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Some Theorems on Labelled Bracketings 
Used in Transformational Grammars 

KAREL C U L I K 

There are proved several lemmas and theorems concerning certain types of decompositions of 
well-formed labelled bracketings which are nothing else than a linear expression of phrase-
markers used in context-free grammars. 

The following theorems concern the notions introduced in [1] in order to formalize 
the theory of transformational grammar presented in [2]. Thus primarily the labelled 
bracketings have their meaning in linguistics or in the mathematical theory of lan
guages because they are sequences of symbols expressing uniquely the phrase-markers 
of context-free grammars. There is a correspondence between the well formed labell
ed bracketings and the phrase-markes and markers defined as the special graphs in [4] 
and [5]. On the other hand some pure abstract results have more general mathematical 
character and are connected with the bracketing mentioned in [3]. 

Finite, disjoint sets VT and VN are said to be terminal and nonterminal vocabularies 
resp. The pair ([, A) or (], A) is said to be a left or right labelled bracket resp. where 
A e Vff and instead of ([, A) or (], A) one writes [ or ] resp. Then L = {[; A eVN} 

A A A 
and R = {]; Ae VN} and a terminal labelled bracketing (lb) is a finite string of 

A 

symbols from F r u l u i ! . The free semigroup of all strings the generators of which 
belong to the set M is denoted by M " and M°°° = M0 0 u {e} where e is the identity 
element of the semigroup M°°, i.e. e is the empty string the length of which 1(e) = 0. 
Many other special definitions and notations are introduced in [1] and here accepted 
without any change. First of all in the definition 1.1 of [1] a well formed labelled 
bracketing (wflb) is introduced as follows: a lb \j/ is a wf lb if either (i) i]/ e VT u VN, or 
( i i )^ = ij/1 ii2 where i/^, \j/2 are wflb or (iii)i^ = [\p'_\ where [e L,] e R and \j/' is a wflb. 

A A A A 

A lb ij/ is said to be in the basic form if \ji = X1X1Q1X2X2Q2 • • • XnX„Q„ where 
n = 1, Xi e Vr, A; e U"> and Q{ e Rx° for each i = 1,2,..., n. 

Let t// be a lb and let \j/ = aaffay, where a e Land a e R. The occurrence shown 



of a is said to be a corresponding occurrence to the shown occurrence of a (and 
conversely) if it is the first occurrence of a in \p on the right of a which satisfies the 
following condtions: a and a are labelled by the same nonterminal symbol and the 
number of occurrences of the left brackets in jS is the same as the number of the right 
ones. 

A lb ij/ satisfies the bracket condition if to each occurrence of a left bracket in \\i 
there exists the corresponding occurrence of a right bracket in xj/ and if the number 
of occurrences of right brackets in xj/ is not greater than of left ones. 

Lemma 1. Let xj/ be a lb satisfying the bracket condition and let xj/ = Sacpdy 
where cp = abp; a,b e L, a e R and a and a are the corresponding brackets. If B is 
the corresponding bracket to b, then b can occur neither in 5 nor in y but always in 
p. Therefore <p and 6y satisfy the bracket condition too. 

Proof. Let us assume that b do no occurs in cp. Then according to the bracket 
condition the number of left brackets in cp is the same as the number of the right 
ones and therefore there must be a right bracket ce R occuring in cp the correspond
ing left bracket c of which does not belong to (p. This means that c must occur either 
in y what is a contradiction because the corresponding right bracket c is on the left 
and not on the right of the left bracket c, or c occurs in d. In this case we repeat the 
previous considerations for the pair c, c instead of a, a and for the left bracket a 
instead of b. This leads to a regress ad infinitum what is a contradiction to the finiteness 
of l(cp). 

Thus b must occur in cp and this is true for each left bracket b in cp. Therefore — 
as xj/ satisfies the bracket condition — cp satisfies it as well and in a similar way one 
proves the same for 5y. 

Theorem 1. A lb xj/ is a terminal wflb if and only if xj/ is in the basic form and if \\i 
satisfies the bracket condition. 

