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Contribution to Deterministic Top-Down 
Analysis of Context-free Languages 

KAREL CULIK II 

In the present paper a generalization of ZX(A:)-grammars is given, the notion of the switching 
function for such grammars is introduced and the model of the Parsing Machine using the switch
ing function is given. 

We introduce the necessary notions and notation, mainly according to D. E. 
Knuth: An alphabet X is a finite nonempty set of symbols, and X* denotes the set 
of all strings on the alphabet X. The length of a string u is denoted by \u\. 

A context free grammar is a 4-tuple (T N, P, S) where T, N are disjoint alphabets 
called terminal and nonterminal alphabets respectively; P is a finite nonempty set 
of productions. A production is a pair denoted by A—* u, where AeN,u e(N u T)*; 
S e N is an initial symbol. 

Let G = (T,N,P,S) be a context-free grammar. For u, u e ( T u i V ) * let us 
write u => v if there exist strings x, y,we ( T u N)*, such that u = xAy, v = xwy 
and A -» we P. If x e T* we write u => v, if y e T* we write u => v. 

The reflexive transitive completion of relation => is denoted by =>* and the transi
tive completion of => is denoted by => + . Similarly =>*, =>+, =>*, => + . The set 
L(G) = {u e T* : S =>+ M} is called a context^ree language generated by G. If 
w ê (Tu JV)* we write L(w) = {« e T* : w =>* M}. 

Let M0, M<,..., ur be a sequence of strings; 

(i) if M; => M; + 1 (i = 0, 1,..-, r — 1) then the sequence is called the derivation 
of Mr (from M 0 ); 

(ii) if u ; => M ; + 1 (i = 0, 1, .••, r — l) then the sequence is called the left-most 
derivation of Mr (from u0)\ 

(iii) if M; => u ; + 1 (i = 0, 1, .-•> r — 1) then the sequence is called the right-most 
derivation of Mr (from UQ)-



A grammar G is said to be ambiguous if there is some word in L(G) generated 
by two different left-most derivations (from S). A grammar which is not ambiguous 
is said to be unambiguous. The nonterminal symbol A is said to be left recursive 
if there exists u e (Tu JV)* such that A =>+ Au. 

For A, B e N it is said A depends on B if there exist u, v e (Tu JV)* such that 
A =>+ uBv. 

A nonterminal symbol A is called useless if either L(A) = 0 or if S does not depend 
on A. 

If k is a nonnegative integer and u is a string, we define: 
k : u is the initial substring of the k characters of u if the length of u is greater or 

equal to k; 
k : u is M if the length of u is less than k. 
The general problem of syntactic analysis is: A given grammar G = (T, JV, P, S) 

and a string u e T*, determine whether or not u e L(G). If so, find all its syntactic 
structures. 

The bottom-up method attacks this problem by step by step "reducing" the given 
string M by reductions which are the opposite of productions. If the bottom-up 
analysis is left to right one then the left-most possible reduction is applied at each 
step. This process continues until we reduce everything to S or show that this re
duction would be impossible. 

The top-down left to right method starts with S, and attempts to reach the left-most 
derivation of the string u. At each step we must decide which production is to be 
applied to the left-most nonterminal symbol. 

There are various "back-up" procedures for both bottom-up and top-down 
analysis because we must reconsider some alternatives of the derivation sequence 
that later prove to be incorrect. For practical purposes such cases are very important 
when the syntactic analysis proceeds without backing up. Such procedures are called 
deterministic analysis methods. 

D. E. Knuth [1] and Lewis and Stearns [3] introduced classes of grammars which 
allowed deterministic analysis. 

The LR(k) grammars for bottom-up left to right deterministic analysis are defined 
in [2] as follows: 

A context-free grammar is LR(/c) if the following condition holds for all ut 

and u\ in (N u T)*, all M2, M2, M3, and u'3 in T* and all A, A' in JV: 

S => uiAu3 => ulu2u3 , 

and 

implies that 

C R * ' A ' ' R ' ' ' 

S =>* UXA M3 => MJM2M3 

|M1M2| + k) : uxu1ui = (|wi«a| + k) : u\u'zu\ 

Mj = u\, A = A', and u2 = u'2 . 



424 LL(k) grammars for top-down left to right deterministic analysis are defined 

in [2] and [3]. 

