rule r can be applied on a string w; if a only if w; €
€ V*4,V* where A, < Vy is a set associated with the rule r. It seems therefore that M, (CF) §
S CS. Similar arguments can be stated for M,(CF) and M3(CF).

Theorem 6. If A, Be My(CF) then AU BeMy(CF) if A, BeM(CF) then
A U BeWM(CF), if A, Be R(CF) then A U Be R,(CF) for i = 1,2,3.

Proof. can be obtained by a modification of the proof that the union of context-
free sets is a context-free set.

Remark 6. As any context-free grammar is a multiple or a relational grammar we obtain at
once that many problems for relational and multiple grammars are not decidable (see [2]).
For example there is not decidable for multiple A-free grammars whether Li(G,) N L{G,) is an
empty, a finite or an infinite set, whether it holds for a multiple A-free grammar G L(G) = V;
and so on (see [2]).

Remark 7. It is known that if 4, Be CS then A N Be CS. Theorem 4 implies that if 4, B€
€ M;(CF) then A N B e CS. The problem whether it must be 4 N B € M(CF) for some i = J
is open. :

Theorem 7. The problem whether L,(G) is an empty, a finite or an infinite set
is for multiple A-free grammars recursively unsolvable.
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Proof. We shall construct a multiple grammar G which generates a nonempty
set if and only if some Post correspondence problem has a solution. Let ay, a,, ..., a,;
by, by, ..., b, be strings over an alphabet ¥} containing at least two symbols. Let us
form a multiple grammar G = (Vy u Pr U ¥, Vp U {#}, 0, S}
is for aeVy an abstract symbol}, Vp = {a|a is for ae Vy U {4} an abstract
symbol}, Vy = {S, 4, B}. Q contains the following multirules:

@ (S, #¥4%B);

(Ua) ((A 4,4), (B, BB)) for i=1,2,..,n where for x = x,x,...x,€ V¥ is
A=A4,%=%3%,..
(1) ((4, &), (B, b)) for i = 1, 2,3, .0}
(1tia) (@ a), (b, b), (@, a), (b, b)) for each a, be Vp U {#};
(111b) (@, a)) (@, a)) for each a e VU {4}.
It holds obviously S =5 y =3 x e (Vr U {#})*if and only if y = abpD,abp,D,

" where ae (Ve u {#})*, beVr, (Dy, Dy)e{(4, B)u (4, A)}, 919, € V7. Tt follows

that L,(G) = L,(G) = #x#x where x = a;,a,,a;, ... a;, = by,b;, ... b, i.e. L,(G) *
# 0 if and only if the Post correspondence problem for ay,..., a,; by, by, ..., b,
has a solution. It is obvious that if L(G) % @ then L(G) is infinite. QED.

Remark 8. An open question is whether the problem “is L,(G) an empty set?” is recursively
decidable.

Theorem 8. If A€ M{(CF) i = 1, 2,3 then A is recursive. The problem x € L{G)
is for multiple context-free grammars and i = 2, 3 recursively unsolvable.

Proof. The first assertion of the theorem follows from the fact that M,(CF) = CS
because context-sensitive sets are recursive. The second assertion of the theorem
follows from the following observations. By a slight modification of the grammar G
from the proof of the previous theorem a multiple grammar G, can be constructed
so that x4 € L,(G,) if and only if a Post correspondence problem have a solution

(see [14]). QED.

Theorem 9. The problem whether VixV{ n Ly)(G) = 0, xe Vy, is for multiple
A-free grammars recursively undecidable.

Proof. Let us have a grammar G = (Vyu Pru Vp, Vo U {bo, %, 1}, 0, S) as
in the proof of the theorem 7 with the only difference that instead of (Hb) Q contains
the multirules (4, d,1x1), (B, bo)) where 1, b, are new terminal symbols and x € V;=.
Denote V= Vp U {bo, T, #}. Obviously (Vi)* 1x1(Ve)* A Ly(G) = 9 if and only
if there is a solution y = a;4;,...a;, = b,,b;z . by, of the Post correspondence
problem for ay, ..., a,; by, ..., by QED

Theorem 10. Let A e M(CF), Be N(CF), a e {R, 1,2, 3}, let C be a regular set.
Then A n Ce M(CF), B " Ce R,(CF).



