Some Theorems on Labelled Bracketings Used in Transformational Grammars

Karel Čulík

There are proved several lemmas and theorems concerning certain types of decompositions of well-formed labelled bracketings which are nothing else than a linear expression of phrasemarkers used in context-free grammars.

The following theorems concern the notions introduced in [1] in order to formalize the theory of transformational grammar presented in [2]. Thus primarily the labelled bracketings have their meaning in linguistics or in the mathematical theory of languages because they are sequences of symbols expressing uniquely the phrase-markers of context-free grammars. There is a correspondence between the well formed labelled bracketings and the phrase-markes and markers defined as the special graphs in [4] and [5]. On the other hand some pure abstract results have more general mathematical character and are connected with the bracketing mentioned in [3].

Finite, disjoint sets V_{T} and V_{N} are said to be terminal and nonterminal vocabularies resp. The pair $([, A)$ or (]$, A)$ is said to be a left or right labelled bracket resp. where $A \in V_{N}$ and instead of $([, A)$ or (]$, A)$ one writes $[\text { or }]_{A}$ resp. Then $L=\left\{\left[; A \in V_{N}\right\}\right.$ and $\left.R=\{] ; A \in V_{N}\right\}$ and a terminal labelled bracketing (lb) is a finite string of symbols from $V_{T} \cup L \cup R$. The free semigroup of all strings the generators of which belong to the set M is denoted by M^{∞} and $M^{\infty}=M^{\infty} \cup\{e\}$ where e is the identity element of the semigroup M^{∞}, i.e. e is the empty string the length of which $l(e)=0$. Many other special definitions and notations are introduced in [1] and here accepted without any change. First of all in the definition 1.1 of [1] a well formed labelled bracketing (wflb) is introduced as follows: a lb ψ is a wflbif either (i) $\psi \in V_{T} \cup V_{N}$, or (ii) $\psi=\psi_{1} \psi_{2}$ where ψ_{1}, ψ_{2} are wflb or (iii) $\psi=\left[\psi^{\prime}\right]$ where $[\epsilon L,] \in R$ and ψ^{\prime} is a wflb.

A lb ψ is said to be in the basic form if $\psi=\lambda_{1} X_{1} \varrho_{1} \lambda_{2} X_{2} \varrho_{2} \ldots \lambda_{n} X_{n} \varrho_{n}$ where $n \geqq 1, X_{i} \in V_{T}, \lambda_{i} \in L^{\infty}$ and $\varrho_{i} \in R^{\infty_{0}}$ for each $i=1,2, \ldots, n$.

Let ψ be a lb and let $\psi=\alpha a \beta \bar{a} \gamma$, where $a \in L$ and $\bar{a} \in R$. The occurrence shown
of \bar{a} is said to be a corresponding occurrence to the shown occurrence of a (and conversely) if it is the first occurrence of \bar{a} in ψ on the right of a which satisfies the following condtions: a and \bar{a} are labelled by the same nonterminal symbol and the number of occurrences of the left brackets in β is the same as the number of the right ones.

A lb ψ satisfies the bracket condition if to each occurrence of a left bracket in ψ there exists the corresponding occurrence of a right bracket in ψ and if the number of occurrences of right brackets in ψ is not greater than of left ones.

Lemma 1. Let ψ be $a \mathrm{lb}$ satisfying the bracket condition and let $\psi=\delta a \varphi \bar{a} \gamma$ where $\varphi=\alpha b \beta ; a, b \in L, \bar{a} \in R$ and a and \bar{a} are the corresponding brackets. If \bar{b} is the corresponding bracket to b, then \bar{b} can occur neither in δ nor in γ but always in β. Therefore φ and $\delta \gamma$ satisfy the bracket condition too.

Proof. Let us assume that \bar{b} do no occurs in φ. Then according to the bracket condition the number of left brackets in φ is the same as the number of the right ones and therefore there must be a right bracket $\tilde{c} \in R$ occuring in φ the corresponding left bracket c of which does not belong to φ. This means that c must occur either in γ what is a contradiction because the corresponding right bracket \bar{c} is on the left and not on the right of the left bracket c, or c occurs in δ. In this case we repeat the previous considerations for the pair c, \bar{c} instead of a, \bar{a} and for the left bracket a instead of b. This leads to a regress ad infinitum what is a contradiction to the finiteness of $l(\varphi)$.

