
K Y B E R N E T I K A ČÍSLO 5, R O Č N Í K 4/1968

Contribution to Deterministic Top-Down
Analysis of Context-free Languages

KAREL CULIK II

In the present paper a generalization of ZX(A:)-grammars is given, the notion of the switching
function for such grammars is introduced and the model of the Parsing Machine using the switch
ing function is given.

We introduce the necessary notions and notation, mainly according to D. E.
Knuth: An alphabet X is a finite nonempty set of symbols, and X* denotes the set
of all strings on the alphabet X. The length of a string u is denoted by \u\.

A context free grammar is a 4-tuple (T N, P, S) where T, N are disjoint alphabets
called terminal and nonterminal alphabets respectively; P is a finite nonempty set
of productions. A production is a pair denoted by A—* u, where AeN,u e(N u T)*;
S e N is an initial symbol.

Let G = (T,N,P,S) be a context-free grammar. For u, u e (T u i V) * let us
write u => v if there exist strings x, y,we (T u N)*, such that u = xAy, v = xwy
and A -» we P. If x e T* we write u => v, if y e T* we write u => v.

The reflexive transitive completion of relation => is denoted by =>* and the transi
tive completion of => is denoted by => + . Similarly =>*, =>+, =>*, => + . The set
L(G) = {u e T* : S =>+ M} is called a context^ree language generated by G. If
w ê (Tu JV)* we write L(w) = {« e T* : w =>* M}.

Let M0, M<,..., ur be a sequence of strings;

(i) if M; => M; + 1 (i = 0, 1,..-, r — 1) then the sequence is called the derivation
of Mr (from M 0);

(ii) if u ; => M ; + 1 (i = 0, 1, .••, r — l) then the sequence is called the left-most
derivation of Mr (from u0)\

(iii) if M; => u ; + 1 (i = 0, 1, .-•> r — 1) then the sequence is called the right-most
derivation of Mr (from UQ)-

A grammar G is said to be ambiguous if there is some word in L(G) generated
by two different left-most derivations (from S). A grammar which is not ambiguous
is said to be unambiguous. The nonterminal symbol A is said to be left recursive
if there exists u e (Tu JV)* such that A =>+ Au.

For A, B e N it is said A depends on B if there exist u, v e (Tu JV)* such that
A =>+ uBv.

A nonterminal symbol A is called useless if either L(A) = 0 or if S does not depend
on A.

If k is a nonnegative integer and u is a string, we define:
k : u is the initial substring of the k characters of u if the length of u is greater or

equal to k;
k : u is M if the length of u is less than k.
The general problem of syntactic analysis is: A given grammar G = (T, JV, P, S)

and a string u e T*, determine whether or not u e L(G). If so, find all its syntactic
structures.

The bottom-up method attacks this problem by step by step "reducing" the given
string M by reductions which are the opposite of productions. If the bottom-up
analysis is left to right one then the left-most possible reduction is applied at each
step. This process continues until we reduce everything to S or show that this re
duction would be impossible.

The top-down left to right method starts with S, and attempts to reach the left-most
derivation of the string u. At each step we must decide which production is to be
applied to the left-most nonterminal symbol.

There are various "back-up" procedures for both bottom-up and top-down
analysis because we must reconsider some alternatives of the derivation sequence
that later prove to be incorrect. For practical purposes such cases are very important
when the syntactic analysis proceeds without backing up. Such procedures are called
deterministic analysis methods.

D. E. Knuth [1] and Lewis and Stearns [3] introduced classes of grammars which
allowed deterministic analysis.

The LR(k) grammars for bottom-up left to right deterministic analysis are defined
in [2] as follows:

A context-free grammar is LR(/c) if the following condition holds for all ut

and u\ in (N u T)*, all M2, M2, M3, and u'3 in T* and all A, A' in JV:

S => uiAu3 => ulu2u3 ,

and

implies that

C R * ' A ' ' R ' ' '

S =>* UXA M3 => MJM2M3

|M1M2| + k) : uxu1ui = (|wi«a| + k) : u\u'zu\

Mj = u\, A = A', and u2 = u'2 .

424 LL(k) grammars for top-down left to right deterministic analysis are defined

in [2] and [3].