Proof. The idea of the proof is the same as the idea of the proof that the inter-
section of a context-free set and a regular set is a context-free set (see [2]). We prove
theorem for the case that o€ {1, 2,3} the proof for « = R is similar. Let G =
= (Va Vr, Q. S) be a multiple context-free grammar such that 4 = L{G). We can
assume that G have the multiplicity two. Let & = (VT, I, D, s, F), where V; is an
input alphabet, I a set of states, @ a transition function, s, an initial state and F a set
of end states, be an automaton accepting A. Let us form the alphabets Vy =
= {[s4, 4, ;] ’ AeVy, sy, 5,61, 5 = s, or s, is accessible from s},

Vr={[s1,a,5]|aeVns,s,els5ePa,s)} v {[5, 4, 5] | sel}
Let us denote for x = x;%, ... X, € V° (x;e Vfori = 1,2,...,n) and for s, s’ e[

x(5,8") = {[50, %15 511 [56> %2> 521 + - [S= 15 Xoms ] [ S0 = 8, 5 = &'

and [s;_y, x;, 8] e Ve w Vy for i =1,2,...,m}
Let us consider the multiple grammar

G= (VN ulru {S}, Vi, O, §)
where
0={5[50Ss]]|seFu

Uil a5 a)|[sa,5TeV}u

U{(s. 40,57, 91 | (41, a:) € Q5. 5'€ LG, €, (s,5)} v

U {((Ts1, 41 511 30). ([52: 42, 531, 32))|
(A1, 41), (42, g2)) € Q and it holds §; € q (s, 57), si» S; €1
fori=1,2}

It can be shown in the same way as in [2] that L{G) = L{(G) n A. CF(G, G)obviously
holds. QED.

Theorem 11. Let A, B e M, (CF) (resp. A, Be R,(CF)) where x e {R, 1, 2, 3} then

(i) AB € M (CF) (resp. AB e %N,(CF))
(i) foro: + 3, A" M(CF) (resp. A®e N(CF)), A® = {x"|xe A}) where for
X =X%y...%,EV®, x; e Vit, x® = xx,_ ... x,.
(iii) A~ = {xx ... x| x € A} € M3(CF) (resp. . N3(CF)).
n—times

Proof. Proof of (ii) is a slight modification of the proof of the assertion that 4A®
is a context-free set if 4 is a context-free set.

Let 4 = L(G,), B=L(G,), i =1,2,3,(the proof for Ly(G) being similar).
Let G; = (Va, Vrp Q5 Sj), j = 1,2. We can assume that ¥y, n Vy, = 0. Let us
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form the grammar G = (Vy, U ¥y, U S, ¥y, U Vr,, @, S)where S is a new symbol and
0=0,00,u{{s 5:5)}

It is straighforward matter to verify that L{(G) = 4B.
We prove (iii) for n = 2, the proof for n > 2 is similar. By theorem 4 we can
assume 4 = L3(G), G = (Vy, ¥z, @, S). For k= 1,2 put

Vux = {[a. k]| [a, k] is for a € Vy an abstract symbol}

for x = x,%,... X, € V* write [x, k] = X,%;... %, where X; =x; for X;eVr,
X; =[x, k] for x;& Vy. Let us put G2 = (Vy U Vy, US, Vy, 074, S) where

97 ={s,[s.1][s, 2]} v
v {((4. 13, {9, 11, (4. 2. [0, 2D) | (4. 9) e @} ©
v {(([4, 11, [w, 1]), ([8, 1), [v, 1]). ([4, 2], [, 2]). ((B. 21, [ 2D) |
| (4, ), (B,v)) e 0}

By the inspection of possible applications of multirules in a derivation of the type
three we can see that if a multirule is applied on [x, 1] [x, 2] then the unique string
[x1, 1] [*5, 2] is obtained. QED.

