Sampled-Data Controls and the Bilinear Transformation

Ludvík Prouza

By the use of the bilinear transformation, the methods devised for the study of continuous control systems may be applied to sampled-data systems. A simple method facilitating considerably the practical performing of the transformation is presented here.

1. INTRODUCTION

Recently, two methods facilitating the substitution

$$z = \frac{s+1}{s-1}$$

in the polynomial

(2)
$$F(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

have been published in [1], [2]. However, special coefficients for each degree of (2) must be computed in advance in the method described in [1], special (although simple) matrices are needed in the method of [2]. In this article, a very simple method without these inconveniences will be derived.

2. PERFORMING THE BILINEAR TRANSFORMATION

We will make the substitution (1) in two stages

$$(3) z-1=\frac{2}{w},$$

$$(4) w+1=s.$$

First of all, the coefficients b_k (k = 0, 1, ..., n) in the equation

(5)
$$F(z) = b_n(z-1)^n + \ldots + b_1(z-1) + b_0$$

are needed. By successive differentiation on both sides of (5), one gets

(6)
$$b_k = F^{(k)}(1)/k!.$$

Then, we substitute from (3) in (5). One gets

(7)
$$F(z) = \frac{1}{w^n} \cdot (b_0 w^n + 2b_1 w^{n-1} + \dots + 2^n b_n) = G(w)/w^n.$$

Then, we substitute from (4) in G(w).

(8)
$$G(w) = c_n s^n + c_{n-1} s^{n-1} + \ldots + c_1 s + c_0.$$

By successive differentiation on both sides of (8), one gets

(9)
$$c_k = G^{(k)}(-1)/k!.$$

Finally, one gets

(10)
$$F(z) = \frac{1}{(s-1)^n} \cdot (c_n s^n + \ldots + c_1 s + c_0).$$

The coefficients in (6) and (9) are easily computed by the known method of Horner schemes.

Thus, the whole procedure can be summarized as follows:

- 1. Find the coefficients in (6) by the first sequence of Horner schemes.
- 2. Form the coefficients of G(w) in (7).
- 3. Find the coefficients in (9) by the second sequence of Horner schemes.

3. ILLUSTRATIVE EXAMPLE

Let (as in [2])

$$F(z) = z^5 + 3z^4 + 4z^3 + 5z^2 + 2z + 4$$

The steps 1. and 2. of the procedure are

	1	3	4	5	2	4		
		1	4	8	13	15		
1	1	4	8	13	15	19	. 1	19
		1	5	13	26			
1	1	5	13	26	41		. 2	82
		1	6	19	_ '			
1	1	6	19	45			. 4	180
		1	7	_				
1	1	7	26				. 8	208
		1						
1	1	8					.16	128
	1						.32	32

The step 3. of the procedure is

	19	82	180	208	128	32
		-19	-63	-117	-91	-37
1	19	63	117	91	37	-5
		-19	-44	73	-18	
-1	19	44	73	18	19	
		-19	-25	-48	<u> </u>	-
-1	19	25	48	-30		
		-19	-6			
-1	19	6	42			
		-19	-	-		
-1	19	-13				
		l'				
	19					

Thus

$$F(z) = \frac{1}{(s-1)^5} \cdot (19s^5 - 13s^4 + 42s^3 - 30s^2 + 19s - 5).$$

(The last two coefficients are incorrect in [2]. Moreover the term $f_{3,7}=80$ of the matrix F_1 in [2] and all terms depending theoren are also incorrect. This term should be 60.)

٠,

334

4. CONCLUDING REMARKS

Comparing the described method with the method of [1] (which is less laborious than that of [2]) one sees in the preceding example that 30 additions or subtractions and 6 multiplications are needed here, whereas 30 additions or subtractions and 12 multiplications are needed in [1].

Since no special expressions must be prepared in advance to perform the computations, the described method seems to be useful.

(Received January 18th, 1968.)

REFERENCES

- [1] Soliman J. I. Al-Shaikh A.: Sampled-data controls and the bilinear transformation. Automatica 2 (1965), 235-242.
- [2] Power H. M.: The mechanics of the bilinear transformation. IEEE Trans. *E-10* (1967), 2, 114-116.

VÝTAH

Impulsní regulace a bilineární transformace

Ludvík Prouza

S pomocí bilineární transformace může být k vyšetřování impulsních regulací použito metod, navržených pro regulace spojité. V článku se navrhuje jednoduchá metoda, která podstatně usnadňuje praktické provedení transformace.

Dr. Ludvík Prouza, CSc., Ústav pro výzkum radiotechniky, Opočínek, p. Lány na Důlku.