Sampled-Data Controls and the Bilinear Transformation

Ludvík Prouza

By the use of the bilinear transformation, the methods devised for the study of continuous control systems may be applied to sampled-data systems. A simple method facilitating considerably the practical performing of the transformation is presented here.

1. INTRODUCTION

Recently, two methods facilitating the substitution

$$
\begin{equation*}
z=\frac{s+1}{s-1} \tag{1}
\end{equation*}
$$

in the polynomial

$$
\begin{equation*}
F(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0} \tag{2}
\end{equation*}
$$

have been published in [1], [2]. However, special coefficients for each degree of (2) must be computed in advance in the method described in [1], special (although simple) matrices are needed in the method of [2]. In this article, a very simple method without these inconveniences will be derived.

2. PERFORMING THE BILINEAR TRANSFORMATION

We will make the substitution (1) in two stages

$$
\begin{equation*}
z-1=\frac{2}{w}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
w+1=s . \tag{4}
\end{equation*}
$$

First of all, the coefficients $b_{k}(k=0,1, \ldots, n)$ in the equation

$$
\begin{equation*}
F(z)=b_{n}(z-1)^{n}+\ldots+b_{1}(z-1)+b_{0} \tag{5}
\end{equation*}
$$

are needed. By successive differentiation on both sides of (5), one gets

$$
\begin{equation*}
b_{k}=F^{(k)}(1) / k! \tag{6}
\end{equation*}
$$

Then, we substitute from (3) in (5). One gets

$$
\begin{equation*}
F(z)=\frac{1}{w^{n}} \cdot\left(b_{0} w^{n}+2 b_{1} w^{n-1}+\ldots+2^{n} b_{n}\right)=G(w) / w^{n} \tag{7}
\end{equation*}
$$

Then, we substitute from (4) in $G(w)$.

$$
\begin{equation*}
G(w)=c_{n} s^{n}+c_{n-1} s^{n-1}+\ldots+c_{1} s+c_{0} \tag{8}
\end{equation*}
$$

By successive differentiation on both sides of (8), one gets

$$
\begin{equation*}
c_{k}=G^{(k)}(-1) / k! \tag{9}
\end{equation*}
$$

Finally, one gets

$$
\begin{equation*}
F(z)=\frac{1}{(s-1)^{n}} \cdot\left(c_{n} s^{n}+\ldots+c_{1} s+c_{0}\right) \tag{10}
\end{equation*}
$$

The coefficients in (6) and (9) are easily computed by the known method of Horner schemes.

Thus, the whole procedure can be summarized as follows:

1. Find the coefficients in (6) by the first sequence of Horner schemes.
2. Form the coefficients of $G(w)$ in (7).
3. Find the coefficients in (9) by the second sequence of Horner schemes.

3. ILLUSTRATIVE EXAMPLE

Let (as in [2])

$$
F(z)=z^{5}+3 z^{4}+4 z^{3}+5 z^{2}+2 z+4
$$

	1	3 1	4	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{array}{r} 2 \\ 13 \end{array}$	$\begin{array}{r} 4 \\ 15 \end{array}$	1	19
1	1	4	8	13	15	19		
		1	5	13	26			
1	1	5	13	26	41		2	82
		1	6	19				
1	1	6	19	45			. 4	180
		1	7					
1	1	7	26				. 8	208
		1						
1	1	8					. 16	128
	1						. 32	32

The step 3. of the procedure is

	19	82	180	208	128	32
-1	19	63	117	91	37	-5
-19	-63	-117	-91	-37		
-1	19	44	73	18	19	
-1	19	25	48	-30		
-1	19	-19	-44	-73	-18	
-1	19	-19	-6			
-19	-19					

Thus

$$
F(z)=\frac{1}{(s-1)^{5}} .\left(19 s^{5}-13 s^{4}+42 s^{3}-30 s^{2}+19 s-5\right)
$$

(The last two coefficients are incorrect in [2]. Moreover the term $f_{3,7}=80$ of the matrix F_{1} in [2] and all terms depending theoren are also incorrect. This term should be 60.)

4. CONCLUDING REMARKS

Comparing the described method with the method of [1] (which is less laborious than that of [2]) one sees in the preceding example that 30 additions or subtractions and 6 multiplications are needed here, whereas 30 additions or subtractions and 12 multiplications are needed in [1].

Since no special expressions must be prepared in advance to perform the computations, the described method seems to be useful.
(Received January 18th, 1968.)

REFERENCES

[1] Soliman J. I. - Al-Shaikh A.: Sampled-data controls and the bilinear transformation. Automatica 2 (1965), 235-242.
[2] Power H. M.: The mechanics of the bilinear transformation. IEEE Trans. E-10 (1967), 2, 114-116.

VÝTAH

Impulsní regulace a bilineární transformace

Ludvík Prouza

S pomocí bilineární transformace může být k vyšetřování impulsních regulací použito metod, navržených pro regulace spojité. V článku se navrhuje jednoduchá metoda, která podstatně usnadňuje praktické provedení transformace.

Dr. Ludvik Prouza, CSC., Ústav pro výzkum radiotechniky, Opočinek, p. Lány na Důlku.