Theorem 12. The substitution theorem for multiple context-free grammars.
Let Ae M(CF) (resp. Ae N(CF)) A < Vy. Let © be a substitution (see [2]) on
Vi and let 1(a) e W(CF) (resp. t(a) e R(CF)) for all ae Vy, then for i = 2,3,
t(A) € M(CF) (resp. 1(4) e N(CF)).

Proof. Let i =2, 4 = L{G)e M(CF) and «(a) = L{(G,) e M(CF). Let G =
= (Vi V2. @, S), G, = (Vw.o» Voo Qu Sa). It can be assumed that all the nonterminal
alphabets are mutually disjoint, that all the grammars have the multiplicity 2 and
that no rule in Q, contains S, in its right-hand side. Let us form the grammar G’ =
= (Vy,» V4, ', 5} where

Vi=Vyu U Wy, uWyuVp,

aVr

Vy={alaeVyu Ul ui{4},
Vr

Vi=UVra, Vi={a|aeV}.
. geVr

Let Ay, A, € Vy, 4, B;, Be V. Then Q' contains the following multirules:
(1a) (4, A), (4, Bq,)), (4, Bg,) for each (4;, Bgy) € Q and every Ae V

(lb) ((Z, Z)) (Als 5141)’ (Az, g,)) and ((Zn E1§1): (AZ’ qz)) for each ((Alv qul)
(43, 9,))e Qand each A V. _



Here A = A and for x = x;%,... x,€(Vp U Vy)* % = %,... %, where X, = x;
for x;€ V3, %; = S,,if x; € V. The multirules (Ib) and (Ia) generate the set {S,,5,,
o 8 [ X1%2 ... x, € A} if we assume that {S,, S, | a € V;} is a new terminal alphabet.
(I) Q' further contains the following multirules.
(Ha) (Zl’ qu) for each (AI’ B(h) €eQ=UQ,BeVyuV;.
sV

(b) (4, 4). (C. Bqy)) for each (C, Bg,)e 8, C + S,and Ae Vi u T

(1) ((41, Ba1)(Aa, g2)) for each ((4,, Bq,), (4,, 4,)) e 0, Be Py u Vs

(d) ((4, 4), (A1, Bay), (4. q,)) for each AeVyu Vy, A4 ¢S, |aevy), Be

» €Vy  Vrand (4, Bg,), (4,,9,))e Q-

(Im) (4, 4) and ((4, A),(S,, 5,)) belong to Q' for each ae V. and A V4 u V.
Obviously CF(G, G'). It can be verified that if W = (Wo> Wi, Wy, ..., w,) is a deriva-

tion of the type 2 over G and w, e (V7)* then W must contain a member w; of the

form w; = S,X where S =G>’§ ax. Now if S, is overwritten by some rule then from S,

only a string @, € LZ(GH) can be derived. W therefore must contain a member wy, =

= ¢,5,§ where S, 23 ¢, S =7 aby. It follows that thcorem for 9R,(CF) holds.

By a slight modifications of the just given proof we can prove the assertion of the
theorem for IMy(CF), N,(CF) and 95(CF). More details can be found in [14].

Theorem 11a. If Ae M(CF), i = 2,3 then A® e M(CF). If AeR(CF) then
A* e N(CF) (i = 2, 3).

Proof. Leta beasymbol. Then {a}® e M,(CF)and {a}* e N,(CF)and the theorem
follows from the theorem 10.

Remark 9: 1t is an open question whether the theorem 10 holds for i= 1. A string
v € (Vy W Vp)* is nonterminally k-bounded if it contains at most k& nonterminal symbols.
A derivation W = (wg, Wy, ..., w,) of the type i over a (multiple) grammar is nonterminally
k-bounded if all its members are nonterminally k-bounded.

Theorem 13. The set L; ,(G) = {x | x € V7', there exists a nonterminally k-bound-
ed derivation W = (S, Wy, ..., w,_q, x) over G of the type i} is for every multiple
grammar, k = 1 and i = 1,2, 3 a set reqgular mod. permutation.

