Determining the Transfer Functions from the Signal Flow Graphs

Ludvík Prouza

Two theorems useful for determining the transfer functions from the signal flow graphs of a linear discrete system are derived.

1. INTRODUCTION

In an interesting article ([1], p. 70) Ramamoorthy has been shown a new method for computing the transfer functions in a linear discrete system. Although the basic idea of the method is clear, the derivation thereof is obscure and the results are given in a poorly applicable form being not stated explicitly. Moreover, many superfluous mutually cancelling terms appear in the resulting expression.

It is the purpose of this article to remove these inconveniences.

2. BASIC EQUATIONS OF A LINEAR DISCRETE SYSTEM

A linear discrete system is described by a system of linear first-order difference equations
(1) $x_{1}(t+1)=a_{11} x_{1}(t)+a_{21} x_{2}(t)+\ldots+a_{n 1} x_{n}(t)+b_{11} y_{1}(t)+\ldots+b_{m 1} y_{m}(t)$
$x_{2}(t+1)=a_{12} x_{1}(t)+a_{22} x_{2}(t)+\ldots+a_{n 2} x_{n}(t)+b_{12} y_{1}(t)+\ldots+b_{m 2} y_{m}(t)$,
$x_{n}(t+1)=a_{1 n} x_{1}(t)+a_{2 n} x_{2}(t)+\ldots+a_{n n} x_{n}(t)+b_{1 n} y_{1}(t)+\ldots+b_{m n} y_{m}(t)$,
where $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ are the system variables, $y_{1}(t), y_{2}(t), \ldots, y_{m}(t)$ are the input variables, $t=0,1,2, \ldots$ and $a_{i j}, b_{l k}(i, j, k=1,2, \ldots, n, l=1,2, \ldots, m)$ are constants. A unique solution of the equation system results being given the initial conditions $x_{1}(0), x_{2}(0), \ldots, x_{n}(0)$.

$$
\begin{equation*}
X(z)=A \cdot z^{-1} \cdot X(z)+B \cdot z^{-1} \cdot \boldsymbol{Y}(z)-\boldsymbol{x}(0) \tag{2}
\end{equation*}
$$

Solving (2) formally, one gets with zero initial conditions (I being the unit matrix)

$$
\begin{equation*}
X(z)=\left(I-A \cdot z^{-1}\right)^{-1} \cdot B \cdot z^{-1} \cdot \boldsymbol{Y}(z) \tag{3}
\end{equation*}
$$

The solution exists for z distinct from the eigenvalues of the matrix A, i.e. the roots of the characteristic equation of the system. Denoting the characteristic determinant

$$
\begin{equation*}
\left|I-A \cdot z^{-1}\right|=C \tag{4}
\end{equation*}
$$

one may write more explicitly
(5)

$$
\boldsymbol{X}(z)=\left\{\begin{array}{ll}
\frac{C_{11}}{C}, \ldots, & \frac{C_{1 n}}{C} \\
\frac{C_{21}}{C}, \ldots, & \frac{C_{2 n}}{C} \\
\ldots \ldots \\
C_{n 1} \\
C & \ldots, \\
\hline
\end{array}\right\} \cdot z_{n n}^{-1} \cdot \boldsymbol{B} \cdot \boldsymbol{Y}(z)
$$

Now, one is interested in the relation between $X_{i}(z)$ and $Y_{k}(z)$, the remaining $Y_{j}(z)=0$ for $j \neq k$.

From (5)

$$
\begin{equation*}
\frac{X_{i}(z)}{Y_{k}(z)}=\frac{z^{-1}}{C} \cdot\left(C_{i 1} b_{k 1}+\ldots+C_{i n} b_{k n}\right) \tag{6}
\end{equation*}
$$

follows and this is the desired transfer function from $Y_{k}(z)$ to $X_{i}(z)$.
Thus, one needs compute C and the cofactors thereof.

3. THE COMPUTATION OF C AND $C_{i j}$ FROM THE GRAPHS

In Fig. 1, one sees the construction of the signal flow graph to the matrix \boldsymbol{C} (for a system of the third order, the graph is complete). The determinant C is given by the first Mason rule

$$
\begin{equation*}
C=1-\sum P_{1}+\sum P_{2}+\ldots+(-1)^{n} \sum P_{n} \tag{7}
\end{equation*}
$$

where $\sum P_{j}$ is the sum of products of the branch transfers corresponding to the j-tuples of non-touching loops.

