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On Multiple Grammars 
JAROSLAV KRÁL 

A modification of formal grammars, so called multiple grammars, in which rules are (in 
various manners) applied in groups are studied. It is shown that classes of languages generated 
by such grammars forms a hierarchy between the class of context-free sets and the class of con­
text-sensitive sets. Many further properties of multiple grammars are shown. 

1. PRELIMINARIES AND INTRODUCTION 

We shall mainly use the notation from [9]. Alphabet Fis an arbitrary finite set, 
elements of V are symbols, V* is free semigroup of strings over V, A denotes an 
empty string, A is the unity element of V*, V°° = V* — {A}. If x = xlx2 ...xseV* 
and y = y1y2 ... y, e V* then xy = x^x2 ... xsyty2 ... y, is a string formed by 
concactenation of x and y. For A, B c V* is AB = {xy | x e A, y e B}. Let A <= V*. 

Denoting A1 = A, A"+1 = A"A for n = 1 then obviously Vm = U V", V* = 
n n=l 

= V™u {A}. Denote A"3" = U AJ, A*" = A00" u {A}. \x\ denotes for x e V* the 
j = i 

length of x. 0 denotes an empty set. 
Let A, B be arbitrary sets. Then A (g) B denotes the cartesian product of A and J5 

i.e. A ® B = {(x, y) I x e A, y e B}. Denote further X At = {(xu ..., x„) I xt e At for 
n i i = l 

i = 1, 2,..., n}, A®" = U X A. The following convention will be broadly used: 
i = t j = i 

If A is a certain set then the set {a \ a is for a e A an abstract symbol} = {a | a e A} 
denotes the set disjoint with all the sets discussed in the given proof and there is 
one to one correspondence between a's and a's. 

Formal grammar is quartuple G = (VN, VT, R, S) where VN and VT are nonter­
minal and terminal alphabets respectively VN n VT = 0, S e VN is the initial symbol 
and R c: VN ® (VN u VT)* is a finite binary relation. Elements of R are rules, R 
is called the set of rules of G. V will denote unless stated otherwise the set VT u VN. 



The sequence W = (w0, wu ..., w„) of strings over V* is the derivation over G of 
the length n if it holds for i == 0 , 1 , . . . . n — 1, w; = puq, wi+1 = pvq where p, q e V*, 
(u, v) e R. The string y e V* is over G derivable from x e V* (y is a consequence 
of x) if exists a derivation over G of y from x i.e. over G exists a derivation W = 
= (x, w. , . . . , w„_!, y). A derivation IVover G is nontrivial if the length of Wis at 
least 1, a derivation over G is trivial if it is of the length 0. The rule (u, v)e R is 
applicable on x e V* if x = puo, xx e V* is a direct consequence of x if x = pug, 
Xj = pvq, (u, v) 6 R. Write x => x t if x t is over G a direct consequence of x. x =>* >> 
if j ; is a consequence of x . x => °° y if it exists nontrivial derivation over G of y 
from x. The language (or the set) L(G) generated by G is the set 

L(G) = {x | x e Vf, S =?* x} 

a formal grammar G = (VN, VT, R, S) is context-sensitive if \u\ ^ |v| for every 
(u, v) e R. We define context-sensitive grammars in other way as in [10]. Note, how­
ever, that a set is generated by a context-sensitive grammar G (in our sense) if and 
only if it is generated by a Chomsky's type 1 grammar. 

A grammar G is context-free if R e VN ® V*. A grammar G is A-free if R <= VN ® 
<g> V00. A set A <= V* is a phrase-structure set (context-sensitive set, context-free set) 
if A = L(G) for a formal (context-sensitive, context-free respectively) grammar G. 
If there will be no danger of misunderstanding we shall say the derivation instead of 
the derivation over G and write =>, =>*, =>°° instead of =>, =>*, =>°°. 

Now we can turn to the main topics of this paper. The very important feature of the 
grammar G = (VN, VT, R, S) is the following property: If W = (w0, wu ..., w„) 
is a derivation over G and w„ = puq and moreover (u, v) e R then W' = (w0, w . , . . . 
..., w„, pvq) is a derivation over G. A rule can be therefore applied in the n-th step 
of derivation independently (in certain sense) on what was the rules applied in 
previous steps or indenpendently on that whether an another rule (u', v') can be 
applied on w„. This assumption of indenpendency can be weakened in several ways. 
One way to realize this idea is discussed in [8]. Idea discused there can by roughly 
described in the following way. A partial ordering < is defined on the set R of rules 
and a rule (u, v) e R is applicable on x e V* if x = puq (i.e. (u, v) is applicable on R 
in "normal sense") and no rule (u', v') e R for which it holds (u\ v') > (u, v) (i.e. 
which is "greater" than (u, vj) can be applied on x. Now we can define a derivations 
over such a grammar and a language generated by it similary as it is defined for 
"normal" grammars described above. It was shown that the indicated facility in­
creases the generative power of context-free grammars (i.e. there exists a contex-
free grammar G" = (VN, VT, R, >,S) with ordering of rules for which L(G>) is not 
a context-free language) but does not increase the generative power of context-
sensitive or formal grammars. 

The main feature of grammars with ordering of rules is that a rule can be applied 
only if another rules can not be applied. We shall go in another direction. We shall 



62 study grammars for which rules are applied in groups so that if a rule is applied in the 
given step of a derivation then, roughly speaking, some rules must be applied in the 
"following" steps. We shall show that formal (context-sensitive respectively) grammars 
with this facility generates phrase-structure (resp. contex-sensitive ) sets meanwhile 
the classes of sets generated by context-free grammar with this facility forms a hierarchy 
between the class of context-free and class of context-sensitive sets. 

2. DEFINITIONS AND BASIC PROPERTIES 

Definition 1. Relational grammar G is the quintuple G = (n, VN, VT, Q, S), 
where n is a positive integer, the multiplicity of G, VT = (VTl, VT2, ..., VTJ is an 
n-tuple of terminal alphabets, VN = (VNi, VNl, ..., VNi) is an n-tuple of nonterminal 

alphabets, g <= X # ; where R; <= VNt ® (V,,, u VTj)* is for i = 1, 2, ..., n a finite 
i = l n 

binary relation, S = (S l s ..., S„) e X VN.. G is a context-sensitive or a context-free 
i = l 

or a A-free grammar if R; are for i — 1, 2 , . . . , n context-sensitive or context free 

or A-free relations respectively. Let V; = VN. u VTi. For x, y e X V* write x ==> y 

if x = (uliulxl2, x2u2x22, ...,xnlunxn2), y = (x^v^^, x21v2x22,..., xnlv„xn2) and 

( ( u i > t>i)> (u2> v2)> • • •> (Mn> vn)) e 6- The sequence (w0, wu ..., wm), w; e X V*, is a deri-
y = i 

vation over G if it holds for i = 0, 1, 2, ..., m — 1, w; => w ; + 1 . We write w0 =>* wm 

if there exists a derivation JV= (w0, w. , . . . , wm_j, wm) over G. The relation R(G) 
generated by G is the set 

R(G) = { x | x e X V r * , S = f * x } 

Denote further 

LR(G) = {x\xe(\JVT)*, 
' = 1 

r/iere ex/sis (x1; x2, ..., x„) e R(G) so that x = x t x 2 ... x„}. 

A cz ( U VT.)* is a R-set (resp. a context-sensitive R-set resp. a context-free R-set) of 
i = l 

the multiplicity n if there exists a relational (resp. context-sensitive relational 
resp. context-free relational) grammar G of the multiplicity n so that A = LR(G). 

Definition 2. The multiple grammar is a fourtuple G = (VN, VT, Q, S) where V^,, VT 

are terminal and nonterminal alphabets respectively; VN n VT = 0; Qe R®", where 
R c V^° ® V* is a finite binary relation, Q is the set of multirules, the elements of Q 
are multirules; S e V^. The multiplicity of G is the least integer n such that Q <= R®". 
A grammar associated with G is the grammar G(a) = (V^, VT, R, S). A multiple 



grammar G is context-sensitive or context-free or zl-free if G(a> is context-sensitive 63 
or context-free or yl-free respectively. We shall write for x, y e V* = (VT u VN)*: 

(i) * =>i y if there exists a multirule ((uu v±), (u2, v2), ..., (us, Vg)) e Q and a deriva­

tion (w0, wl5 ..., ws) over G(a) of the following properties: x = wo^ y ~ ws a n c l 

for i = 0, 1, 2, ..., s — 1 there exists x£ e V* so that wi = xfWi+1.v,-, w i + 1 = 

= xpt+M 
(ii) x =̂ »2 y if there is a multirule ((ut, vx), ..., (us, vs)) e Q so that x = x1ulx2u2 ... 