Proof. Let us put
V = {&| &is for . € V°* an abstract symbol}
and consider the grammar G = (¥, Vi, R, 5) where R ={(& &) |ae ¥, EeVF,
=, w where w = ¢ mod permutation} U {(&, ¢) | EeVi, o = &}. It can be easily
verified that § =* {& if and only if there is over G a derivation (Wo» W1, ..., W,) of the

type i such that w, is equal to £a mod permutation. But G is a left-linear grammar.
QED.
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Corollary 2. The problem whether L;,(G) = 0 is algorithmically decidable for
each k = 1.

Proof. It can be shown by the direct inspection of the proof of the previous
theorem that a grammar @ generating the regular set equal to L; ,(G) mod permutation
can be effectively found. But L, ,(G) = 0 if and only if L(G) = @ and the problem
L(G) = 01is, as it is known, decidable.

Definition 5. The multiple grammar G= with ordering of multirules is the quintuple
G< = (Vy, V1, 0, <, S) where G = (Vy, Vi, Q, S) is a multiple grammar and < some
partial ordering of the set Q. The derivation W = (wo, Wy, ..., w,) of the type i over
G~ is such derivation Wof the type i over G = (Vy, Vr, O, S) satisfying fori = 0, 1, 2,
...,n—1 the following condition: If w;, = X;1P1X;2P2 .-+ XisPXist1> Wirr =
= X;141 %1243 - -+ Xis4s%i,s+1 then there is no F = ((Py, 71); ---» (Be i) € Q such that

6y F>r=((ps ) (P 4) 5
@ Wi =XuPp1 X XuDiXik+1 s
3 Wit *® Xud1 %o oo Rkt »

Here x;; denotes arbitrary strings over the alphabet V. Write x (=;3f y if there is a deri-

vation W = (X, Wy, ..., Wy, ¥) over G of type i. Let further

L(G) = {x|xeVF,S=Fx}

G<i

A grammar G¥ = (Vy, V, Q, <, S) with ordering of multirules is CF (resp. CF(A))
ifG=(Vy. V1, Q, S) is a multiple context-free grammar (resp. G is a multiple A-free
grammar).

Theorem 14. Let 9;(CF) and 9 (CF) be the following classes: M7 (CF) =
={4 | A = L{G~) for a multiple A-free grammar with ordering of multirules},
N7(CF) = {4] A = L(G") for a multiple context-free grammar G* with ordering
multirules}. Then for i =2,3

M (CF) = CS, N (CFy=RE
where RE is the class or recursively enumerable sets.

Proof. We shall prove the assertion of the theorem for M5 (CF), the proof for
95 (CF) is similar. Let G = (Vy, Vr, R, 5) be a context-sensitive grammar. According
to [10] we can assume that R = Vy°> ® V™. Let us have the context-sénsitive gram-
mar G = (Vy, Vp, R, S) where Vy = Vy UV, ¥V = {[4;, 1,], [42, 2, 1} | [41, 1, ],
[4,,2, 1] are for a rule (A,4,, ) € R with the index j abstract symbols}, A, A, €
€Wy,



R={(4.9)|(4.9eR}v 77
u{(4,[4,1,0)],(4,[4,2,i])| A Vy and i is index of some rule from R} U
v {4, 1,1)[4:.2,i]. 9) | (A,4,, q) e R, (A, A2q) has the index i} .
It can be shown that S 2* ye(Vy u Vp)* if and only if S =* y ie. L(G) = L(G).
G is obviously a context-sensitive grammar. Form the multiple context-free grammar
G' = (Vy v {x}, Vr, Q, §) where
Ve=VyuVut;,

x is a new symbol, V = {@{aeV; uVy}, Vr={d|aeV,;}. Denote for y =

=a,a,...a,6(Vyu Vy)® § = a,a, ... d,where a; = a,fora; e Vy, a; = d,fora;e Vr,

A = A. Then

0=0,vQ,u0;uQ,

where S - ’

0, = {(B, ag), ((a;, f"x), (B, ag)) | (B,ag)eR,d,eV,acV},

Q) = {((Bx_a_‘i), (Bz, E)), ((ﬁn 51), (Bx, E), (Bz, E)) ’ (BJBZ’ all) € R, aeV,By, B,eVy,
eV},

05 = {(d a),((@ a), (b, B)) | a, be W},

Q4 = {((B.» x), (4, x), (B2, %)), (4, d,), (By, x), (4, x), (B, x))| there exist
(ByB,, aq) € R, A is an arbitrary symbol from Vy and By, B,€Vy,
aeV}.