Definition. A context-free grammar is LL(k) if the following condition holds for 

all u., u 4, « 4 in T* and all u2, u3, u'2, u'3 in (N u T)*: 

S =>* utAu3 => u1u2u3 =>* u1«4 , 

o L * ^ / L I I L » 

S =>* utAu3 => utu2u3 =>* « 1 « 4 

and 

implies that 

k : Uл = /c : u'. 

D. E. Knuth [2] gives some comparison of top-down and bottom-up deterministic 

analysis: 

Bottom-up analysis can deterministically parse more general languages than 

top-down analysis for the class of LL(/t)-grammars is proper subset of the class of 

LR(/V)-grammars. On the other hand providing top-down analysis in LL(/c)-grammar 

we have a great advantage, since we know what production is being used before 

we actually process its components. The foreknowledge can be extremely important 

in practice. 

The aim of this paper is a generalisation of LL(/c)-grammars which seems to be 

unnecessary restrictive for deterministic analysis. We also give no-backup working 

Parsing Machine corresponding to them. 

Definition. A context free grammar G = (T N, P, S) is said LL(f) if for function/ 

(from T* to arbitrary range D) the following condition holds for all 

(1) M 1 ,M 4 , M4 in T* and all u2,u3,u'2,u'3 in (N u T)* : 

(2) " S =>* utAu3 => u1u2u3 =>* u1u4 , 

(3) S =>* u^Au's => utu'2u'3 =>* Wit/̂  

and 

implies that 

/Ы =/(»;) 

W , = И , . 

Function/is called distinctive function for grammar G. 

Note 1. Setting /(«) = fe : w we get the LL(k) grammars. 



Theorem 1. There exists a distinctive function f for grammar G if and only if 425 
the grammar G is unambiguous and has no nonuseless left —recursive nonter
minal symbols. 

Proof. 1. Let us assume t h a t / i s a distinctive function for grammar G. 

a) Let G be ambiguous. Then threre exists (1) such that (2) and (3) hold, a4 = 
= M4 and u2 =f= u'2. For every / follows that f(u4) = /(«4) holds and we have 
a contradiction with the definition of distinctive function. 

b) Let grammar G have the nonuseless left — recursive nonterminal symbol A. Then 
there exists uu M4 e T*, u2, u'2, u3 : u3 e (N u T)*, u2 4 u'3 for which 

S =>* uxAu3 => utu2u3 =>* utAu'3 => U\ii'2u'3 =>* uxu4 

holds. This is a contradiction with the assumption that there exists a distinctive 
function for G. 

2. Let G be an unambiguous grammar which has no nonuseless left-recursive 
nonterminal symbols. 

Let us set f(u) = u for all u e T*. Let us assume that there are such (l) that (2) 
and (3) are valid, M4 = w4 and u2 4 u'2. 

Because of the unambiguity of grammar G either 

S =>* U1AM3 => UXU2U3 =>* UtAu3 => Uxll'2u'3 => * W,M4 

or 
O L * A ' L < ' L * A L L * 

S =>* M1AM3 => uiu2u3 =>* uxAu3 => ulu2u3 =>* utu4 

is valid and consequently A is nonuseless left-recursive and it is a contradiction. 

Definition 2. Let the rules of grammar G be rewritten in the form A -* w. | w2 | ... 
... I wr. (All the productions with the same left side are substituted for one generalized 
production). The integer-value function F(u, A, v) is said to be a switching function 
for grammar G if it is defined for all u, v in T* and A in N such, that 

(4) S =>* MAM' => UW{U' =>* uv 

where u' e (Tu N)* and F(u, A, v) — i is valid. 

Note 2. The significance of switching function for top-down left-to-right analysis 

is obvious. 

Theorem 2. If f is a distinctive function for grammar G then there exists a func
tion g (from T* x N x D to I, where D is the range of values of the function f 



and I denotes the set of natural numbers) such that the composed function F 
defined as 

F(u,A,v) = g(u,A,f(v)) 

is the switching function for grammar G. 

Proof. The function g is defined as follows. Let (4) be valid and / ( f ) = y then 
we set g(u, A, y) = i. Let besides (4) 

(4') S =>* uAu" => uwju" =>* uv' 

be valid andj(tZ) = f(v) = y. Then from the fact t h a t / is a distinctive function it 
follows W[ = Wj. Therefore/is chosen uniquely and it is obvious t ha t / i s a switching 
function for grammar G. 