•••xsusxs+1, y = x1vlx2v2...xsvsxs+1; 

(in) x =*• 3 y if there is a multirule ((uu vt), ..., (us, vs)) e Q so that x = x1u1x2u2 ... 

••• ^"s^s+i. Y = ^i^iX2u2 ... vsxs+1 and it holds for no i = 1, 2, ..., s , x ^ = 

= x-t.,x" where x"t 4= A-

A sequence (w0, wl5 ..., wm) of strings over V* is a derivation over G of the type i, 

i = l, 2, 3, if it holds for ; = 0, 1, 2 , . . . , m - 1, Wj ̂ t wJ+l. For x,yeV* write 

x *>* y if over G there exist a derivation W = (w0, wl5 ..., wm_u wm) of the type i 

such that x = w0, j = wm. Further 

Lt(G) = { x j x e F r * , S ^ * x } 

Ac V* is a M-set of the type i (i = 1, 2, 3) if A = L,(G) for some multiple gram­
mar G. 

Proposition 1. 7/ ^4, B are M-sets of the type i then A u B is M-set of the type i. 
If A, B are R-sets of the multiplicity n then AKJ B is a R-set of the multiplicity n. 

Proof. Proof can be obtained by a slight modification of the proof of the theorem 
that the union of context-free sets is a context-free set. 

Definition 3. CF(GX, G2) is an abbreviation of the following proposition. If Gt 

is a relational or a multiple grammar which is context sensitive or a context-free 
or yl-free then G2 is a relational or a multiple grammar respectively which is context-
sensitive or context-free or context-free yl-free respectively. 

Lemma 1. To every relational grammar G there exists a multiple grammar G1? 

the multiplicity of which being equal to the multiplicity of G, so that CF(G, Gt) and 
Lfa) = LR(G). 

Proof. Without loss of generality we may assume that it holds for G = 
= (n, (VNl, VN2,..., VNn), (VTl,..., VTn), Q, (S,,..., Sn)) that (VNi u VT) n VNj = 0 
for i ^ i + j = n. Putting 

G. = ({S} u \JVNj, UVxy Q u {(S, S,S2 ... Sn)}, S) 



64 where S is a new symbol we can easily verify that it holds CF(G, Gx) and L^G^ = 
= LR(G). 

Remark 1. Let 2 be a finite set of multirules (of rules). Index of a (multi)rule is a positive 
integer. There is one-to-one correspondence between (multi)rules in Q and their indexes. A multi-
rule ((/>, <?)) will be often denoted (p, q). 

Lemma 2. To every multiple grammar G exists a relational grammar Gt of the 
multiplicity at most two such that LjG^ = L^G). In the case that Lt(G) cVT — 
— VT then there exists a relational grammar Gx of the multiplicity two such that 
L,(G,) = LR(G) and CF(G, Gx). 

Proof. Theorem obviously holds if the multiplicity of G is 1. Let us put for G = 
= (Vs, VT, Q, S), Gy = ((VN, V), (VT, 0), Q\ (S, §)) where V = {[j, i] | [j, i] is for 

a multirule ((ult v±),..., (us, vs))e Q with the index j and for 1 ^ i ^ s an abstract 
symbol } u {S}. 

To every multirule ((u±, ».), (u2, v2),..., (us, vs)) e Q, Qr contains a set of multi-
rules of the form ' ((«.., ».), (S, [j,2])), ((u2, v2), ([j, 2], [j, 3])), ..., ((«„ vs), 
( [ j 5 ~~ L 3 ' s)) a n d t h e multirule ((us, vs)([j, s - 1], A)). Especially for (p, q) e Q, 
Qr contains the multirules ((p, q), (S, S)) and ((p, q), (S, A)). It is straightforward 
matter to verify that K(Gj) = Lt(G) ® {A} so that Lj^G^ = L^G) and the first 
assertion of the lemma follows. 

The proof of the second assertion of the theorem is rather cumbersome so the main 
ideas of it only will be given. Details can be found in [14]. Let ~aC be for a e VN u VT 

and C e Vn an abstract symbol. Let further B be any symbol from Vand A any symbol 
from VN. The grammar G t from the first half of the proof can be modified so that 
a grammar G2 is obtained so that it holds. 

(S,S)^*(A,B) if and only if (S, S) f* (A, B), 

(S,S)f*(yaC,B), aeV, CeVN, if and only if (S, S) => (yaC, B), 

i.e. a pa i r (x, B), x eVx VN, is over Gj derivable if and only if it is over G2 derivable 
a pair (x, B), where x is x with two last symbols joined into one abstract symbol. 

(S, S) f* (yb, B), beVT, BeV, if and only if (S, S) ^ * (y, [b, B]) , 

where [b, B], be VT, B e V, is an abstract symbol. It gives the possibility to use the 
multirules ((p, q\ ([b, B], b)) instead of ((p, q), (B, A)). 

(S, S) ^ * (yb, A) if and only if (S, 5) => * (y, b). 

Obviously LR(Gi) = LX(G). G2 can be constructed so that it holds CE(Gi, G2). 

QED-



Corollary 1 . To every multiple grammar G there exists a multiple grammar G± 65 
of the multiplicity at most two such that LV(G) = L t(Gi) and CF(G, GJ. 

Proof. If the multiple grammar G is a general (a context-free respectively) multiple 
grammar the assertion of the theorem is a direct consequence of lemmas 1 and 2. 
Let G be a context-sensitive (A-free respectively). Then Li(G) c VT and using the 
ideas used in the second part of the proof of lemma 2 it can be shown that there is 
a context-sensitive (A-free respectively) grammar G' so that Lt(G') = L(G) — VT. 
But then Lj(G) = Lt(G') u A, where A <= VT. But A = L^G^ fo r a context-sensi­
tive (respectively A-free) grammar and the theorem follows from the proof 
of proposition 1. 

Lemma 3. Let A = L;(G) where i is equal to 2 or 3. Then there exists a multiple 
grammar Gx of the multiplicity at most 2 so that L;(G) = L;(Gi) and CF(G, Gi). 

Proof. Let G = (VN, VT, Q, S). We put V ={a\a is for aeVNvVT=V an 
abstract symbol}. Let further A = A and for x = xtx2 ...xm, x = xxx2 ...xm. 
Let V have the same meaning as in the proof of the lemma 2. Put further Vt = 
= {[j, i]i, [j, i]2 | [j, l ] i , [;', 1 ] 2 are for [j, i] e V abstract symbols}. Let Gi = 
= (V^\ VT, QU S) where VN

X) = K u F u F , u F » u { S , # , # i} and let Q contain: 

(a) rules (S, # 5 ) , ( # , A ) 

(b) to every multirule ((unAu vt), • •., (uslAs, vs)) e Q, where At e VN for i = 1,2, . . . 
...., s, with the index; a sequence of multirules 

OM) ((#> #i),(«n-4i.flnL/.-])) 
OM) (([ j , l ] , [ j , l ] l ) , («21A2,f i 2 l [ j ,2]) ) 

(j; s - 1) (([;, s - 2], [j, s - 2] t), (uM.ltlA^u « . . , . . [ / , s - 1])) 
( / ; s ) ( ( [ j s - l ] , [ / , s - l ] 2 ) , K i A s , , s ) 
( / ; s - 1) (([;, s - 2]i, [j, s - 2]2), (fi,_., .[/ , s - 1]2 , - ,_,)) 

(jM) ( ( # ! , # ) , («"nDM]2,»i)) 

(c) to each rule (w, v)e Q the multirule (( # , # ) , (p, q)). 

It can be easily verified that if S ~>* R fj x e V* then R = £Z, £, e { # , # . } . 
If a multirule of the type ( j ; l) is used in the i-th step of a derivation W = (w0, ..., w„), 
wne V* of the type 2 or 3 then all the rules (j; 2),..., (j; s - 1), (j; s), ..., ( / ; 1) 
must be successively used in the following steps of W. The obviously L;(G) c L;(Gi), 
i = 2, 3. As the reverse inclusion is obvious we have proved the first assertion of the 
theorem. 