Define the partial ordering < on @ in the following way

(D If ((By,a),(Byg)=reQ, then r<((B),x),(4,x),(B,,x)) for cach
AeVyuVuPr.

() 1r((a,, &), (By, a), (B3, 7)) = re Q then r < ((&,, 4,), (By, x), (4, x), (B2, x))
foreachde Vyu V.

(1) There is no other pair satisfying the relation <.

It holds for the multiple grammar G with partial ordering of multirules where
G =(Vyu{x}, ¥, 0.<,5)
that
. | L(6%) = L(G).
For if S‘gg‘; z e Vf then
(a) No multirule r € Q, can be used.

(b) Each member w; of the derivation W = (8, wy. ..., w,_,, 2), z € Vf, over G of the
type 2 has the form yap where ye V¥, ae V, pe(Vy)* z = yy and ap ﬁf y.



(c) A multirule ((By, q4), (B, 42)) € @, can be applied on w, if and only if w;
cannot be expressed in the form w; = x;;B;x;;B,x;3 where Xx;; & A because
otherwise a multirule from Q, can be applied.

(@) Therules from Q, are applied in the same way as the corresponding rules from Q.

Tt follows that L{(G®) < L(G). As the reverse statement is obvious we have
LAG®) = L(G). Because it can be shown by the methods similar to those used in
proofs of lemma 6 and 5 that

M5 (CF) < M5(CG) = CS,
N;(CF) « N5(CF) = RS

the theorem is proved.

4. SOME SUBCLASSES OF RELATIONAL GRAMMARS

Definition 6. Relational grammar G = (k, Vy, Vr, Q, S) where Vy = (Vy,, ..., Vs
Ve =Vry oo V1), S = (S ... Si) is kT-regular if each multirule r of the G is of the
form r = (41, By By), (4s, B2B,), ..., (A BiB)) where Bie Vi, and (By, By, ...

L B)eX Vy,u {44, ..., 4.
i=1
A kT-regular grammar G is kR-regular if §,e V7.

A kT-regular grammar G is k-regular if f;e Vr.
A kT-regular grammar G is k-regular mod 4 if ;€ Vg, u {4}.

Definition 7. A kT-regular, a kR-regular, a k-regular a k-regular mod A grammar
G = (k, Vy, Vi, Q, S) is strongly kT-regular, strongly kR-regular, strongly k-regular
k
mod A respectively if to every pair of k-tuples (4;, 4,, ..., 4} € X Vy,and (By, Bas- -
k 1
co B)EX VE there exist at most one multirule ((4,, §,B,), (42, B2B2), ...
1
con (A BiBY) € 0.
Theorem 15. The class of relations generated by kT-regular grammars is the
class of k-ary transductions (see [7]).

Proof. Let G = (k,(Vy,» --o» Var)s (Vrps oo Vi) @ (S1s ., Si)) be a kT-regular
grammar. Let us construct the following automaton & = (Vo .. Vr,), I, &, 8o, F)
with k input tapes where

K
I={(Ay, 4y, ..., &) | (Ay. ..., A,) is for (4;. ..., 4,) € X Vy, an abstract symbol} v
1
U {4 A4 A)
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S0 = (81, Ss, ..., Si) € is the initial state,
&, the transition function of A, is defined as follows

q)(ﬁl: ﬁz, teey ﬁk! (Au Az, EREH) Ak) )‘:

= {(B;. B, ..., B | there is a (4, f,B1), . ... (4, BiBY) € O} -
F={44,..,4)}.