Definition 3. A context-free grammar G = (T,N,P, S) is said LLS(f) if for the 
function / (from T* to arbitrary D) the following condition holds for all 

(1') uu uJ,M4, w 4 e T * and all u2, u'2, u'3, w3 e (N u T)* , 

(2') S =>* u1Au3 => u1u2u3 =>* u1u4 , 

(3') S =>* u\Au'3 => u[u'2u'3 =>* u\u\ 

and 

implies that 

j("4) = j « 

Function j is called a strongly distinctive function for grammar G. 

Example 1. Let G = ({a, b, c, d), {S, A), {S ~> cAb\ dA, A -> a\ ab], S). 
Owing to the fact, that 

S => dA => dab , 

no strongly distinctive function exists for grammar G. On the other hand it is obvious that G 
is LL(3). 

Definition 4. Let the productions of the grammar G be rewritten in the form 
A -* wt | w2 | ... | vvr. The integer-value function T(A, v) is said to be a strongly 
switching function for the grammar G if it is defined for all v e T* and AeN such 



that 

S =>* uAu' => iiWfU' =>* uv 

where u' is in (T u N)* and F(A, v) = i is valid. 

Theorem 3. If f is a strongly distinctive function for the grammar G then there 
exists a function g (from N x D to I, where D is the range of values of the func
tion f and I denotes the set of natural numbers) such that the composed function F 
defined as 

F(A,v) = g(AJ(v)) 

is a strongly switching function for the grammar G. 

Proof. It is analogous to the Theorem 2. 

A classification of a context-free languages according to the necessary complexity 
of (strongly) distinctive function of their grammars can be introduced. For instance: 

1. LL(fc)-languages are languages generated by grammars for which/(w) = k:u 
is the distinctive function. 

2. Languages generated by grammars for which a distinctive function is sequential. 
Sequential function is the function which is realized by a finite state sequential 
machine. 

Let us assume that we have a procedure computing the value of (strongly) switching 
function F(u, A, v) (F(A, v)) (for some grammar G, productions of which are written 
in the form A -> w,|w2| ... wr. Then we can modify the Knuth's Parsing Machine 
into a simple form which works no back-up. 

The Parsing Machine is an abstract machine which is made to analyze strings over 
a certain alphabet. Is works character per character, according to a program. 
A Parsing Machine program is a sequence of instructions. One type of instructions 
are procedures calling each other recursively. Each such procedure attemps to find 
an occurence of a particular syntactic type in the input. 

The Parsing Machine has to decide if a given input is in the language or not and 
to give the phrase marker of the string. The phrase marker will be described so that 
every syntactic unit in the string will be closed in brackets and under the opening 
bracket will be written the corresponding letter of the nonterminal alphabet N. 

Let the input string be SiS2 ... s,„ and let sh be the "current" character being 
scanned by the machine. 

A program is written using four types of instructions: 
Type 1: A letter of the terminal alphabet; 
Type 2: A letter of the nonterminal alphabet; 
Type 3: RETURN; 
Type 4: STOP. 



Writing a program we put symbolic locations to the left of some instruction. 

They are written as nonterminal letters with an integer index. A program is created 

of the segment 

START S 

STOP 

and one another segment of the form 

Лt í i . i 
І1.2 

RETURN 

q2,i 

q2,2 

q2,m2 

RETURN 

Лr q,,i 

qrл 

RETURN 

for each production A -» w.lvt^l ... |w, 

where w; = qi^qi,2 ... qi,mi (i = 1, 2, ..., r), qijeN u T. 

The program starts his work on the location STARTand the effects of instructions 

are following. (In description some notations of ALGOL 60 are used.) 

Type 1. (a e T): if sh = a then begin h := h + 1; 

outsymbol (a); 

go to next location 

end 

else ERROR 



Type 2. (A eN): output ( C ) and call o n the procedure which starts in location 

A 

AF(U,A,V) recursively. 

Type 3. (RETURN) The end of the call of procedure , outsymbol (j). 

Type 4. (STOP) The end of work of the p rog ram. Analyzed string is in 

L(G). 

Note 3. Using a " s t a c k " we can describe the meaning of instructions of types 2, 3 

in more details. 

Type 2. (AeN) h is no t changed: outsymbol (C)', pu t current location in-
A 

creased by one in to a stack; go to AF(UiAvy 

Type 3. (RETURN) h is no t changed; outsymbol (j); popped off t op location 

from stack a n d go to the location tha t was popped off. 