Thus \bar{b} must occur in φ and this is true for each left bracket b in φ. Therefore as ψ satisfies the bracket condition - φ satisfies it as well and in a similar way one proves the same for $\delta \gamma$.

Theorem 1. $A \mathrm{lb} \psi$ is a terminal wflb if and only if ψ is in the basic form and if ψ satisfies the bracket condition.
Proof. Let ψ be a terminal wflb. If $l(\psi)=1$, then $\psi \in V_{T}$ and therefore ψ is in the basic form. The condition concerning the brackets is satisfied trivially (there is no bracket in ψ). If $l(\psi)=k>1$, then either $\psi=\psi^{\prime} \psi^{\prime \prime}$ or $\psi=a \psi^{\prime} \bar{a}$, where ψ and $\psi^{\prime \prime}$ are the terminal wflb's such that $l\left(\psi^{\prime}\right)<k, l\left(\psi^{\prime \prime}\right)<k$ and $a \in L, \bar{a} \in R$ and \bar{a} is the corresponding occurrence to a. In the first case according to the inductive assumption $\psi^{\prime}=\lambda_{1}^{\prime} X_{1} \varrho_{1}^{\prime} \ldots \lambda_{n^{\prime}}^{\prime} X_{n^{\prime}} \varrho_{n^{\prime}}$, and $\psi^{\prime \prime}=\chi_{1} X_{1} \varrho_{1}^{\prime \prime} \ldots \lambda_{n^{\prime \prime}}^{\prime \prime} X_{n^{\prime \prime}}^{\prime \prime} \varrho_{n^{\prime \prime}}^{\prime \prime}$ and therefore $\psi^{\prime} \psi^{\prime \prime}$ is in the basic form too. Further ψ^{\prime} and $\psi^{\prime \prime}$ satisfy our condition concerning their brackets and therefore obviously this condition is satisfied by $\psi^{\prime} \psi^{\prime \prime}$ too.

In the second case by the inductive assumption it follows that ψ^{\prime} is in the basic form and that ψ^{\prime} satisfies the bracket condition. It is quite clear that than $a \psi^{\prime} \bar{a}$ satisfies both these conditions too.

Now on the contrary let $\psi=\lambda_{1} X_{1} \varrho_{1} \ldots \lambda_{n} X_{n} \varrho_{n}$ and let ψ satisfy the bracket condition. If $l(\psi)=1$, then $\psi \in V_{T}$ and ψ is a terminal wflb. If $l(\psi)=k>1$, then we shall distinguish two possibilities $\lambda_{1}=e$ and $\lambda_{1} \neq e$.

In the first case from the bracket condition if follows $\varrho_{1}=e$ and therefore it is clear that $\varphi=\lambda_{2} X_{2} \varrho_{2} \ldots \lambda_{n} X_{n} \varrho_{n}$ satisfies the bracket condition. Thus by the inductive assumption - because $l(\varphi)<k-\varphi$ is a terminal wflb and therefore $\psi=X_{1} \varphi$ a terminal wflb too.
In the second case one can write $\lambda_{1}=a \lambda_{1}^{\prime}$ where $a \in L$. From the bracket condition follows the existence of φ and γ such that $\psi=a \varphi \bar{a} \gamma$, where \bar{a} is the corresponding right bracket to a. By Lemma 1, φ and γ (because $\delta=e$) must satisfy the bracket condition and therefore they must have the basic forms. Thus by the inductive assumption - because $l(\varphi)<k$ and $l(\gamma)<k-\varphi$ and γ are the terminal wflb's and therefore $\psi=a \varphi \bar{a} \gamma$ must be a terminal wflb too.