The proof of the second assertion is rather cumbersome so let again the main 
idea of it only will be given (see [14] for details). By a modification of the grammar 
G1 a grammar G2 = (VN

2\ VT, Q2, [ # , S]) can be obtained so that S -*•* aay, 



66 where a e { # , # J , a 6 V, y e V* and i = 2, 3, if and only if [S, # ] =>, [a, a] y, 
[a, a ] being for a e Vand a. e [ # , # . } an abstract symbol. It can be shown that G2 

can be constructed so that CF(G, G2) and Lt(G) = L(G2). Adding the rules ([ # , a], a) 
to G2 we obtain the assertion of theorem. 

It holds therefore 

Theorem 1. Let A = LR(G) where G is a relational grammar. Then there exists 
a relational grammar Gy of the multiplicity/ at most two so that it holds CF(G, Gx) 
and LR(G) = LR(GX). To every multiple grammar G and i = 1, 2, 3 exists a two-
multiple grammar Gx such that CF(G, GX) and LR(GX) = LR(G). 

Lemma 4. To every multiple grammar G = (VN, VT, Q, S) there exists a multiple 
grammar Gx such that Lx(G) = L2(G1) and CF(G, Gx). 

Proof: Theorem 1 imply that it can be assumed without any loss of generality 
that G is of the multiplicity two. Put Gx = (VN, VT, Qu S) where Qx = {(u, v) \ 
| (u, v)eQ}vj {(u, v) \u\ <; 3v, there is a multirule ((uu vt) (u2, v2)) e Q so that u = 
= auip, avxp = a'u2/?', v = a'v2p'} u {((uu vt), (u2, v2)\ either ((uu vt), (u2, v2)) e 
e Q or ((u2, v2), (uu Vl)) e Q}, v = max {\u\ \(u, v) e Q, ((u, v), (uu p.)) e Q}. 
It can be easily verified by induction that Lt(G) = L2(G1). It is obvious that it 
holds CF(G, Gi)). QED. 

Lemma 5. To every multiple grammar G = (VN, VT, Q, S) there exists a multiple 
grammar Gt so that L2(G) = L3(Gi) and CF(G, Gj). 

Proof. It can be again assumed that G is two-multiple. Let us put Gx = {yN u V, 

VT, Qu SO where V = {[j, 1], \JA\, [j, 2] | [/, 1], [ j T ] , [j, 2] are for a multirule 

with index j abstract symbols}. 

Let further: 

(a) (>! contain the following multirules 

(«> [j> 1] «')> (([j> 1]. a), (u, [j, 1] „')), ( [ ; , 1] „, v) 
for each (u, v) e Q with the index j , u = au', a e VN, 

(b) Let r = ((au[, vt), (bu'2, v2)) e Q and let r have the index j . Then Qx contains 
the following multirules: 
(au[, [j, 1] u[), 
( ( [ j , l ] , o M a « i , [ j , l ] « i ) ) . 
( ( [ j , l ] , [ j , l ] )> ( fc« i , [ j , 2 ]« i ) ) , 
( ( [ j ,2] ,6) , ( fc« 2 , [ j ,2]« 2 ) ) , 

( ( D M ] « i . » i ) , ( rJ . - ]«2,»2)) . 

It can be easily verified that if X M ^ U ^ =*2 xvxyv2z where ux = a«, , u2 = bu'z 

then xuiyu2zf:*3x[j,l]u'1y[j,2']u'2z^*3xv1yv2z, i.e. L3(Gi) =3 L2(G). By in-



duction according to the length of derivation it can be shown that if S =>* x e 

z{VN U Vr)* then S =>*2 x and it follows L3(G.) <=• L2(G). Obviously it holds CF(G, Gx), 

QED. 
Lemma 6. L3(G) is a context-sensitive set for arbitrary context-sensitive multiple 

grammar G. 

Proof. We can again assume that G = (VN, VT, Q, S) is two-multiple, We shall 
construct a context-sensitive grammar G1 = (V^, VT, R, S) so that L(GX) = L3(G). 
As the proof is rather cumbersome we shall describe the framework of it only. We 
put V = {[u,j, i] | [u,j, i] is for i = 1, 2, 3, 4 and a multirule r e Q with index ;' 
where r = (M, V) or r = ((M, »,), (u2, u2)) or r = ((u t, vt), (u, v2)) an abstract sym­
bol}. 

VT = {a\a is for aeVTan abstract symbol) , 

VN= VJvuVTuFu{#,t0,i0,t,S}. 

Let us put further for x = x t x 2 ... x„ e V*, x = xxx2 . . . x„ where A = A, xt = x,-
for x,- e VT and x ; = x,- for x ; e V,. 

Let J? contain the following rules. 

(1) (ai, la), (a i0 i , i0 if l) , (a ioioi, ioioi«) for each a e V'N - (V u { # , i 0 , to}); 

(2) (BA t ayu aBA \ yt) for each A = [uu j , 1] e V, 

B = [u2,j, 2] e V, jt/xl = \ayi\, ay, * a,, ay, e(VN u VT)*; 

(3) (^Tayj, flfitrO for each B = [u2,y, 2] e F, |a ? 1 | = |M2 |, a?1 e (V* u VT)*, 
ay! #= M2, a e Vjv u VT; 

(4) (B[u, j , 1] |M, u[u, j , 3] 5 | ) , ([u, ; , 2] fu, M[M, J , 4] i ) for each BeV; 

(5) (M[u,7,4]i, i o H (#ToTot, # T o [ " , f 2 ] | ) for each (u,v)eQ with index j ; 

(6) ( # t o t o t , # [ "2 , j , 2] [« ! , / , 1] f) , (u2[M2 , ; ,4]i , io i« 2 ) , (u t[u u j , 3 ] i 0 i , i o i o i ^ ) 
for ((«., VX), (U2, V2)) e Q with index j ; 

(7) (a, a) for each a e VT; 

(8) (#,A),(t0 ,A),(t,^)); 
(9) ( # i 0 U , #totoT),(#Toioi, #totot), 
(10) (s, #Uots). 

If S =>f x =>3 >> where x = xutyu2z, y = xvxyv2z then S =>* #T0ToT*«iJ'"2Z °jf 

=g> # [ u 2 , ; , 2] [Ul,j, 1] XMjM2i? =>* # x 1 u 1 [ u 1 , j , 3] yu2[u2 , j , 4] \z =>* #Totot • 

. xvjv2z. where XjU,- is not expressible in the form x ^ x " , x" # A. It can be easily 

verified that if S =>* #ToToLv, J e(Vr> u VN)* then S - > | y, i.e. L(G t) = L3(G). 

The more detailed discussion can be found in [14]. 
Lemma 6 in [8] implies that L(G) is a context-sensitive set. QED. 

Theorem 2. Let W2(CS) be the class of R-sets generated by relational context 
sensitive grammars. Let iDJ;(CS) be for i = 1, 2, 3 the class of M-sets of the type i 



<& generated by context-sensitive multiple grammars. Let further CS be the class of 
context-sensitive sets. Then 

CS = 9JlR(CS) = m,(CS) = 9LR2(CS) = 9Jl3(CS) 

Proof. As every context-sensitive grammar is a relational grammar we have CS c 
<= 9JtR(CS). Lemma 1 implies 9JlR(CS) c 9K,(CS). By lemma 4 SWj.( CS) c 9Jt2(CS). 
By lemma 5 9K2(CS) <= 9Jl3(CS). Lemma 6 implies 9H3(CS) c CS. QED. 

Theorem 3 . Let MR(G) be the class of R-sets, let 9Jl;(G) be for i = 1, 2, 3 the class 
of M-sets of the type i. Let RE denotes the class of recursively enumerable sets. 

Then RE = %(G) = 9c2(G) = 9I3(G) = VlR(G). 

Proof. It can be shown by a modification of the proof of lemma 6 that 9I3(G) <= 
c R£. Using this fact the proof of the theorem is very similar to the proof of the 
previous theorem. 

Remark 2. We shall use the following notation CF is the class of context-free sets not containing 
the emply string, CFA is the class of context-free sets, 9tR(CF) is the class of sets generated by 
context-free relational grammars, WR(CF) = {A \ A = LR(G)for some relational context-free and 
A-free grammar}. Let further for i = ! 1, '2, 2>,Ml(CF) = {A\ A= L\(G) for a multiple context-
free and A-free grammar G}, 

SSti(CF)= {A I A = Li(G)for a multiple context-free grammar G] . 

Lemma 7. CF ? WlR(CF). 

Proof. Obviously CF <= 9KR(CF) because to every context-free set not contain­
ing A there exists a context-free A-free grammar G so that A = L(G) (see [9]) and 
G is obviously a multiple grammar. The fact that CF 4= 9JJR(CF) follows from the 
following example. 