Proof. Let xj/ be a terminal wflb. If l(xj/) = 1, then xj/ e VT and therefore xj/ is in 
the basic form. The condition concerning the brackets is satisfied trivially (there is 
no bracket in ij/). If l(xj/) = k > 1, then either xji = \j/'il/" or xj/ = axp'a, where xj/ and xj/" 
are the terminal wflb's such that l(xj/') < k, l(\j/") < k and a e L, a e R and a is the 
corresponding occurrence to a. In the first case according to the inductive assumption 
\\i' = X\XXQ\ ... X'„,X„,Q„,, and \\i" = %^X\Q\ ••• K"~X-l„Ql„ and therefore xj/'xji" is in 
the basic form too. Further xj/' and xj/" satisfy our condition concerning their brackets 
and therefore obviously this condition is satisfied by il/'ij/" too. 

In the second case by the inductive assumption it follows that xji' is in the basic 
form and that \\i' satisfies the bracket condition. It is quite clear that than axj/'d 
satisfies both these conditions too. 

Now on the contrary let xj/ = X^X-^Q^ ...X„X„Q„ and let xj/ satisfy the bracket 
condition. If /(«/>) = 1, then \]/ e VT and ip is a terminal wflb. If l(\J/) = k > 1, then 
we shall distinguish two possibilities Xt = e and Xx =t= e. 



In the first case from the bracket condition if follows Q_ = e and therefore it is 
clear that cp = X2X2Q2 ... lnXnQn satisfies the bracket condition. Thus by the inductive 
assumption - because l(<p) < k - <p is a terminal wflb and therefore ip = X_cp 
a terminal wflb too. 

In the second case one can write X_ = aX'_ where a e L. From the bracket condition 
follows the existence of cp and y such that \j/ = acpdy, where a is the corresponding 
right bracket to a. By Lemma 1, <p and y (because o = e) must satisfy the bracket 
condition and therefore they must have the basic forms. Thus by the inductive assump
tion — because l(cp) < k and l(y) < k — cp and y are the terminal wf lb's and therefore 
rj/ = acpdy must be a terminal wflb too. 

According to the definition 1.2 of [1] one can assigne the debracketization d(cp) 
to the lb cp as follows: if cp = X_X2 ...X„ where X, e VT u L u R for each i = 
= 1, 2 , . . . , n then d(cp) = xklxk2... xkp where 1 < k_ < k2 < ••• < kp <. n and 
xk. e VT for each i = 1, 2, ..., p but XjB L u R for each j such that \ < j < n and 
j 4= k; for each i = 1,2,..., p. 

The further important notion is the standard factorization. A sequence of lb's 
(i//_, \j/2, ..., rj/k) is said to be the standard factorization of lb iZ'if(i) ifr — ^ i ^ 2 ••• *̂> 
(ii) either \\i{ = e or d(\j/^ =t= e and (iii) the leftmost or rightmost symbol of i/̂ - is 
not a right or left bracket resp. 

In the definition 1.4 of [1] it is inconvenient to allow \pt = e and to prescribe the 
number k characterizing the sequence (\j/_, \\i2,..., \pk). Therefore we shall call 
a standard factorization (\j/_, \j/2, ..., \j/k) right if d(\p^) 4= e for each i = 1, 2 , . . . , k. 
Further the maximal right standard factorization of a wflb has the maximal length k. 

It is clear that it is sufficient to study only the right standard factorizations because 
each not right standard factorization can be obtained from a right one by adding 
some elements e between some neighbooring strings in the sequence. 

Theorem 2. Let XXX_Q_X2X2X2 ... XnXnQn be the basic form of a terminal wflb \j/ 
and let us denote wf = XiXiQifor each i = 1, 2 , . . . , n. Then (w_, w2 , . . . , w„) is the 
maximal standard factorization of \p. Further a sequence of strings (\j/_, ij/2,... 
..., i/ffc) is a right standard factorization of \jj if and only if there are integers 
1 S Pi < Pz < ---Pk =n such that ij/_ = w_w2 ... wpi and ij/j = wpj_1 + 1wp._i + 2 . . . 
. . . wp. for each j = 2, 3,..., k. 