According to the definition 1.2 of [1] one can assigne the debracketization $d(\varphi)$ to the $\mathrm{lb} \varphi$ as follows: if $\varphi=X_{1} X_{2} \ldots X_{n}$ where $X_{i} \in V_{T} \cup L \cup R$ for each $i=$ $=1,2, \ldots, n$ then $d(\varphi)=x_{k_{1}} x_{k_{2}} \ldots x_{k_{p}}$ where $1 \leq k_{1}<k_{2}<\ldots<k_{p} \leq n$ and $x_{k_{i}} \in V_{T}$ for each $i=1,2, \ldots, p$ but $x_{j} \in L \cup R$ for each j such that $1 \leq j \leq n$ and $j \neq k_{i}$ for each $i=1,2, \ldots, p$.

The further important notion is the standard factorization. A sequence of lb 's $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ is said to be the standard factorization of $\mathrm{lb} \psi$ if (i) $\psi=\psi_{1} \psi_{2} \ldots \psi_{k}$, (ii) either $\psi_{i}=e$ or $d\left(\psi_{i}\right) \neq e$ and (iii) the leftmost or rightmost symbol of ψ_{i} is not a right or left bracket resp.
In the definition 1.4 of [1] it is inconvenient to allow $\psi_{i}=e$ and to prescribe the number k characterizing the sequence ($\psi_{1}, \psi_{2}, \ldots, \psi_{k}$). Therefore we shall call a standard factorization $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ right if $d\left(\psi_{i}\right) \neq e$ for each $i=1,2, \ldots, k$. Further the maximal right standard factorization of a wflb has the maximal length k.

It is clear that it is sufficient to study only the right standard factorizations because each not right standard factorization can be obtained from a right one by adding some elements e between some neighbooring strings in the sequence.

Theorem 2. Let $\lambda_{1} X_{1} \varrho_{1} \lambda_{2} X_{2} \lambda_{2} \ldots \lambda_{n} X_{n} \varrho_{n}$ be the basic form of a terminal wflb ψ and let us denote $w_{i}=\lambda_{i} X_{i} \varrho_{i}$ for each $i=1,2, \ldots, n$. Then ($w_{1}, w_{2}, \ldots, w_{n}$) is the maximal standard factorization of ψ. Further a sequence of strings $\left(\psi_{1}, \psi_{2}, \ldots\right.$ \ldots, ψ_{k}) is a right standard factorization of ψ if and only if there are integers $1 \leqq p_{1}<p_{2}<\ldots p_{k}=n$ such that $\psi_{1}=w_{1} w_{2} \ldots w_{p_{1}}$ and $\psi_{j}=w_{p_{j-1}+1} w_{p_{j-1}+2} \ldots$ $\ldots w_{p_{j}}$ for each $j=2,3, \ldots, k$.

Proof. It is clear that really $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, is the maximal right standard factorization of ψ. Further let us assume that $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ is a right standard - factorization of ψ, i.e. $\psi_{1} \psi_{2} \ldots \psi_{k}=\psi$ and $d\left(\psi_{i}\right) \neq e$ and the leftmost or rightmost symbol of ψ_{i} does not belong to R or to L resp. for each $i=1,2, \ldots, k$. Then $\psi_{1} \psi_{2} \ldots$ $\ldots \psi_{k}=\lambda_{1} X_{1} \varrho_{1} \lambda_{2} X_{2} \varrho_{2} \ldots \lambda_{n} X_{n} \varrho_{n}$ and between X_{i} and X_{i+1} there can be at most one cut and if it is the case this cut must be between ϱ_{i} and λ_{i+1} what means that there are the required integers p_{i}. On the other side, if there are the required integers p_{i} such that $\psi_{1}=w_{1} w_{2} \ldots w_{p_{1}}$ and $\psi_{j}=w_{p_{j-1}+1} w_{p_{j-1}+2} \ldots w_{p_{j}}$ for $j=2,3, \ldots, k$, then it is obvious that $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ is a right standard factorization.