Example 1. The set B= {a"bncn \ n ^ 1} belongs to WlR(CF) because B = LR(G) for the 
grammar 

G = (3, ({A}, {B}, {C}), ({a}, {b}, {c}), Q, (A, B, C)) 

where 

Q = {((A, aA), (B,bB), (C, cQ), ((A, a), (B, b), (C, c))} . 

Theorem 4. 

CF f 9JtR(CF) f ^(CF) c 9Jl2(CF) c 93I3(CF) c C S . 

Proof. It follows from the above given lemmas that it suffices to prove that 
9JlR(CF) + SIR^CF). If G is a relational grammar which is A-free and have the multi­
plicity n then it.holds for every xeL(G) that |x| ^ n. The example 1 indicates that 
there is A e 9JtR(CF) - CF i.e. if A = LR(G) for a relational context-free and A-free 



grammar G then the multiplicity of G must be 2 at least. The set {a"bncn | n = 1} u 69 
u {a, b,c} = B is not a context-free set and it can be easily shown that B e {3Jl1(CF). 
If B were generated by a relational grammar then it would be \x\ = 2 for any xeB 
- a contradiction. Therefore B $ WlR(CF). QED. 

Theorem 5. 

CFA <= 9tj.(CF) = M^CF) c 9t2(CF) c 9t3(CE) <= RS 

where RS is the class of recursive enumerable sets. 

Proof. Directly from above proved lemmas and the following remark. 

Remark 3. If follows from the theorem 4 and from the lemma 2 that there exists B e fflR(CF) 
to every A e ffl^CF) so that A •=> B, A — B cz VT. The question how "great" are the classes 
fflt(CF) - fflfCF) for 2 ^ i 4= j S 3 is, however, open. 

3. SOME FURTHER PROPERTIES OF MULTIPLE GRAMMARS 

In order to illustrate the properties of multiple grammars two examples will be 
given. 

Example 2. 

Pi = U {C[C"2 . . . C%\ n £ 1, C2J= a, C2j+1 = b}effl2(CF). 
k=2 

Proof . Let we have the multiple grammar G = (VN, {a, b}, Q, S) where Q contains the fol­
lowing multirules. 

(A) (S, #ASj), (Su ASj), (Su Ka) . 

These rules generate the set {^A"~1Ka | n = 2} if { # , A, Ka] is assumed to be the terminal 
alphabet. 

(B1) ( ( # , # ) , (A, a), (Ka, Kt BKb)) , 
(B2) ( ( # , # ) , (A, a), (K,, Kt), (Kb, BKb)), 
(B3) ( ( # , * ) , ( # ! , # „ ) ) , 
(CI) ( ( # , # ) , (A, a), (Ka, K4K5)), 
(C2) ( ( # , # ) , (A, a), (KA, KA), (K5, bK5)) , 
(C3) ((#,a),(KA,b),(K5,b)), 
(Dl) ( ( # 6 , # 6 ) , (B, b), (Kb, K6AKa)), 
(D2) ( (#„ , #„ ) , (B, b), (K6, K6), (Ka, AKa)), 
(D3) ( (#„ , b), (K6, # ) ) , 
(El) ( (#„ , # 6 ) , (B, b), (Kb, K7K8)) , 
(E2) ( (#„ , #„ ) , (B, b), (K8, aK8)) , 
(E3) ((^VAK^aXtf^a)). 

It holds for any derivation of the type 2 over G: 

(a) If x = y # An~lKtt, x =>% y e {a, b}* then y « 79 where •#An~1Ka =~>f <p and moreover 



70 any derivation of the type 2 over G of the string ~ from # .4 , 1 _ __"„ contains either an element 
a"#bB

n~ ^Kb or it holds that ~ = a"b". 

(b) If x = y#(,fin_1_r,, then it holds similary for y = {_,_}*: if * =*•*> then 7 = yp, 

#(j£"1~1.Ki, =>f 1? and either q> = b"a" or any derivation of q, from y#bB
n~lKb contains the 

element yb"QAn~1Ka. 

It follows from (a) and (b) that Px = L2(G). 

Example 3. P2 = {a"2+1 \ n > l} e ®l2(CF). 

Proof . P2 = £ 2 ( ° ) f o r a grammar G = (VN, {a}, Q, S) where Q contains the following 
multirules: 

(A) OS, # / f S 1 ) , 
(S^ASO, 
(SuKa); 

(Bl) ( ( # , # ) , (A , a), (Ka, KtB0K^) , 
(B2) ( ( # , # ) , (A0> «) (--l. * i B o » . 
(B3) ( ( # , # ) , ( A , a),(_:., i-i),(_r t, B_r6)), 
(B4) ( ( # , _ ) , ( _ r l t # 1 ) , 
(CD ( ( # , #),(A0,a),(Ka,K3)), 
(C2) ( ( # , # ) , (A0> «)• (*3. * 3 » . 
(C3) ((#,_•), (_T3, a ) ) , 
(Dl ) ( ( # t , # t ) , (B, a), (Kb, KAA0Ka)), 

(D2) ( ( # , , # , . ) , (B0 , a). (£4, # 4 ^ o » . 
(D3) ( ( # ! , # j ) , (B, «), («4. -W. (*-> ^ * - » . 
(D4) ( ( ^ j , « ) , ( « , , # » , 
(El) ( ( # . , # . ) , (Bo. a)> (*». * 5 » > 
(E2) ( ( # , , # i ) , (_»0.

 a ) . (*5> * 5 » > 
(E3) ((#,_, _) , (_r j ,_) ) . 

Now if W— {x, wu •••,w„-t,y) is a derivation of the type 2 over C where y ~ {a}* and x = 
= fi #AmAn~m~1Ka then the following conditions must be fulfilled: 

(a) y = P<l>, 

(b) #_ lS_ l" -" - 1 A-=-»_»» , 

(c) Wmust contain the member Pan#bB
m+1B"~m~2Kb. Similar conditions hold for x = 

= ^# d _ 'o + l f i " _ " ' - 2 j R r 6 a n d J t h o , d s therefore P2 = Z,2(G). (See also [14] for a more detailed 
discussion). 

Definition 4. A string x = xtx2 ... x„eV* where x; e V*1 is equal to a yeV* 
mod. permutation if y — xhxh ... xin for some permutation ils i2> • • •> in of 1, 2, ..., n. 
A set 4 c V* is equal to a set B c V* mod. permutation if to every x e A there is 
y e B equal to x mod. permutation and vice versa each y e B is equal to a x e A 
mod. permutation. A set A <= V* is regular mod. permutation if it is equal mod. 
permutation to a regular set. 

Corollary 2. <3R2{CF) and therefore CS contains sets which are not regular 
modulo permutation. 



Proof. The set P2 from example 3 is not regular modulo permutation. 

Remark 4. It would be interesting to find some properties of functions / for which it holds 
that the set {a^n) \ n ^ 1} belongs to CS. 

Remark 5. It is interesting to study in more details the differencies between derivations of 
various types over multiple grammars. We can limit the considerations to grammars of the 
multiplicity two. It can be shown that to every multiple grammar G = (VN, VT, Q, S) there 
exists a multiple grammar G t = (VN, VT, Qt, S) so that LV(G) = Lj(Gx) = {x | x e V%, S =>*. 
=>* x}. x ^>ry if and only if x = tu-viwu-nz, y = tv^wv^z where {i\, i2} is a permutation of 
{1,2} and ((«, , vt), (u2, v3)) e Q1 or x = tuz, y = tvz and (u, v) e Q. The derivations of the 
type 2 differs from derivations of the type 1 in such a way that the rules are applied in the given 
order from left to right. This property was considerably used up in the examples 2 and 3. There­
fore it seems that Pt, P2 £ yjl^CF). In derivations of the type 3 is furthermore reguested to "use" 
the lef-most occurencies of the left hand sides of rules in multirules. It can be shown that a con­
text sensitive grammar Gl can be constructed to every context-sensitive grammar G such that 
£ L (G t ) = L(G) where LL(G) = {x | x e V*, S =>* x} is the set of terminal strings which are 
generated over Gj by such derivations in which rules are applied on left most occurencies of their 
left hand sides only. Let us write for multiple context-free and /1-free grammar G = 
= (VW> VT> Q> -0. x = > 4 y if x = tA1yA2z, y = tvtyv2z, ((A , , vj, (A2, v2)) e Q, t does not 
contain Ax and y = A (we use parallel formulations to those from def. 2). It is a straighforward 
matter to construct to G : a multiple context free and /1-free grammar G2 such that 5 =>* x if 
and only if 5 =>* x. We can therefore write CS = %fl4(CF) in an obvious notation. Applying 
some theorems from [11] we can show that the assumption 9J(4(CF) = Wl^CF) implies that any 
contextsensitive set can be generated by an "almost context-free grammar" i.e. by a grammar 
the rules of which are context free but the rule r can be applied on a string wt if a only if w{ e 
e V*ArV* where Ar c VN is a set associated with the rule r. It seems therefore that Wl^CF) ^ 
f CS. Similar arguments can be stated for S0?2(CF) and Wl3(CF). 