Proof. It is clear that really (wx, w2, ..., w„), is the maximal right standard 
factorization of \j/. Further let us assume that (\j/_, ii2,..., ipk) is a right standard 

"factorization of \j/, i.e. \j/_\li_ ... ij/k — ij/ and d(ip^) 4= e and the leftmost or rightmost 
symbol of rj/t does not belong to R or to L resp. for each i = 1,2,..., k. Theni/^i/^ . . . 
... \j/k = X_X_QXX2X2Q2 ... XnX„Q„ and between X{ and Xi+_ there can be at most 
one cut and if it is the case this cut must be between o; and Xi+ _ what means that there 
are the required integers p{. On the other side, if there are the required integers pt 

such that i//_ = w_w2 ... wpi and \j/j = wp._l + _wp._l + 2 ... wp. for j = 2,3,..., k, 
then it is obvious that (\j/_, \j/2,..., \j/k) is a right standard factorization. 



A deconcatenation of a string cp is a sequence of strings (<p_, <p2, • •., (p„) such that 
(p_(p_ •.. <p„ = <p and (pi # e for each i = 1, 2 , . . . , n. The number n is said to be the 
length of the deconcatenation (q>u cp2,..., (pn). If l(cp) — k, then by the induction 
one easy proves that there are 2fc_1 deconcatenations of the string q>. In fact, the 
right standard factorization is a special case of the deconcatenation. 

Theorem 3. / / (i/^, i//2, ..., i//k) is a right standard factorization of a terminal 
wflb \p, then (d(iAi)> d(\ji2),..., d(\j/k)) is a deconcatenation of the debracketization 
d(ijj) of\j/. The mapping assigning in this way deconcatenations to the factorizations 
is a one-to-one mapping of the set of all right standard factorizations of \j/ into the 
set of all deconcatenations of d(\jj). 

Proof. Using Theorem 2 one can express explicitly the corresponding elements 
in the considered mapping as follows: 

(X1X1Q1 ... XPIXPIQP1,XPI + 1XP1 + 1QPI + 1, ... XP2XP2QP2, ... 

•••> ^Pk-L + iXPk_1 + 1QPk_1 + 1XPk_1 + 2XPk_1 + 2Qk_1+2 ... XPkXPkQPk) a n d 

(XtX2...Xpi,Xpl + 1 ...XP2...Xpk_1 + 1 ... XpJ. Now Theorem 3 is obvious. 

Lemma 2. If aXfi' and a"Xfi are the wflb's such that X e VT, a e U°, a = a'a" 
and P = /?'/?", then a' = e and ft" is a wflb also. 

Proof. By the definition 1.1 of [1] it is clear what is the pair of the corresponding 
brackets and that in a wflb are contained either both of the corresponding brackets 
or none of them. Now, if a e Lis an arbitrary bracket contained in a and if a is its 
corresponding bracket, then a must be contained in a and thus in /?' also. By the 
same reasoning a must be contained in a" and therefore a" = a, i.e. a' = e. 

Now aXfl' and aXfi'f)"' are the wflb's and therefore by Theorem 1 both of them 
satisfy the bracket condition and are im the basic form. From this it follows that /T 
satisfies the bracket condition too and then that /?" is in the basic form. Thus by 
Theorem 1, /?" is a wflb. 

Finally the following definition 1.3 of [ l ] will be used. The interior of a terminal 
lb <p — written l((p) is the longest wflb \j/ such that (i) d(cp) = d(^i), and (ii) there are 
lb's a, x such that cp = a\\ix, if such \j/ exists. We shall call a the left exterior of q> 
(written E,(<p)) and T the right exterior of (p (ET(cp)). If there is no such \j/ we leave 
l(q>), Et((p) and Er(<p) undefined. We also leave the interior (and exteriors) of labelled 
bracketing q> undefined if <p is not terminal. 