Definition. A context-free grammar is LL(k) if the following condition holds for

all u., u 4, « 4 in T* and all u2, u3, u'2, u'3 in (N u T)*:

S =>* utAu3 => u1u2u3 =>* u1«4 ,

o L * ^ / L I I L »

S =>* utAu3 => utu2u3 =>* « 1 « 4

and

implies that

k : Uл = /c : u'.

D. E. Knuth [2] gives some comparison of top-down and bottom-up deterministic

analysis:

Bottom-up analysis can deterministically parse more general languages than

top-down analysis for the class of LL(/t)-grammars is proper subset of the class of

LR(/V)-grammars. On the other hand providing top-down analysis in LL(/c)-grammar

we have a great advantage, since we know what production is being used before

we actually process its components. The foreknowledge can be extremely important

in practice.

The aim of this paper is a generalisation of LL(/c)-grammars which seems to be

unnecessary restrictive for deterministic analysis. We also give no-backup working

Parsing Machine corresponding to them.

Definition. A context free grammar G = (T N, P, S) is said LL(f) if for function/

(from T* to arbitrary range D) the following condition holds for all

(1) M 1 ,M 4 , M4 in T* and all u2,u3,u'2,u'3 in (N u T)* :

(2) " S =>* utAu3 => u1u2u3 =>* u1u4 ,

(3) S =>* u^Au's => utu'2u'3 =>* Wit/̂

and

implies that

/Ы =/(»;)

W , = И , .

Function/is called distinctive function for grammar G.

Note 1. Setting /(«) = fe : w we get the LL(k) grammars.

Theorem 1. There exists a distinctive function f for grammar G if and only if 425
the grammar G is unambiguous and has no nonuseless left —recursive nonter
minal symbols.

Proof. 1. Let us assume t h a t / i s a distinctive function for grammar G.

a) Let G be ambiguous. Then threre exists (1) such that (2) and (3) hold, a4 =
= M4 and u2 =f= u'2. For every / follows that f(u4) = /(«4) holds and we have
a contradiction with the definition of distinctive function.

b) Let grammar G have the nonuseless left — recursive nonterminal symbol A. Then
there exists uu M4 e T*, u2, u'2, u3 : u3 e (N u T)*, u2 4 u'3 for which

S =>* uxAu3 => utu2u3 =>* utAu'3 => U\ii'2u'3 =>* uxu4

holds. This is a contradiction with the assumption that there exists a distinctive
function for G.

2. Let G be an unambiguous grammar which has no nonuseless left-recursive
nonterminal symbols.

Let us set f(u) = u for all u e T*. Let us assume that there are such (l) that (2)
and (3) are valid, M4 = w4 and u2 4 u'2.

Because of the unambiguity of grammar G either

S =>* U1AM3 => UXU2U3 =>* UtAu3 => Uxll'2u'3 => * W,M4

or
O L * A ' L < ' L * A L L *

S =>* M1AM3 => uiu2u3 =>* uxAu3 => ulu2u3 =>* utu4

is valid and consequently A is nonuseless left-recursive and it is a contradiction.

Definition 2. Let the rules of grammar G be rewritten in the form A -* w. | w2 | ...
... I wr. (All the productions with the same left side are substituted for one generalized
production). The integer-value function F(u, A, v) is said to be a switching function
for grammar G if it is defined for all u, v in T* and A in N such, that

(4) S =>* MAM' => UW{U' =>* uv

where u' e (Tu N)* and F(u, A, v) — i is valid.

Note 2. The significance of switching function for top-down left-to-right analysis

is obvious.

Theorem 2. If f is a distinctive function for grammar G then there exists a func
tion g (from T* x N x D to I, where D is the range of values of the function f

and I denotes the set of natural numbers) such that the composed function F
defined as

F(u,A,v) = g(u,A,f(v))

is the switching function for grammar G.

Proof. The function g is defined as follows. Let (4) be valid and / (f) = y then
we set g(u, A, y) = i. Let besides (4)

(4') S =>* uAu" => uwju" =>* uv'

be valid andj(tZ) = f(v) = y. Then from the fact t h a t / is a distinctive function it
follows W[= Wj. Therefore/is chosen uniquely and it is obvious t ha t / i s a switching
function for grammar G.