Theorem 6. If A, Be 3RR(CF) then i u B e MR(CF) if A, Be SW,(CF) then 
AuBe 9Mj(CF), if A, Be %(CF) then A u Be %(CF) for i = 1,2, 3. 

Proof, can be obtained by a modification of the proof that the union of context-
free sets is a context-free set. 

Remark 6. As any context-free grammar is a multiple or a relational grammar we obtain at 
once that many problems for relational and multiple grammars are not decidable (see [2]). 
For example there is not decidable for multiple A-free grammars whether L^G^) n Lt(G2) is an 
empty, a finite or an infinite set, whether it holds for a multiple /1-free grammar G L(G) = V* 
and so on (see [2]). 

Remark 7. It is known that if A, B e CS then A n BeCS. Theorem 4 implies that if A, B 6 
eSDv/CF) then A n B e CS. The problem whether it must be A n B e Sffl^CF) for some i S / 
is open. 

Theorem 7. The problem whether L2(G) is an empty, a finite or an infinite set 
is for multiple A-free grammars recursively unsolvable. 



Proof. We shall construct a multiple grammar G which generates a nonempty 
set if and only if some Post correspondence problem has a solution. Let au a2,..., a„; 
bu b2, ...,b„ be strings over an alphabet VT containing at least two symbols. Let us 
form a multiple grammar G = (VN u VT u VT, VT u { # } , Q, S} where VT = {d | a 
is for aeVT an abstract symbol}, VT = {a | a is for a e VT u { # } an abstract 
symbol}, VN = {S, A, B}. Q contains the following multirules: 

(I) ( S , # A # 5 ) ; 

(Ha) ((A, dtA), (B, fijB)) for i = 1, 2, .. . . n where for x = x1x2...xse V* is 

A = A,x = 3^*2 . . . £ s ; 

(lib) ((A, <2j). (B, fi,)) for i = 1, 2, 3 , . . . , n ; 

(Ilia) ((a, a), (fi, 5), (a, a), (5, B)) for each a, 6 e VT u { # } ; 

(Illb) ((a, a)) (5, a)) for each a e VT U { # } . 

It holds obviously S =>2 y =>*2 x e (VT v {#})* if and only if y = ab~y1D1ab~y2D2 

where a e (VT u {#})*, 5 e VT, (2>., D2) e {(A, B) u (A, A)}, pj2 e VT*. It follows 
thatL2(G) -a L3(G) = # x # x where* = ailahah ... aik = bhbi2... biki.e.L2(G) 4= 
+ 0 if and only if the Post correspondence problem for au ..., a„; bu b2, ...,b„ 
has a solution. It is obvious that if L(G) 4= 0 then L(G) is infinite. QED. 

Remark 8. An open question is whether the problem "is L-^G) an empty set?" is recursively 
decidable. 

Theorem 8. If Ae Wlt(CF) i = 1, 2, 3 then A is recursive. The problem x e Lt(G) 
is for multiple context-free grammars and i = 2, 3 recursively unsolvable. 

Proof. The first assertion of the theorem follows from the fact that 9J?;(CF) c CS 
because context-sensitive sets are recursive. The second assertion of the theorem 
follows from the following observations. By a slight modification of the grammar G 
from the proof of the previous theorem a multiple grammar G1 can be constructed 
so that # x # € L2(Gt) if and only if a Post correspondence problem have a solution 
(see [14]). QED. 

Theorem 9. The problem whether V*xV* n L2(G) = 0, x e VT, is for multiple 
A-free grammars recursively undecidable. 

Proof. Let us have a grammar G = (VN u Vr u VT, VT u {b0,#, f}, Q, S) as 
in the proof of the theorem 7 with the only difference that instead of (lib) Q contains 
the multirules ((A, d^x]), (B, b0)) where | , b0 are new terminal symbols and x e VT. 
Denote VT = VT u {b0, t , # } . Obviously (VT)* T*t(Ir)* n L2(G) = 0 if and only 
if there is a solution y = ahah ... aik = bhbh... b!k of the Post correspondence 
problem for au ..., a„; bu ..., b„. QED. 

Theorem 10. Let A e Ma(CF), B s 9la(CF), a e {R, 1, 2, 3}, let C be a regular set. 
Then AnCe Wa(CF), BnCe 9lx(CF). 



Proof. The idea of the proof is the same as the idea of the proof that the inter­
section of a context-free set and a regular set is a context-free set (see [2]). We prove 
theorem for the case that a e {1, 2, 3} the proof for a = R is similar. Let G = 
= (VN, VT, Q, S) be a multiple context-free grammar such that A = L;(G). We can 
assume that G have the multiplicity two. Let si = (VT, I, <P, s0, F), where VT is an 
input alphabet, I a set of states, <_> a transition function, s0 an initial state and F a set 
of end states, be an automaton accepting A. Let us form the alphabets VN = 
= {[s_, A, s2] | A e VN, s_, s2 61, s_ = s2 or s2 is accessible from s_}, 

F r = {[s_, a, s2] | a e VT, s_, s2 el,s2e <P(a, s_)} u {[s, A, s] | s e l } 

Let us denote for x = x_x2 . . . xme V°° (x; e Vfor i = 1, 2 , . . . , ») and for s, s' el 

x(s, s') = {[s0, x_, s_] [sx, x2, s2] ... [sm__, xm, s„] J s0 = s, sm = s' 

and [s i_1 , xt, s ;] e FT u VN for i = 1, 2 , . . . , m} 

Let us consider the multiple grammar 

G = (Vv u VT u {S}, Vr, g, S) 
where 

5 = { ( S , [ s 0 , 5 , s 1 ] ) | s 1 e F } u 

u {([s, a, s'], a) | [s, a, s'] e Fr} u 

u {(s, Au s'], g~u | (Au qY) e Q; s, s' G I, _/_ eqt (s, s')} u 
u {(([si> ^i> si]> «i)> (l>2, ^2 , si], 52))| 

( (^i , <?_)> (^2» ^2)) 6 S and it holds qt e g;(s;, s-), s,-, sj e I 

for i = 1, 2}. 

It can be shown in the same way as in [2] that L;(G) = L;(G) n A. CF(G, G) obviously 
holds. QED. 

Theorem 11. Let A, Be 9K.(CE) (resp. A, Be 9l_(CF)) where a e {R, 1, 2, 3} then 

(i) AB e 9JJa(CF) (resp. A£ e 9t.(CF)) 

(ii) for a 4= 3, _4R e 9Jl.(CF) (resp. AR e 9la(CE)), AR = {xR | x e A}) where for 
x = x t x 2 . . . x, e Vx, Xj e V* , xR = XfX,.! ... Xj. 

(iii) A~n = {xx ... x I x E A} e 9M3(CF) (resp. . 9ft3(CF)). 
n — times 

Proof. Proof of (ii) is a slight modification of the proof of the assertion that AR 

is a context-free set if A is a context-free set. 
Let _4 = L(G_), B = Lj(G2), i = 1, 2, 3, (the proof for LR(G) being similar). 

Let Gj = (VN], VTj, Qp Sj), j = 1, 2. We can assume that VNl n VN2 = 0. Let us 



form the grammar G = (VNl u VNl u S, VTl u Vr2, Q, S) where S is a new symbol and 

5 = Qi u g2 u {(s, SA)} 

It is straighforward matter to verify that Lt(G) = AB. 
We prove (iii) for n = 2, the proof for n > 2 is similar. By theorem 4 we can 

assume A = L^G), G = (VN, VT, Q, S). For k = 1, 2 put 

Vjv.fc = {[a, fc] | [a, k] is for aeVN an abstract symbol] 

for x = XjX2 ... xm e V* write [x, k] = x ^ ... xm where x,- = x, for Xj e VT, 
x,- = [xp k] for xj e VN. Let us put G~2 = (VWjl u V^ u S, VT, Q~2, S) where 

<2~2 = {S,[S, l ] [S,2]}u 
u {({A, 1], [«, 1]), ([A, 2], [«, 2])) | (A, q) e Q] u 

u {(([A, 1], [«, 1]), ([B, 1), [t>, 1]), ([A , 2], [«, 2]), ([B, 2], [„, 2])) | 

\((A,u),(B,v))eQ}. 