A deconcatenation of a string φ is a sequence of strings $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)$ such that $\varphi_{1} \varphi_{2} \ldots \varphi_{n}=\varphi$ and $\varphi_{i} \neq e$ for each $i=1,2, \ldots, n$. The number n is said to be the length of the deconcatenation $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)$. If $l(\varphi)=k$, then by the induction one easy proves that there are 2^{k-1} deconcatenations of the string φ. In fact, the right standard factorization is a special case of the deconcatenation.

Theorem 3. If $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ is a right standard factorization of a terminal wflb ψ, then $\left(d\left(\psi_{1}\right), d\left(\psi_{2}\right), \ldots, d\left(\psi_{k}\right)\right)$ is a deconcatenation of the debracketization $d(\psi)$ of ψ. The mapping assigning in this way deconcatenations to the factorizations is a one-to-one mapping of the set of all right standard factorizations of ψ into the set of all deconcatenations of $d(\psi)$.
Proof. Using Theorem 2 one can express explicitly the corresponding elements in the considered mapping as follows:
$\left(\lambda_{1} X_{1} \varrho_{1} \ldots \lambda_{p_{1}} X_{p_{1}} \varrho_{p_{1}}, \lambda_{p_{1}+1} X_{p_{1}+1} \varrho_{p_{1}+1}, \ldots \lambda_{p_{2}} X_{p_{2}} \varrho_{p_{2}}, \ldots\right.$
$\left.\ldots, \lambda_{p_{k-1}+1} X_{p_{k-1}+1} \varrho_{p_{k-1}+1} \lambda_{p_{k-1}+2} X_{p_{k-1}+2} \varrho_{k-1}+2 \ldots \lambda_{p_{k}} X_{p_{k}} \varrho_{p_{k}}\right)$ and
$\left(X_{1} X_{2} \ldots X_{p_{1}}, X_{p_{1}+1} \ldots X_{p_{2}} \ldots X_{p_{k-1}+1} \ldots X_{p_{k}}\right)$. Now Theorem 3 is obvious.
Lemma 2. If $\alpha X \beta^{\prime}$ and $\alpha^{\prime \prime} X \beta$ are the wflb's such that $X \in V_{T}, \alpha \in L^{\infty}, \alpha=\alpha^{\prime} \alpha^{\prime \prime}$ and $\beta=\beta^{\prime} \beta^{\prime \prime}$, then $\alpha^{\prime}=e$ and $\beta^{\prime \prime}$ is a wflb also.
Proof. By the definition 1.1 of [1] it is clear what is the pair of the corresponding brackets and that in a wflb are contained either both of the corresponding brackets or none of them. Now, if $a \in L$ is an arbitrary bracket contained in α and if \bar{a} is its corresponding bracket, then \bar{a} must be contained in α and thus in β^{\prime} also. By the same reasoning a must be contained in $\alpha^{\prime \prime}$ and therefore $\alpha^{\prime \prime}=\alpha$, i.e. $\alpha^{\prime}=e$.
Now $\alpha X \beta^{\prime}$ and $\alpha X \beta^{\prime} \beta^{\prime \prime}$ are the wflb's and therefore by Theorem 1 both of them satisfy the bracket condition and are im the basic form. From this it follows that $\beta^{\prime \prime}$ satisfies the bracket condition too and then that $\beta^{\prime \prime}$ is in the basic form. Thus by Theorem $1, \beta^{\prime \prime}$ is a wflb.
Finally the following definition 1.3 of [1] will be used. The interior of a terminal $\mathrm{lb} \varphi$ - written $I(\varphi)$ is the longest wflb ψ such that (i) $d(\varphi)=d(\psi)$, and (ii) there are lb's σ, τ such that $\varphi=\sigma \psi \tau$, if such ψ exists. We shall call σ the left exterior of φ (written $E_{\mathrm{l}}(\varphi)$) and τ the right exterior of $\varphi\left(E_{\mathrm{r}}(\varphi)\right.$). If there is no such ψ we leave $I(\varphi), E_{\mathrm{l}}(\varphi)$ and $E_{\mathrm{r}}(\varphi)$ undefined. We also leave the interior (and exteriors) of labelled bracketing φ undefined if φ is not terminal.