The cofactor $C_{i j}$ may be computed by the second Mason rule.
But,
1.

$$
C_{i j}=\left|\begin{array}{c}
o_{i} \tag{8}\\
\vdots \\
O_{i} \\
O_{j}, \ldots, O_{j},(-1)^{i+j}, o_{j}, \ldots, o_{j} \\
O_{i} \\
\vdots \\
O_{i}
\end{array}\right|
$$

where the rew j and the column i are explicitly given, the elements O_{j} being all 0 and the elements O_{i} being arbitrary or contrarily O_{i} being 0 and O_{j} being arbitrary. All other elements of (8) are the same as in (4).

Fig. 1.

Thus, there is no unique graph corresponding to (8). Ramamoorthy chooses that with minimum number of changes compared with the graph for C. But, it is better to choose that with the maximum number of suppressed branches. Comparing (8) with (4) one will distinguish two cases: $\left.\left.C_{1}\right) i \neq j, C_{2}\right) i=j$.
Case C_{1}): This is the same as to put in $C: a_{i j}=z \cdot(-1)^{i+j+1}, a_{i i}=z$ or $a_{j j}=z$ (but not both) and all remaining $a_{k j}=0$ and $a_{i k}=0$.

- Case C_{2}): This is the same as to put in C all $a_{k i}=0$ and all $a_{i k}=0, k \neq i$.

Thus, following two theorems result.

Theorem 1: Let $i \neq j$. To compute $C_{i j}$, suppress in the graph for C all branches ending in X_{j} and all branches beginning in X_{i}, with exception of the branch from X_{i} to X_{j}, which has now the transfer $(-1)^{i+j+1}$, and of the self-loop from X_{i} to X_{i} or from X_{j} to X_{j} (but not both), which has now the transfer 1. Then, use the first Mason rule.

Theorem 2: Let $i=j$. To compute $C_{i i}$, suppress in the graph for C all branches ending and beginning in X_{i}. Then, use the first Mason rule.

4. ILLUSTRATIVE EXAMPLES

To compute C_{13}, one constructs from the graph in Fig. 1 with the aid of Theorem 1 the graph in Fig. 2. The first Mason rule gives

$$
\begin{gather*}
C_{13}=1-\left(1+a_{22} z^{-1}-a_{21} a_{32} z^{-2}-a_{31} z^{-1}\right)+ \tag{9}\\
+\left(a_{22} z^{-1}-a_{31} a_{22} z^{-2}\right)=a_{31} z^{-1}+a_{21} a_{32} z^{-2}-a_{31} a_{22} z^{-2}
\end{gather*}
$$

Fig. 2.

Fig. 3.

To compute C_{22}, one constructs from the graph in Fig. 1 with the aid of Theorem 2 the graph in Fig. 3. The first Mason rule gives

$$
\begin{equation*}
C_{22}=1-\left(a_{11} z^{-1}+a_{33} z^{-1}+a_{31} a_{13} z^{-2}\right)+a_{11} a_{33} z^{-2} . \tag{10}
\end{equation*}
$$

(Received June 16th, 1967.)

REFERENCES

[1] Ramamoorthy, C. V.: Discrete system representation and analysis by generating functions of abstract graphs. IEEE Int. Conv. Rec. (1965), Pt 6, 68-77.

VÝTAH

Určení přenosových funkcí z grafů signálových toků
Ludvík Prouza

V článku [1] odvodil Ramamoorthy novou metodu pro výpočet přenosových funkcí v lineárním diskrétním systému. Metoda není popsána explicitním návodem a kromě toho při její aplikaci vzniká řada zbytečných vzájemně se rušících sčítanců ve výsledné formuli, V tomto článku se odvozují dvě věty, které odstran̆ují uvedené nevýhody.

Dr. Ludvik Prouza, CSc., Ústav pro výzkum radiotechniky, Opočinek', p. Lány na Dülku.