By the inspection of possible applications of multirules in a derivation of the tyPe 
three we can see that if a multirule is aPPlied on [x, 1] [x, 2] then the unique string 
[x^ 1] [xu 2] is obtained. QED. 

Theorem 12. The substitution theorem for multiple context-free grammars. 
Let A e 2R;(CF) (resp. A e %(CF)) A <= V*. Let x be a substitution (see [2]) on 
VT and let x(a) e SR^CF) (resp. x(a) e %(CF)) for all a e VT, then for i = 2, 3, 
x(A) e 9K;(CF) (resp. x(A) e %(CF)). 

Proof. Let i = 2, A = L,(G) e 9Jl.(CF) and x(a) = L{Ga) e ~R,(CF). Let G = 
= (Vtf, Vr, g, S), Ga = (VNt„, VT>a, Qa, Sa). It can be assumed that all the nonterminal 
alphabets are mutually disjoint, that all the grammars have the multiplicity 2 and 
that no rule in Qa contains Sa in its right-hand side. Let us form the grammar G' = 
= (VN, VT, Q', S) where 

VN = VN u U VN>a u V„ u VT , 
aeVT 

VN = {a\aeVNu[JVN,a}vj{A}, 
VT 

VT = {J VT_a , VT = {a | a e VT} . 
aeVT 

Let Au A2 e VN, A, Bu B e V. Then Q' contains the following multirules: 

(la) ((A, I), (Au BqJ), (A, Bqx) for each (Au Bqt) e Q and every A e V 

(lb) ((A, A), (Au B.q,), (A2, q2)) and ((Au B,qt), (A2, q2)) for each ((At, B.q,) 

(Ai, Qi)) 6 Q and each A e V. 



Here A = A and for x = x1x2 ... x,e(VT u VN)* x = x1 ... xt where xt = xt 75 
for Xj e V*, x ; = Sx. if x ; e VT. The multirules (lb) and (la) generate the set {SX1§X2. • • 
... SXt\ XjX2 . . . x t e A} if we assume that {Sa, Sa \ a e VT} is a new terminal alphabet. 

(II) Q' further contains the following multirules. 

(Ha) (A t , Eqi) for each (__., Bqi) e Q = \J Qa, B <=VN v VT . 
aeVT 

(lib) ((A, A), (C, Bq,)) for each (C, B ^ E Q . C * Sa and A e F r u VN 

(lie) ((A_, B<h) (A2, q2)) for each ((A l5 Bq,), (A2, q2)) eQ,BeVNvVT 

(lid) ((A, A), (A_, B ? 1) , (A2, q2)) for each A e VN u VT, A, £ {Sa j a e VT}, B e 

6 VN u V^ and ((A,, Bq,), (A2, q2)) e Q . 

(III) (A, A) and ((A, A), (Sa, Sa)) belong to Q' for each a e VT and A e VT u Fw . 

Obviously CF(G, G'). It can be verified that if W = (w0, w_, w2 , . . . , w„) is a deriva­
tion of the type 2 over G and w„ e (VT)* then IV must contain a member wy of the 
form Wj = Sax where S ==J>* ax. Now if Sa is overwritten by some rule then from Sa 

only a string cpa e L2(Ga) can be derived. IV therefore must contain a member wk = 
= (paSby where Sa £>$ <pa, S =>*2 aby. It follows that theorem for 9K2(CF) holds. 
By a slight modifications of the just given proof we can prove the assertion of the 
theorem for SR3(CF), ?t2(CF) and 9l3(CF). More details can be found in [14]. 

Theorem 11a. If A e aR,(CF), i = 2, 3 then Am e SR,.(CF). If Ae %(CF) then 
A* e %(CF) (i = 2, 3). 

Proof. Let a be a symbol. Then {a}00 e SIR2(CF) and {a}* e 9l2(CF) and the theorem 
follows from the theorem 10. 

Remark 9: It is an open question whether the theorem 10 holds for i = 1. A string 
v e (VN U VT)* is nonterminally fc-bounded if it contains at most k nonterminal symbols. 
A derivation W'= (w0, wu ..., w„) of the type i over a (multiple) grammar is nonterminally 
fc-bounded if all its members are nonterminally fc-bounded. 

Theorem 13. The set Liik(G) = {x \ x e V*, there exists a nonterminally k-bound-
ed derivation W = (S, w_,..., w„_l5 x) over G of the type i} is for every multiple 
grammar, k g_ 1 and i = 1, 2, 3 a set regular mod. permutation. 

Proof. Let us put 

V = {a I a is for a e Vxk an abstract symbol} 

and consider the grammar G = (V, VT,R, S) where R =•{(«, <_/5) | a 6 V, <_ 6 V_?\ 

a ^ j i v where w = <_/? mod permutation} u {(a, <_) | <_ e V*, a =*• £,}. It can be easily 

verified that S =g"* <_a if and only if there is over G a derivation (w0, wls ..., w„) of the 

type i such that w„ is equal to & mod permutation. But G is a left-linear grammar. 

QED. 



76 Corollary 2. The problem whether Li>fe(G) = 0 is algorithmically decidable for 
each k—\. 

Proof. It can be shown by the direct inspection of the proof of the previous 
theorem that a grammar & generating the regular set equal to Li>k(G) mod permutation 
can be effectively found. But Lik(G) = 0 if and only if L(G) = 0 and the problem 
L(Q) = 0 is, as it is known, decidable. 

Definition 5. The multiple grammar G"^ with ordering of multirules is the quintuple 
CK = (VN, VT, Q, <,S) where G = (VN, VT, Q, S) is a multiple grammar and < some 
partial ordering of the set Q. The derivation W — (w0, wu ..., w„) of the type i over 
G< is such derivation Wof the type i over G = (V^, VT, Q, S) satisfying for i = 0, 1, 2, 
..., n - 1 the following condition: If wt = xilp1xi2p2 ... xispsxirS+1, wi+1 = 
= *ii<?i*i2-2 ••• xisqsxitS+1 then there is no r = ((p., qt),..., (pk, qk)) e Q such that 

(1) r >r = ((Pl,q,),...,(ps,qs)), 

(2) wi = xnpxxi2 ... xikpkxUk+ j , 

(3) w i+ j 4= xnqxxi2 ... xikqkxiik+ j , 

Here x,v denotes arbitrary strings over the alphabet V. Write x g>* y if there is a deri­

vation W = (x, w . , . . . , wm_ j , j>) over G< of type i. Let further 

Li(G
<) = {x\xeV*,S^>Jx} 

A grammar G" = (V^, VT, Q, <,S) with ordering of multirules is CF (resp. CF(A)) 
if G = (Vjyr, VT, Q, S) is a multiple context-free grammar (resp. G is a multiple A-free 
grammar). 

Theorem 14. Let Wlf(CF) and SRf(CE) fee (he following classes: Wl?(CF) = 
= {A | A = L i (G < ) /o r a multiple A-free grammar with ordering of multirules}, 
9i;;(CF) = {A | A = LfG^for a multiple context-free grammar GK with ordering 
multirules}. Then for i = 2, 3 

9Jir(CT) = CS, -tr^CF) = RE 

where RE is the class or recursively enumerable sets. 

Proof. We shall prove the assertion of the theorem for M2(CF), the proof for 
9*2 (CF) is similar. Let G = (V^, VT, R, S) be a context-sensitive grammar. According 
to [10] we can assume that R cr V™2 ® V00. Let us have the context-sensitive gram­
mar G = (VN, VT, R, S) where VN=VNKJV,V= {[__., 1,/], [A2, 2, 1] | [__•., l , j ] , 
[A2, 2, j ] are for a rule (AtA2, q)eR with the index j abstract symbols}, At, A2 e 
eVN, 



R = {(A,q)\(A,q)eR}u 77 

u {(A, [A , 1, i)], (A, [A, 2, f\) | A e VN and i is index of some rule from R] u 

u {([Ai, 1, i) [A2, 2, i] , q) | (A .A2 , a) e R, (A,, /l2a) has the index i} . 

It can be shown that S =>* y e (Vv u Vr)* if and only if S ==>* y i.e. L(G) = L(G). 