Definition 3. A context-free grammar G = (T,N,P, S) is said LLS(f) if for the
function / (from T* to arbitrary D) the following condition holds for all

(1') uu uJ,M4, w 4 e T * and all u2, u'2, u'3, w3 e (N u T)* ,

(2') S =>* u1Au3 => u1u2u3 =>* u1u4 ,

(3') S =>* u\Au'3 => u[u'2u'3 =>* u\u\

and

implies that

j("4) = j «

Function j is called a strongly distinctive function for grammar G.

Example 1. Let G = ({a, b, c, d), {S, A), {S ~> cAb\ dA, A -> a\ ab], S).
Owing to the fact, that

S => dA => dab ,

no strongly distinctive function exists for grammar G. On the other hand it is obvious that G
is LL(3).

Definition 4. Let the productions of the grammar G be rewritten in the form
A -* wt | w2 | ... | vvr. The integer-value function T(A, v) is said to be a strongly
switching function for the grammar G if it is defined for all v e T* and AeN such

that

S =>* uAu' => iiWfU' =>* uv

where u' is in (T u N)* and F(A, v) = i is valid.

Theorem 3. If f is a strongly distinctive function for the grammar G then there
exists a function g (from N x D to I, where D is the range of values of the func
tion f and I denotes the set of natural numbers) such that the composed function F
defined as

F(A,v) = g(AJ(v))

is a strongly switching function for the grammar G.

Proof. It is analogous to the Theorem 2.

A classification of a context-free languages according to the necessary complexity
of (strongly) distinctive function of their grammars can be introduced. For instance:

1. LL(fc)-languages are languages generated by grammars for which/(w) = k:u
is the distinctive function.

2. Languages generated by grammars for which a distinctive function is sequential.
Sequential function is the function which is realized by a finite state sequential
machine.

Let us assume that we have a procedure computing the value of (strongly) switching
function F(u, A, v) (F(A, v)) (for some grammar G, productions of which are written
in the form A -> w,|w2| ... wr. Then we can modify the Knuth's Parsing Machine
into a simple form which works no back-up.

The Parsing Machine is an abstract machine which is made to analyze strings over
a certain alphabet. Is works character per character, according to a program.
A Parsing Machine program is a sequence of instructions. One type of instructions
are procedures calling each other recursively. Each such procedure attemps to find
an occurence of a particular syntactic type in the input.

The Parsing Machine has to decide if a given input is in the language or not and
to give the phrase marker of the string. The phrase marker will be described so that
every syntactic unit in the string will be closed in brackets and under the opening
bracket will be written the corresponding letter of the nonterminal alphabet N.

Let the input string be SiS2 ... s,„ and let sh be the "current" character being
scanned by the machine.

A program is written using four types of instructions:
Type 1: A letter of the terminal alphabet;
Type 2: A letter of the nonterminal alphabet;
Type 3: RETURN;
Type 4: STOP.

Writing a program we put symbolic locations to the left of some instruction.

They are written as nonterminal letters with an integer index. A program is created

of the segment

START S

STOP

and one another segment of the form

Лt í i . i
І1.2

RETURN

q2,i

q2,2

q2,m2

RETURN

Лr q,,i

qrл

RETURN

for each production A -» w.lvt^l ... |w,

where w; = qi^qi,2 ... qi,mi (i = 1, 2, ..., r), qijeN u T.

The program starts his work on the location STARTand the effects of instructions

are following. (In description some notations of ALGOL 60 are used.)

Type 1. (a e T): if sh = a then begin h := h + 1;

outsymbol (a);

go to next location

end

else ERROR

Type 2. (A eN): output (C) and call o n the procedure which starts in location

A

AF(U,A,V) recursively.

Type 3. (RETURN) The end of the call of procedure , outsymbol (j).

Type 4. (STOP) The end of work of the p rog ram. Analyzed string is in

L(G).

Note 3. Using a " s t a c k " we can describe the meaning of instructions of types 2, 3

in more details.

Type 2. (AeN) h is no t changed: outsymbol (C)', pu t current location in-
A

creased by one in to a stack; go to AF(UiAvy

Type 3. (RETURN) h is no t changed; outsymbol (j); popped off t op location

from stack a n d go to the location tha t was popped off.

Note 4. Fo r strongly distinctive function it is the only difference tha t F (u, A, v)

doesn ' t depend o n u.