Note 4. Fo r strongly distinctive function it is the only difference tha t F (u, A, v) 

doesn ' t depend o n u. 

Example 2. Let us write the program for the Parsing Machine performing analysis of simple 
Boolean expressions described by the grammar: 

G = ( r , { V, E, R, B, X, Y, P, Q}, P, B) 
where 

r = {a, b, c, +, — , * , < , > , ~], V , A } 
nad P consists of productions 

V -> a | b | c , 

x^+\- | x , 
E -> V\ VXE\(E), 
Y -> < | > , 
R ->• EYE, 
P ->V\R\(B), 
Q ~>P\ n P, 
Z -> A | V , 
B -> Q | 2-^5 -

Using conditional expressions of ALGOL-60 with non-ALGOL conditions we describe the strongly 
switching function F for the grammar G. In these conditions the symbol = is used for comparing 
the two strings of terminal symbols; mind the symbol ( among them. 

F(V, v) = if v = av', v' e T* then 1 
else if v = bv', v' e T* then 2 

else if v = cv', v' e T* then 3 
else ERROR; 

F(X, v) = if v = + »', v' e r * then 1 
else if v = —»', v' e T* then 2 

else if v = X «', </ 6 r* then 3 
else ERROR; 

F(E, v) = \iv= (v\ v' e r then 3 

else if v= Q^2v',i2 e { + , — , X }, <£. 6 {a, 6, c}, w'6 r then 2 
else 1; 



f(Y, v) = if v — <v', v' e T* then 1 
else if v = > v', v' e T* then 2 

else ERROR; 
F(R,v)= l; 
F(P, v) = if v = (»', »' e J* then 3 

else if v= y£, y e (T — {~|, V, A, > , <})* ,£ e { < , > } then 2 
else 1 ; 

F(Q, v) = if f = "1 !>', »' 6 r * then 2 else 1; 
F(Z, v) = if v = A D', »' 6 T* then 1; 

else if v = v u', »' e T* then 2 
else ERROR; 

F(B, v) = if u = ;>'{, j e ( r ~ { A , v })*, { e { A , v } then 2 else 1 

Program for the Parsing Machine is shown in Table 1. 

Location Instruction Location Instruction Location Instruction Location Instruction 

START ß RETURN E Zx Л 

STOP E2 
V RETURN RETURN 

V, a X Pi V z2 
V 

RETURN E RETURN RETURN 
y2 b RETURN P2 

R в, Q 
RETURN Eъ ( RETURN RETURN 

Уъ c E Pз ( в2 
Q 

RETURN ) B Z 

* 1 
_L RETURN ) в 

RETURN ?l < RETURN RETURN 

x2 . - RETURN ß i P 
RETURN У2 > RETURN 

^ з X RETURN Q2 
— i 

RETURN Bi E P 

El V Y RETURN 

I t is n a t u r a l tha t in the pract ical cases we try t o choose such g r a m m a r s for which 

t h e calculat ion of the distinctive function is simple, i.e. n o t tak ing m u c h of b o t h t ime 

a n d s torage. 

I n t h e following paper we try to give a modification of the Pars ing M a c h i n e deter

m i n e d for self-correcting of some syntactical errors a n d good diagnost ic of others . 

W e will apply it in analysis of preprocessed A L G O L - 6 0 p r o g r a m s . 

(Received March 12th, 1968) 
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Příspěvek k deterministické analýze bezkontextových jazyků shora 

KAREL CULÍK II 

Práce se zabývá analýzou bezkontextových jazyků a to analýzou shora, zleva 
doprava. Jsou zobecněny Knuthovy LL(/c)-gramatiky a zavedeny pojmy (silně) 
rozlišovací funkce a (silně) rozvětvovací funkce. Jsou ukázány nutné a postačující 
podmínky k tomu, aby existovala rozlišovací a rozvětvovací funkce pro danou 
gramatiku. Dále je pro gramatiky, pro které existuje rozvětvovací funkce, dána modi
fikace Knuthova analyzátoru, který pracuje bez vracení. Je uveden příklad programu 
takového analyzátoru pro gramatiku popisující jednoduché Booleovské výrazy. 

Dr Karel Culík, CSc., Centrum numerické matematiky KU, Malostranské nám. 25, Praha 1. 