It can be easily verified that T(4) = R(G). Let us have an automaton A with k
input tapes defined as above. Let

G = (k, (Viys - Vo (Vg Vigs -0 V1 )s @ (So1 -+-» Sox))
be a kT-regular grammar where
Vi, = {si I s; is for s e I an abstract symbol} .
If s, € ®(By, ..., By, s,) then
(St BiSma)s -+ (00 Bismd) € @«
If s,,€ F 0 &(By, ..., Br 5;) then
(510 B1), s Gu B € Q.-

No other multirules belong to Q. It holds obviously T(4) = R(G). QED.

Definition 8. A set A = V7 is a transduction set if A = Lg(G) for a kT-regular
grammar G. 9y is the class of transduction sets. 97 = {4 [ Ac VP, Ae N}

Corollary 2. If A, Be Ny then AU Be Ny, ABe Ry, A™" e Ry
Proof can be realized in the same way as the proof of the theorem 11.
Corollary 3. If FA denotes the class of regular sets then
FA § My < N(CF)
Proof. Obviously FA < 9, = Rz(CF). The example 1 indicates that FA + .

Corollary 4. For kT-regular grammars the problem Lg(G) = @ is recursively
decidable.

Proof. Apply the corollary 2.
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Theorem 16. The following problems are not recursively decidable for kR-regular
grammars (and therefore for kT-regular grammars)

1) L(G,) n Ly(G,) is an empty, finite or infinite set ,
) L(G) = V7,

3 Lp(G;) = Lg(Gy),
“) Li(Gy) — Lp(G,) is an empty, finite or infinite set .

Proof is a modification of the proofs of the similar assertions for context-free
grammars (see [2]). We prove (1) in order to show how to modify corresponding
proofs from [2]. Let aa, ..., a,; by, by, ..., b, be 2n strings over an alphabet Vy
containing two symbols at least.

Let E = {¢;, ¢z, ..., ¢,} be a set of new symbols and let G, = (2, ({C}, {4}),
(E, V1), Qy, (C, A)) where

0 = {((C, ¢,C). (4, a;4)), ((C. ¢)), (4, a)) l i=1,2,..,n}
Let G, = (2,({C}, {4}). (E, 1), 0z, (C, A)) where

0, = {((C, ¢;,C), (4, bj4)), ((C. e), (A4, b)) | i = 1,2,...,n} .
Obviously Lg(Gy) = {¢;, ¢i, ..or €1, 81,85, .- @5, | m £ 1,1 2 i; 2 1} and Ly(G,) =
= {c,¢;, .0 ¢ by by, .. by I m = 1,1 £ i; £ n}. Therefore Lg(G;) N Lg(G,) = 0
if and only if thc Post correspondence problem for ajy, ay, ..., 4,5 by, ba, ..., b, has

a solution. Moreover Lg(Gy) n Lg(G,) + 0 if and only if Lg(G,) N Lg(G,) is an
infinite set. QED.

Proposition. The intersection of two transduction set not containing A is a con-
text-sensitive set.

Proof. Transduction sets not containing 4 are context-sensitive (see theorem 20)
sets and intersection of context-sensitive sets is a context-sensitive set.

Remark 10. The problem whether M is closed under the intersection is open.

Theorem 18. To every kT-regular grammar G there is a srrongly k-regular
mod A grammar G’ such that R{G) = R(G').

Proof. See [5] where the theorem is stated in the terms of the theory of general-
ized automata.

Corollary 5. N, is the class {A|A Ly(G) for a strongly k-regular mod A
grammar G}.

Theorem 19. If A€ Ny and B is a regular set then A n Be N;.



Proof is a slight modification of the proof of the theorem 10. See also [14]. 81
Theorem 20. 9t = M,(CF).