G is obviously a context-sensitive grammar. Form the multiple context-free grammar 

G' = (VN u {x}, VT, Q, S) where 

VN=VNuVuVT, 

x is a new symbol, V = {a \ a e Vr u Vv}, VT = {a | a e VT}. Denote for y = 
= a1a2...ase(VNu VT)Xy = a1a2 ... aswhere a,- = a.forafe Fv, af = ajforaje Vr, 
A = A. Then 

Q = Q, u e2 u Q3 u e4 

where 

<2, = {(B, ag). ( ( * . f i), (I** 5?)) I (B> ««) e --.' «i e V a e V} , 
2 2 = {((S., a), (B2, i)) , ((a,, a,), (B., a"), (B2 ,1)) | (BXB2, aq) e R, a £ V, B., B 2 e Vv, 

a, 6 V}, 

2 3 = { («- ,« ) , ( (a ,a ) , (6 ,6 ) ) |a , beV r } , 

Q4 = {((5., x), (A, x), (B2, x)), ((Su a.), (B t , x), (A, x), (B2, x))| there exist 

(B1B2, aq) 6 R, A is an arbitrary symbol from VN and Bu B2 e Vv, 
a 6 V}. 

Define the partial ordering < on Q in the following way 

(I) If ((Bu a), (B2, q)) = re Q2 then r < ((Bu x), (A, x), (B2, x)) for each 
AeVNuVuVT. 

(II) If ((a,, a,), (Bu a), (B2, q)) = r e Q then r < ((au a,), (Bu x), (A, x), (B2, x)) 
for each A e VN u VT . 

(III) There is no other pair satisfying the relation < . 

It holds for the multiple grammar G< with partial ordering of multirules where 

G < = ( V ; u { x } , V r , Q , < , S ) 

that 

L2(G<) = UG). 

For if S=z*2z e V* then 

(a) No multirule r e Q4 can be used. 

(b) Each member W; of the derivation W = (S, wl. ..., w„_1; z), z e V*, over Gofthe 
type 2 has the form yafl where y e V*, a e V, P e (VN)*, z = yy and a/? =>* y. 



' (c) A multirule ((Bu qt), (B2, q2))e Q2 can be applied on wt if and only if w,-
canrvot he expressed in the form w t = x^B^x^B^-^ where x i 2 4= A because 
otherwise a multirule from Q 4 can he applied. 

(<£) The rules ?rom Q t are applied in the same way as the corresponding rules from Qu 

I t follows that L2(G<) C L(G). AS the reverse statement is obvious we have 
L2(G

<N) = L(GY Because it can be shown by the methods similar to those used in 
proofs of lemma 6 and 5 that 

m2(CF) c mt(CG) c cs, 

M2(CF) c 91* (CE) c RS 

the theorem is proved. 

4. SOME SUBCLASSES OF RELATIONAL GRAMMARS 

Definition 6. Relational grammar G = (k, VN, VT, Q, S) where VN = (VNl,..., VNk), 
VT = (VTl,..., VTk), S = (Su ..., Sk) is fcT-regular if each multirule r of the G is of the 
form r = ((Au j3, B,), (A2, p2B2),..., (Ak, pkBk)) where ^ e V * and (BUB2,... 

...,Bk)eXVNiu{(A,A,...,A)}. 

i = l 

A fcT-regular grammar G is fcR-regular if fit e VTi. 

A fcT-regular grammar G is fc-regular if ft, e VTi. 

A fcT-regular grammar G is fc-regular mod A if fit e VTi u {A}. 

Definition 7. A fcT-regular, a fcR-regular, a fc-regular a fc-regular mod A grammar 
G = (fc, VN, VT, Q, S) is strongly fcT-regular, strongly fcR-regular, strongly fc-regular 

k 

mod A respectively if to every pair of fc-tuples (Au A2,..., Ak) e X VN. and (pu fi2,... 
k i 

...,Pk)eX V*. there exist at most one multirule ((Au PiBt), (A2, P2B2), ..., 

...,(Ak,pkBk))eQ. 

Theorem 15. The class of relations generated by kT-regular grammars is the 
class of k-ary transductions (see [7]). 

Proof. Let G = (fc, (VNl,..., VNk), (VTl,..., VTk), Q, (Su..., Sk)) be a fcT-regular 
grammar. Let us construct the following automaton J/ = ((^r,> • • •> ̂ rj> I> <?> so> IO 
with fc input tapes where 

/ = {(A i ,A 2 , . . . , Ak) | (Au ...,Ak) isfor(Au ...,Ak)eX VNi an abstract symbol} u 

u {(A, A A)} 



is the set of states, 

so = (Si, S2,...,Sk)eI is the initial state, 
<J, the transition function of A, is defined as follows 

Ф(ßy,ß2,...,ßk,(AъA2,...,Ak)) = 

= {(Bu B2,..., Bk) | there is a ((A, ft*.), ..., (Ak, pkBk)) e Q} . 

F = {(A,A,...,A)}. 

It can be easily verified that T(A) = R(G). Let us have an automaton A with k 

input tapes defined as above. Let 

G = (k, (VNl,..., VNk), (VTl, VTl,..., VTk), Q, ( s 0 1 , ..., s0k)) 

be a fcT-regular grammar where 

VN. = {st | S; is for s e I an abstract symbol} . 

If s m e $ ( f t , . . . , ft,s,) then 

((sll,f}ismi),...,(slk,pksmk))eQ. 

If sm e F n <J(j8j, ..., ft, s,) then 

((sh,P1),...,(slk,pk))eQ. 

No other multirules belong to Q. It holds obviously T(A) = R(G). QED. 

Definition 8. A set A <= V* is a transduction set if A = LR(G) for a feT-regular 

grammar G. ~t r is the class of transduction sets. 9lT — {A | A <= F r ° ° , i e 9l r}. 

Corollary 2. If A, Be ~t r f/ien A u J3 e 9l r , ABe ~t r, A~" e 9t r . 

P r o o f can be realized in the same way as the proof of the theorem 11. 

Corollary 3. // FA denotes the class of regular sets then 

FA f ~l r c MR(CF) 

Proof. Obviously FA <= ~t r c 9lj{(CF). The example 1 indicates that FA * ~t r . 

Corollary 4. For kT-regular grammars the problem LR(G) = 0 is recursively 

decidable. 

Proof. Apply the corollary 2. 



80 Theorem 16. The following problems are not recursively decidable for kR-regular 
grammars (and therefore for kT-regular grammars) 

(1) Ljj(Gi) n LR(G2) is an empty, finite or infinite set, 

(2) LR(G) = V ; , 

(3) LR(G,) - LR(G2) , 

(4) LR(Gj) — LR(G2) is an empty, finite or infinite set. 

P r o o f is a modification of the proofs of the similar assertions for context-free 
grammars (see [2]). We prove (l) in order to show how to modify corresponding 
proofs from [2]. Let axa2 ..., an; bx, b2, ...,b„ be 2n strings over an alphabet VT 

containing two symbols at least. 
Let E = {cu c2,..., c„} be a set of new symbols and let Gx = (2, ({C}, {A}), 

(E, VT), Qlt (C, A)) where 

Q, = {((C, cfi), (A, atA)), ((C, ct), (A, a)) \ i - 1,2,.".., n} 

Let G2 = (2, ({C}, {A}), (E, VT), Q2, (C, A)) where 

Q2 = {((C, cfi), (A, btA)), ((C, c,), (A, b,)) | i - 1, 2 , . . . . n} . 

Obviously LR(Gt) = {ch, ch ..., cimaiiah ... aim \ m S L n ^ i} = 1} and LR(G2) = 
= {chch ... cimbhbh... blm\ m ^ 1,1 £ i} g n}. Therefore LR(Gt) n LR(G2) = 0 
if and only if the Post correspondence problem for a., a2,..., an; bu b2,..., bn has 
a solution. Moreover L^Gy) n LR(G2) 4= 0 if and only if Li?(G1) n Ljj(G2) is an 
infinite set. QED. 

Proposition. The intersection of two transduction set not containing A is a con­
text-sensitive set. 

Proof. Transduction sets not containing A. are context-sensitive (see theorem 20) 
sets and intersection of context-sensitive sets is a context-sensitive set. 

Remark 10. The problem whether 9 t r is closed under the intersection is open. 

Theorem 18. To every kT-regular grammar G there is a strongly k-regular 
mod A grammar G' such that R{G) = R(G')-

Proof. See [5] where the theorem is stated in the terms of the theory of general­
ized automata. 