Theorem 4. Let $\varphi=\psi_{i}$ for some i, where $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)$ is a right standard factorization of a terminal wflb ψ and let the interior $I(\varphi)$ exist. If $\lambda_{1} X_{1} \varrho_{1} \lambda_{2} X_{2} \varrho_{2} \ldots$ $\ldots \lambda_{n} X_{n} \varrho_{n}$ is the basic form of φ, the following three possibilities can appear : either $E_{1}(\varphi)=E(\varphi)=e$ and $I(\varphi)=\varphi$; in this case φ is a wflb itself, but in the remaining two cases it is not; or $E_{1}(\varphi)=e, I(\varphi)=\lambda_{1} X_{1} \varrho_{1} \ldots \lambda_{n} X_{n} \varrho_{n}^{\prime}$ and $E_{r}(\varphi)=\varrho_{n}^{\prime \prime} \neq e$ where $\varrho_{n}=\varrho_{n}^{\prime} \varrho_{n}^{\prime \prime}$ or $E_{\mathrm{r}}(\varphi)=e, I(\varphi)=\lambda_{1}^{\prime} X_{1} \varrho_{1} \ldots \lambda_{n} X_{n} \varrho_{n}$ and $E_{1}(\varphi)=\lambda_{1}^{\prime \prime} \neq$ e where $\lambda_{1}=\lambda_{1}^{\prime \prime} \lambda_{1}^{\prime}$, i.e. there can never be $E_{1}(\varphi) \neq e \neq E_{\mathrm{r}}(\varphi)$.

Proof. If φ is not wflb, then $E_{1}(\varphi) E_{r}(\varphi) \neq e$ because of $\varphi=E_{1}(\varphi) I(\varphi) E_{r}(\varphi)$. Further it is clear that either $E_{1}(\varphi)=e$ or there exists λ_{1}^{\prime} such that $E_{1}(\varphi) \lambda_{1}^{\prime}=\lambda_{1}$ and similarly either $E_{\mathrm{r}}(\varphi)=e$ or there exists ϱ_{1} such that $\varrho_{1}^{\prime} E_{\mathrm{r}}(\varphi)=\varrho_{1}$ (obviously it is allowed $\lambda_{1}^{\prime}=e$ and $\varrho_{1}^{\prime}=e$). Now it is sufficient to exclude the possibility of $E_{1}(\varphi) \neq e \neq E_{\mathrm{r}}(\varphi)$.

Therefore let us assume $E_{1}(\varphi) \neq e \neq E_{\mathrm{r}}(\varphi)$. Under this condition $\lambda_{1} \neq e \neq \varrho_{n}$ and we can write $\lambda_{1}=a \lambda_{1}^{\prime}$ where $a \in L$ and $\varrho_{n}=\varrho_{n}^{\prime} \bar{b}$ where $\bar{b} \in R$.
Now, let \bar{a} denote the bracket corresponding in ψ to the a and let us ask whether \bar{a} belongs to φ or not. If the answer is yes, then there is an integer j such that $1 \leqq j \leqq n$, $\varrho_{j}=c_{1} c_{2} \ldots c_{p}$ where $p \geqq 1$ and $c_{h} \in R$ for each $h=1,2, \ldots, p$ and $\bar{a}=c_{m}$ for some $1 \leqq m \leqq p$.Thus $\varphi^{\prime}=\lambda_{1} X_{1} \varrho_{1} \ldots \lambda_{j} X_{j} c_{1} c_{2} \ldots c_{m}$ is in the basic form and by Lemma 1 it satisfies the bracket condition too. Therefore by Theorem $1 \varphi^{\prime}$ is a terminal wflb. On the other hand, $I(\varphi)$ is also a terminal wflb and $\alpha^{\prime} I(\varphi)=\varphi^{\prime} \varphi^{\prime \prime}$ where $\alpha^{\prime} \alpha^{\prime \prime}=\lambda_{1}$. Therefore by Lemma $2 \alpha^{\prime}=e$, i.e. $E_{1}(\varphi)=e$ what is a contradiciton.
If the answer is no, i.e. \bar{a} does not belong to φ, then the corresponding left bracket b to \bar{b} must belong to φ and by a quite similar reasoning one obtains $E_{\mathrm{r}}(\varphi)=e$, i.e. a contradiction again.