Proof. Let A€ MNi. We prove the assertion of the theorem for the case that
A = Lg(G) where G is a 2T-regular grammar. The proof for general k is similar.
We prove, that 4 e M,(CF). Let G = (2, (Va,» Vi) (Ve Vi) @5 (515 S2)). We can
assume that G is a strongly 2-regular mod A4 grammar (theorem 18). Let us form
a multiple A-free grammar G' = (Vy, Vy,  Vp,, @', S,S,) where

Vy = Vo, Vi, uVy,uWy,,
Vi, = {& | ae Vy, Vi, V) »
Vo, = {&|@e VeV, V)

Vi, = (8] ae Vy Wi},

Vi, ={&|a:VpVy,i=12}.

i

We can assume, that Vy, 0 Vy, = 0.
() I (41 B, (Aas Bo)) € 0. 4y By Vg, then O

contains the following multirules:

(Ia) ((z;l\zl,a,Bl), (é;l; arz\l}/z)) for each a;€ V}!. Here and below ad; = 4
fora = Aand a;A4; = q,4; for a; eV,

(1b) (ﬁLAg}}lBCZ)’ (410,45, B1a;B,), (4,4,, B,B,), (4,4,4;, a,B,B,),

(A,a,4,, Bya,By) e Q' for cach a, e Vy,, ay € Vi,
(1) If(A4,, ¢B,), (42, B,)) € @, c € Vy,, then for each ae V{!, be Vil
(I1a) ((;Z/,, aZ’E), (Z,J:l;, I/JEJZ)) € Q' for each a, be Vy,u {4} and i = 1,2,
(ib) ((4,aA,, cBiaBy)e @/, (ad4,, acBiB,) e Q' for cach ae ¥y,
(lc) (4,4,,cB,B;)e Q'3
(un) If (4,,B)), (A2, ¢B,)) € Q. c€ Vg, then
(11a) (a4}, aBy), (b4y, beBy)) € Q, _
(1b) (A;ad;, a BieBo)e @, (a A, Ay, ad, edy) e Q' (Ajads, a ByeBy)e @f
(te) (4,4,, BycBy)e Q';
(Iv) If ((4,, cBy). (42, dBy)) € Q, ce V;, de Vy, then
(
(
(
(

[Vﬂ) ((‘;‘11, a C?l‘)) (l;l, b 173/2)) € Q' for each aeVr, belr,.
tvb) ((b4,4,, b ¢B, ;E?;)) e @' for each be V!
Vo) (4, a A, cBiadB)e Q'

V) I((4,8,), (42, B2)) € @ whtere , & V! then

1
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(Va) ((ady, apy), (b42 bB;)) € @ for apy + A, bp, + 4
(Vb) ((a4;4;, ap,B))e Q'

(Vo) (A,ad,, BiaP)e Q' (A4,a4,,aB,)e Q' for f; = A
(V) (AAz, BiBs)e @ for BB, + 4.

We firstly note that G’ is a two-multiple A-free grammar. By the direct inspection
of possible derivations over G we obtain that Lg(G) = L(G). In fact if (4, x) € R(G)
then in derivation of x over G’ we can use only the 3, 2°® and 5" multirules in (1b),
the multirules in (Illc) and then, possibly, the multirules from (V). Similar
arguments.can be used in all the remaining cases.

By induction according to the number of steps in derivations it can be shown that
it must be L;(G) = Lg(G). QED.

Theorem 21. The class LA of the symetrically localy finite transductions
(see [7]) is the class of the relations generated by the kR-regular grammars.

Proof. See [14].
Denote LK = {4 | A = Lg(G) for a kR-regular grammar G}.

Theorem 22. If Ae LK and B is a regular set then A n Be LK.

Proof. Ttis easily shown that the proof of the theorem is the same the proof of the
theorem 16.

Theorem 23. The class MR of the sets A such that A¢ A, A = Lg(G) for a strongly
k-regular grammar, is the class of sets not containing A acceptable by k-multiple
automata (see [4]). The class

NDR = {A| A = Ly(G) for a k-regular grammar}

is a the class of sets accetable by k-multiple nondeterministic automata. If A€ MR
(A NDR) and B is a regular set then A n Be NR (4 N B NDR).