Example 2. Let us write the program for the Parsing Machine performing analysis of simple
Boolean expressions described by the grammar:

G = (r , { V, E, R, B, X, Y, P, Q}, P, B)
where

r = {a, b, c, +, — , * , < , > , ~], V , A }
nad P consists of productions

V -> a | b | c ,

x^+\- | x ,
E -> V\ VXE\(E),
Y -> < | > ,
R ->• EYE,
P ->V\R\(B),
Q ~>P\ n P,
Z -> A | V ,
B -> Q | 2-^5 -

Using conditional expressions of ALGOL-60 with non-ALGOL conditions we describe the strongly
switching function F for the grammar G. In these conditions the symbol = is used for comparing
the two strings of terminal symbols; mind the symbol (among them.

F(V, v) = if v = av', v' e T* then 1
else if v = bv', v' e T* then 2

else if v = cv', v' e T* then 3
else ERROR;

F(X, v) = if v = + »', v' e r * then 1
else if v = —»', v' e T* then 2

else if v = X «', </ 6 r* then 3
else ERROR;

F(E, v) = \iv= (v\ v' e r then 3

else if v= Q^2v',i2 e { + , — , X }, <£. 6 {a, 6, c}, w'6 r then 2
else 1;

f(Y, v) = if v — <v', v' e T* then 1
else if v = > v', v' e T* then 2

else ERROR;
F(R,v)= l;
F(P, v) = if v = (»', »' e J* then 3

else if v= y£, y e (T — {~|, V, A, > , <})* ,£ e { < , > } then 2
else 1 ;

F(Q, v) = if f = "1 !>', »' 6 r * then 2 else 1;
F(Z, v) = if v = A D', »' 6 T* then 1;

else if v = v u', »' e T* then 2
else ERROR;

F(B, v) = if u = ;>'{, j e (r ~ { A , v })*, { e { A , v } then 2 else 1

Program for the Parsing Machine is shown in Table 1.

Location Instruction Location Instruction Location Instruction Location Instruction

START ß RETURN E Zx Л

STOP E2
V RETURN RETURN

V, a X Pi V z2
V

RETURN E RETURN RETURN
y2 b RETURN P2

R в, Q
RETURN Eъ (RETURN RETURN

Уъ c E Pз (в2
Q

RETURN) B Z

* 1
_L RETURN) в

RETURN ?l < RETURN RETURN

x2 . - RETURN ß i P
RETURN У2 > RETURN

^ з X RETURN Q2
— i

RETURN Bi E P

El V Y RETURN

I t is n a t u r a l tha t in the pract ical cases we try t o choose such g r a m m a r s for which

t h e calculat ion of the distinctive function is simple, i.e. n o t tak ing m u c h of b o t h t ime

a n d s torage.

I n t h e following paper we try to give a modification of the Pars ing M a c h i n e deter

m i n e d for self-correcting of some syntactical errors a n d good diagnost ic of others .

W e will apply it in analysis of preprocessed A L G O L - 6 0 p r o g r a m s .

(Received March 12th, 1968)

REFERENCES

[1] D. E. Knuth: On the translation of languages from left to right. Information and Control 8
(1965), 607-639.

[2] D . E. Knuth: Top-down syntax analysis. Textbook of International Summer School on
Computer Programming Copenhagen, Denmark, 1967.

[3] P. M. Lewis and R. E. Stearns: Syntax-Directed Transduction. Journal of the ACM 15
(1968), to appear.

Příspěvek k deterministické analýze bezkontextových jazyků shora

KAREL CULÍK II

Práce se zabývá analýzou bezkontextových jazyků a to analýzou shora, zleva
doprava. Jsou zobecněny Knuthovy LL(/c)-gramatiky a zavedeny pojmy (silně)
rozlišovací funkce a (silně) rozvětvovací funkce. Jsou ukázány nutné a postačující
podmínky k tomu, aby existovala rozlišovací a rozvětvovací funkce pro danou
gramatiku. Dále je pro gramatiky, pro které existuje rozvětvovací funkce, dána modi
fikace Knuthova analyzátoru, který pracuje bez vracení. Je uveden příklad programu
takového analyzátoru pro gramatiku popisující jednoduché Booleovské výrazy.

Dr Karel Culík, CSc., Centrum numerické matematiky KU, Malostranské nám. 25, Praha 1.