Lemma 3. Let $\left(\lambda_{1} X_{1} \varrho_{1}, \lambda_{2} X_{2} \varrho_{2}, \ldots, \lambda_{n} X_{n} \varrho_{n}\right)$ be the maximal right standard factorization of a terminal wflb ψ. Then $\lambda_{i} X_{i} Q_{i}$ has its interior and if $\lambda_{i}=a_{p} a_{p-1} \ldots$ $\ldots a_{1} \neq e$ where $a_{j} \in L$ for each $1 \leqq j \leqq p$ and $\varrho_{i}=b_{1} b_{2} \ldots b_{q} \neq e$ where $b_{j} \in R$ for each $1 \leqq j \leqq q$, then $I\left(\lambda_{i} X_{i} g_{i}\right)=a_{s} a_{s-1} \ldots a_{1} X_{i} b_{1} b_{2} \ldots b_{s}$ where $s=\min (p, q)$. If either $\lambda_{i}=e$ or $\varrho_{i}=e$, then $I\left(\lambda_{i} X_{i} \varrho_{i}\right)=X_{i}$,

Proof. It is clear that $d\left(\lambda_{i} X_{i} Q_{i}\right)=d\left(a_{s} a_{s-1} \ldots a_{1} X_{i} b_{1} b_{2} \ldots b_{s}\right)=d\left(X_{i}\right)$ and therefore one needs to prove that the considered strings are wflb and have the maximal length. It is obvious in the latter case. In the former case when $\lambda_{i} \neq e \varrho_{i}$ one can ask whether the corresponding bracket \bar{a}_{p} to a_{p} belongs to $\lambda_{i} X_{i} Q_{i}$ or not.
If the answer is yes, then $\bar{a}_{p}=b_{j}$ for some $j, 1 \leqq j \leqq q$, and therefore by the definition 1.1 of [1] $a_{p} a_{p-1} \ldots a_{1} X_{i} b_{1} b_{2} \ldots b_{j}$ must be wflb what means $j=p$. In this case evidently $p=\min (p, q)=s$ and also one can easy see that there is no wflb containing $a_{s} a_{s-1} \ldots a_{1} X_{i} b_{1} b_{2} \ldots b_{s}$ and being contained in $\lambda_{i} X_{i} Q_{i}$, i.e. $a_{s} a_{s-1} \ldots a_{1} X_{i} b_{1} b_{2} \ldots b_{s}=I\left(\lambda_{i} X_{i} \varrho_{i}\right)$.

If the answer is no, then one can ask a similar question whether the corresponding bracket \bar{b}_{q} to the b_{q} belongs to $\lambda_{i} X_{i} \varrho_{i}$ or not. One easy sees that the answer must be yes. Then by a similar reasoning one proves the required result again.
[1] S. Peters, R. W. Ritchie: On the generative power of transformational grammars (mimeographed).
[2] N. Chomsky: Aspects of the Theory of Syntax. MIT 1965.
[3] S. C. Kleene: Introduction to Metamatematics, N. Y. 1965.
[4] K. C̆ulík: On some transformations in context-free grammars and languages. Czech. Math. Journ. 17 (92), (1967), 278-311.
[5] K. Culik: On the ordered rooted trees used in theory of languages. Théorie des graphesjournées internationales d'étude, Rome, juillet 1966. Dunod, Paris-Gordon and Breach, New York 1967, 69-76.

VY゙TAH
Některé věty o závorkování pro transformační gramatiky

Karel Čulík

Je dokázána řada vět týkajicích se lineárních zápisů (a jistých jejich rozkladů) frázových ukazatelů užívaných v bezkontextových gramatikách.

Doc. Dr. Karel Čulik, DrSc., Matematický ústav ČSAV, Žitná 25, Praha 1.