Proof. In fact to every (nondeterministic) k-multiple automaton A an generalized
finite (nondeterministic) automaton & = ((Vz,, ..., V) I, @, so, F) with k-input
tapes in the sense [7] exists so that @ is defined on (XVr,) ® I and the set T(4)

i

of strings accepted by A in the sense [4] is the set {x, ... x; | (X1, ..., x;) belongs to the
relation accepted by «/}. Using this fact we can prove the all assertions of the theorem
quite similary as the parallel assertions for the class 7.

For further properties of the classes 9t and MR see [4], [13]). Let us denote
RE: the class of recursively enumerable sets, and let M, (CF), & = R, 1,2, 3, %,(CF),



Fig. 1.

@ =1,2,3,R, CF, CS, #DR, Ny, LK, NR, RDR, CF*, N} have the above intro-
duced meaning, let FA denote the class of regular sets. Then the above given results
are shown graphically in the figure 1.

(Received May 3rd, 1968.)
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VYTAH

Nésobné gramatiky

JarosLAV KRAL

Je-li W = (wq, ..., Wo_q, Xpy) n&jaké odvozeni nad gramatikou G = (Vy, V1, R, S)
a obsahuje-li mno¥ina pravidel R pravidlo (p, g)je i W' = (wo, ..., W,_y, xpy, Xq))
odvozeni nad G. Pravidlo (p, g) miizs byt tedy pouZito v n-tém kroku odvozeni W
nezdvisle na tom, zda mdZz byt v tomtéZ kroku pouZito jiné pravidlo a nezdvisle
na tom, jakd pravidia byla pouZita v pfedchozich krocich odvozeni W. Tento pied-
poklad nezdvislosti je moZné oslabit riiznymi zplsoby. Lze napf. stanovit, Ze je-li
pouZito n&jaké pravidlo v jistém kroku odvozeni W, pak ,,spolu s nim* musi byt
pouZita n&jakd dalii pravidla. Pravidla jsou tedy aplikovdna ve skupindch. Ndsobné
gramatiky o nichZ pojedndvd &ldnek p¥edstavuji formalizaci této koncepce.



Skupina pravidel je multipravidlo. Ndsobn4 gramatika je gramatika s multipra-
vidly. Podle zptsobu pouZiti pravidel multipravidla jsou uvaZovdny tfi typy odvozeni
nad ndsobnou gramatikou. Je ukdzdno, Ze se stadi omezit na ndsobné gramatiky
ndsobnosti dvé (t.j. multipravidlo obsahuje nejvyse dvé pravidla). Nadsobnd gramatika
je kontextovd, resp. bezkontextovd, resp. bezkontextovd bez prdzdného slova jsou-li
takovd viechna pravidla multipravidel. Je dokdzdno, Ze generativni sila ndsobnych
gramatik (ndsobnych kontextovych gramatik) neni v&tSi, nez generativni sila (obydej-
nych) gramatik (resp. kontextovych gramatik). T¥idy mnoZin generovatelnych
rliznymi typy odvozeni nad ndsobnymi bezkontextovymi gramatikami bez prdzdného
slova tvo¥i hiearchii mezi tfidou bezkontextovych a tfidou kontextovych mnoZin.

Dile jsou studovdny problémy rozhodnutelnosti pro ndsobné gramatiky, problémy
uzavienosti vii¢i mnoZinovym a jazykovym operacim, substituci, priiniku s reguldrni
uddlosti atd. Kromé toho jsou studovdny rela¢ni gramatiky generujici k-tice slov.
Je dokdzdno, Ze tiidy mnoZin {4 I A= {x%; ... %, | (x4, ---» %) je k-tice generova-
telnd relaéni gramatikou G}} m4d Gzky vztah k t¥idé mnoZin generovatelnych jednim
typem odvozeni nad ndsobnymi gramatikami. Je ukdzdno, Ze jisté podt¥idy relaénich
gramatik generuji prdve t¥idu relaci akceptovatelnych zobecndnymi automaty (viz

[41. [51a [7D)

Jaroslav Krdl, promovany matematik, Ustav vypoétové techniky CSAV—CVUT, Praha 2,
Horskd 3.
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