Corollary 5. ?lT is the class {A | A = LR(G) for a strongly k-regular mod A 
grammar G}. 

Theorem 19. If Ae9lT and B is a regular set then A n B e 9t r . 



Proof is a slight modification of the proof of the theorem 10. See also [14]. 

Theorem 20. 9 l r c SDc^CF). 

Proof. Let A e 9l r . We prove the assertion of the theorem for the case that 
A = LR(G) where G is a 2T-regular grammar. The proof for general k is similar. 
We prove, that A e SJt2(CF). Let G = (2, (VNl, VN2), (VTl, VT2), Q, (Su S2)). We can 
assume that G is a strongly 2-regular mod A grammar (theorem 18). Let us form 
a multiple A-free grammar G' = (V^, Vri u Vr2, Q', S!S2) where 

vN = vNl u V;2 u V;3 u vN4, 

VNl = {«,a\aeVNlVT2VN2}, 

VN2 = {a\aeVTiVNiVN2}, 

VNi~{a\ueVNlVN2}, 

VNi = {5 | « -; VTiVNi, i = 1, 2} . 

We can assume, that VNl n V^2 = 0. 

(I) If ((A!, Bx), (A2, B2)) e Q, At, B ; e VNi then 2 ' 

contains the following multirules: 

(la) ((tfiAi, fliB]), (a2A2,a2B2)) for each a^V*]. Here and below aA ; = A; 

for a = A and a ; A ; = a;A; for a ; e Vr.. 

(lb) (A tA2 , BXB2), (Aya2A2, Bta2B2), (AtA2, B,B2), (a^A2, axB2B^), 

(Ala2A2, Bia2B2) e Q' for each ax 6 VTl, a2 e Vr2. 

(II) If (A!, cBt), (A2, B2)) e Q, c e KTl, then for each a e Vr*
:, b e Vr*j: 

(Ha) ((aAu ac~Bx), (bA2, bB2)) 6 g ' for each a, b e VTi u {A} and i = 1, 2, 

(lib) ((A^oA7, clhaB^) 6 g', (flATAI, aclfjll) e g ' for each a 6 Vr2, 

(lie) (A^, cB^I) e g'; 

(III) If (A1; B.), (A2, cB2)) e Q, c e Vr2, then 

(Ilia) ((oTi, oTj), ( M 2 , bcBj) e g ' , 

(Illb) (AToA^, a BtcB2) e g' , (a A~~A~2, a~Ax c~A2) e g ' (A^aA2, a B\cT2) e Q' 

(Illc) (ATA;, B ^ C B O e g ' ; 

(IV) If ((Aj, cBx), (A2> dB2)) e g , c e Kr., d e Vr2, then 

(IVa) ((aAi, a dh), (bA2, b 0%)) e g ' for each a e VTl, b e VTr 

(iVb) ((bAlT2, b cTt a%)) e Q' for each b e Vr*1 

(IVC) (A\a~A2,'cBr a~a%) e Q' 

(V) If ((_4.fi.), (4 2 ) fl2)) e g where p, e V*1 then 



(Va) ((aAu afij, (bA2, bp2)) e Q' for aji1 * A, bp2 * A 

(Vb) (OMlT2,aPJ2))eQ' 
(Vc) (A,aA2, pxap2) e Q' (A,aA2, afi2) e Q' for j8. = A 

(Vd) (AlT2, p,p2) e Q' for ptp2 # A. 

We firstly note that G' is a two-multiple A-free grammar. By the direct inspection 
of possible derivations over G we obtain that LR(G) a L^G). In fact if (A, x) e R(G) 
then in derivation of x over G' we can use only the 3 t h , 2nd and 5 th multirules in (lb), 
the multirules in (Hie) and then, possibly, the multirules from (V). Similar 
argumentsxan be used in all the remaining cases. 

By induction according to the number of steps in derivations it can be shown that 
it must be Lt(G) c LR(G). QED. 

Theorem 21. The class 3?X of the symetrically localy finite transductions 
(see [7]) is the class of the relations generated by the kR-regular grammars. 

Proof. See [14]. 

Denote LK = {A | A — LR(G) for a /cR-regular grammar G}. 

Theorem 22. If Ae LK and B is a regular set then A n B e LK. 

Proof. It is easily shown that the proof of the theorem is the same the proof of the 
theorem 16. 

Theorem 23. The class 91R of the sets A such that A$A,A = LR(G)for a strongly 
k-regular grammar, is the class of sets not containing A acceptable by k-multiple 
automata (see [4]). The class 

$IDR = {A | A = LR(G)for a k-regular grammar] 

is a the class of sets accetable by k-multiple nondeterministic automata. If Ae 31R 
(A e yiDR) and B is a regular set then AnBe^RR(AnBe 9IDR). 

Proof. In fact to every (nondeterministic) fc-multiple automaton A an generalized 
finite (nondeterministic) automaton si = ((VTl,..., F r J , I , $, s0, F) with fc-input 
tapes in the sense [7] exists so that $ is defined on (Xvr () ® I and the set T(A) 

of strings accepted by A in the sense [4] is the set {xj ... xk\(xu ..., xk) belongs to the 
relation accepted by s$\. Using this fact we can prove the all assertions of the theorem 
quite similary as the parallel assertions for the class 9lT. 

For further properties of the classes 91 and 9tR see [4], [13]). Let us denote 
RE: the class of recursively enumerable sets, and let 9tHa(CF), a = R, ] , 2, 3, 91JCF), 
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Л ) ií A <= B 

« = 1, 2, 3, R, CF, CS, 91DR, 9lr, LK, 31R, yiDR, CFA, ^ have the above intro­
duced meaning, let FA denote the class of regular sets. Then the above given results 
are shown graphically in the figure 1. 

(Received May 3rd, 1968.) 
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Násobné gramatiky 

JAROSLAV KRÁL 

Je-li W = (w0, ..., wn_u xpy) nějaké odvození nad gramatikou G = (VN, VT, R, S) 
a obsahuje-li množina pravidel R pravidlo (p, a) je i W = (w0,..., wn^u xpy, xqy) 
odvození nad G. Pravidlo (p, q) můžs být tedy použito v n-tém kroku odvození W 
nezávisle na tom, zda můža být v tomtéž kroku použito jiné pravidlo a nezávisle 
na tom, jaká pravidla byla použita v předchozích krocích odvození W. Tento před­
poklad nezávislosti je možné oslabit různými způsoby. Lze např. stanovit, že je-li 
použito nějaké pravidlo v jistém kroku odvození W, pak „spolu s ním" musí být 
použita nějaká další pravidla. Pravidla jsou tedy aplikována ve skupinách. Násobné 
gramatiky o nichž pojednává článek představují formalizaci této koncepce. 



Skupina pravidel je multipravidlo. Násobná gramatika je gramatika s multipra- 85 
vidly. Podle způsobu použití pravidel multipravidla jsou uvažovány tři typy odvození 
nad násobnou gramatikou. Je ukázáno, že se stačí omezit na násobné gramatiky 
násobnosti dvě (t.j. multipravidlo obsahuje nejvýše dvě pravidla). Násobná gramatika 
je kontextová, resp. bezkontextová, resp. bezkontextová bez prázdného slova jsou-li 
taková všechna pravidla multipravidel. Je dokázáno, že generativní síla násobných 
gramatik (násobných kontextových gramatik) není větší, než generativní síla (obyčej­
ných) gramatik (resp. kontextových gramatik). Třídy množin generovatelných 
různými typy odvození nad násobnými bezkontextovými gramatikami bez prázdného 
slova tvoří hiearchii mezi třídou bezkontextových a třídou kontextových množin. 

Dále jsou studovány problémy rozhodnutelnosti pro násobné gramatiky, problémy 
uzavřenosti vůči množinovým a jazykovým operacím, substituci, průniku s regulární 
událostí atd. Kromě toho jsou studovány relační gramatiky generující k-tice slov. 
Je dokázáno, že třídy množin {A | A = {xíx2 ... xk | ( jc l 5 . . ., xk) je fc-tice generova-
telná relační gramatikou G}} má úzký vztah k třídě množin generovatelných jedním 
typem odvození nad násobnými gramatikami. Je ukázáno, že jisté podtřídy relačních 
gramatik generují právě třídu relací akceptovatelných zobecněnými automaty (viz 
[4], [5] a [7]). 

Jaroslav Král, promovaný matematik, Ústav výpočtové techniky ČSAV—ČVUT, Praha 2, 
Horská 3. 