Theorem 4. Let q> = i//£ for some i, where (\p_, \]/2, ..., ipk) is a right standard 
factorization of a terminal wflb ijj and let the interior l(cp) exist.If X1X1Q1X2X2Q2 ... 
... XnXnQn is the basic form of cp, the following three possibilities can appear : either 
Ex((p) = E(q>) = e and/(<p) = <p; in this case cp is a wflb itself, but in the remaining 
two cases it is not; or E^qi) = e, l(cp) = A1X1gI . . . XnXnQ

r
n and ET(cp) = Q'„ 4= e where 

Qn = QnQn or ET(cp) = e, I(cp) = X'^XiQi ... XnXnQnandE{((p) = X'_ 4= ewhereX_ = X'_X_, 
i.e. there can never be E,((p) =t= e + £r(<p)-



Proof. If q> is not wflb, then Ex(<p) Er(q>) 4= e because of cp = Ex(cp)l(cp) Er(cp)-
Further it is clear that either Ex(<p) = e or there exists X[ such that Ex((p) X[ = Xx 

and similarly either Er(<p) = e or there exists Q_ such that Q[ Er(cp) = QX (obviously 
it is allowed X[ = e and Q[ = e). Now it is sufficient to exclude the possibility of 
Ex(<p) * e 4= Er(cp). 

Therefore let us assume Ex(q>) 4= e 4= Er(q>). Under this condition Xx 4= e 4= Q„ 
and we can write X_ = aX[ where a _ Land Q„ = Q'J) where b e R. 

Now, let a denote the bracket corresponding in ij/ to the a and let us ask whether a 
belongs to cp or not. If the answer is yes, then there is an integer j such that 1 __ j __ n, 
Qj = c±c2 ... cp where p _ 1 and che R for each h = 1,2,..., p and a = cm for some 
1 __ m __ p. Thus cp' = XXXXQX ... XjXfxc2 ... cm is in the basic form and by Lemma 1 
it satisfies the bracket condition too. Therefore by Theorem 1 cp' is a terminal wflb. 
On the other hand, l((p) is also a terminal wflb and a' l(q>) = cp'cp" where a'a" = X_. 
Therefore by Lemma 2 a' = e, i.e. Ex(q>) = e what is a contradiciton. 

If the answer is no, i.e. a does not belong to cp, then the corresponding left bracket b 
to b must belong to cp and by a quite similar reasoning one obtains Er(cp) = e, i.e. 
a contradiction again. 

Lemma 3. Let (XXXXQX, X2X2Q2, ..., X„X„Q,^ be the maximal right standard 
factorization of a terminal wflb \j/. Then XjX&i has its interior and if Xx = apap_t ... 
. . . a! 4= e where aj e L for each 1 __ j __ p and QX = bxb2 ... bq 4= e where bj e R 
for each 1 __ j __ q, then l(XtXiQi) = asas_x ... a1Xiblb2 ... bs where s = min (p, q). 
If either Xt = e or Q, = e, then /(AjZ^;) = Xt. 

Proof. It is clear that d(XiXiQ,) ~ d(asas_x ... a1Xibib2...bs) = d(Xt) and 
therefore one needs to prove that the considered strings are wflb and have the maximal 
length. It is obvious in the latter case. In the former case when Xx 4= e Qx one can ask 
whether the corresponding bracket ap to ap belongs to XiXiQi or not. 

If the answer is yes, then ap = bj for some j , 1 t_ j __ q, and therefore by the 
definition 1.1 of [1] apapl ... a1Xib1b2 ... bj must be wflb what means j = p. 
In this case evidently p = min (p, q) = s and also one can easy see that there is 
no wflb containing asas_L ... axXibxb2 ... bs and being contained in AJX^J , i.e. 
asas_1 ... alXib1b2 ... bs = l(XiXtQi). 

If the answer is no, then one can ask a similar question whether the corresponding 
bracket bq to the bq belongs to AjX,^; or not. One easy sees that the answer must be 
yes. Then by a similar reasoning one proves the required result again. 

(Received September 11th, 1967.) 
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Některé věty o závorkování pro transformační gramatiky 

KAREL CULÍK 

Je dokázána řada vět týkajících se lineárních zápisů (a jistých jejich rozkladů) 

frázových ukazatelů užívaných v bezkontextových gramatikách. 
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