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Determining the Transfer Functions 
from the Signal Flow Graphs 

LUDVIKPROUZA 

Two theorems useful for determining the transfer functions from the signal flow graphs of 
a linear discrete system are derived. 

1. INTRODUCTION 

In an interesting article ([1], p. 70) Ramamoorthy has been shown a new method 
for computing the transfer functions in a linear discrete system. Although the basic 
idea of the method is clear, the derivation thereof is obscure and the results are given 
in a poorly applicable form being not stated explicitly. Moreover, many superfluous 
mutually cancelling terms appear in the resulting expression. 

It is the purpose of this article to remove these inconveniences. 

2. BASIC EQUATIONS O F A LINEAR DISCRETE SYSTEM 

A linear discrete system is described by a system of linear first-order difference 
equations 

(1) Xl(t + 1) -» o n J. j(l) + a21x2(t) + ... + anixn(t) + bliyi(t) + ... + bmiy,„(t) 

x2(t + 1) = a 1 2x.(f) + a22x2(t) + ... + an2xn(t) + bl2yx(i) + . . . + bm2ym(t), 

xn(t + 1) = a^Xiit) + a2nx2(t) + ... + annxn(t) + blt%yi(t) + ... + bm„ym(t), 

where xt(t), x2(t),..., xn(t) are the system variables, yi(t), y2(t),.... ym(t) are the 
input variables, ( = 0, 1, 2, . . . and au, blk (i,j, k « 1, 2,. . . . n, I = 1, 2, ..., m) are 
constants. A unique solution of the equation system results being given the initial 
conditions x^O), x2(0)>..., x„(0). 



Taking the Z-transform of the system (1), one obtains the vector (matrix) equation 3 7 

(2) X(z) = A.z'1 . X(z) + B. z - 1 . Y(z) - x(0). 

Solving (2) formally, one gets with zero initial conditions (/ being the unit matrix) 

(3) X(z) = (I-A.z-1)'1.B.z-1.Y(z). 

The solution exists for z distinct from the eigenvalues of the matrix A, i.e. the roots 
of the characteristic equation of the system. Denoting the characteristic determinant 

(4) 

one may write more explicitly 

ÌI-A.z-Ц = C , 

(5) X(z) = 

£łl £ll 
C c 

£ll C2n 

c ' ' c . z " 1 .B.Y(z). 

c„± c„„ 

. z " 1 

c c 

Now, one is interested in the relation between Xt(z) and Yk(z), the remaining 
Yj(z) = 0 for j + k. 

From (5) 

X{z) 
(6) 

-*(-) C 
. ( Q A i + . . . + C ; A „ ) 

follows and this is the desired transfer function from Yjz) to Xt(z). 

Thus, one needs compute C and the cofactors thereof. 

3. THE COMPUTATION OF C AND Cu FROM THE GRAPHS 

In Fig. 1, one sees the construction of the signal flow graph to the matrix C (for 
a system of the third order, the graph is complete). The determinant C is given by the 
first Mason rule 

(7) C = í-^P1+үP2 + ...+(-iү^Pn 

where V p ; is the sum of products of the branch transfers corresponding to the j-tuples 

of non-touching loops. ,.;-..-, , ,•:/<")]..• , . ,•; . / 



The cofactdr Ctj may be computed by the second Mason rule. 
But, 

oi 

(8) C„ = 
oi 

o,...,o,(-i)Ҷo,...>o j 

oi 

oi 

where the row j and the column i are explicitly given, the elements Oj being all 0 
and the elements Ot being arbitrary or contrarily Ot being 0 and 0} being arbitrary. 
All other elements of (8) are the same as in (4). 

Fig. 1. 

Thus, there is no unique graph corresponding to (8). Ramamoorthy chooses that 
with minimum number of changes compared with the graph for C. But, it is better 
to choose that with the maximum number of suppressed branches. Comparing (8) 
with (4) one will distinguish two cases: Cj) i 4= j , C2) i = j . 

Case Cj): This is the same as to put in C: au = z . ( — l)i+J+l, au = z or an — z 
(but not both) and all remaining akJ = 0 and alk = 0. 
"• Case C2): This is the same as to put in C all aki = 0 and all aik = 0, k 4= i. 

Thus, following two theorems result. 



Theorem 1: Let i 4= j To compute Ci}, suppress in the graph for C all branches 
ending in Xj and all branches beginning in Xt, with exception of the branch from 
X-t to Xj, which has now the transfer ( - l ) i + J + 1, and of the self-loop from Xt to Xt 

or from Xj to Xj (but not both), which has now the transfer 1. Then, use the first 
Mason rule. 

Theorem 2: Let i = j . To compute Cu, suppress in the graph for C all branches 
ending and beginning in Xt. Then, use the first Mason rule. 
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4. ILLUSTRATIVE EXAMPLES 

To compute C13, one constructs from the graph in Fig. 1 with the aid of Theorem 1 
the graph in Fig. 2. The first Mason rule gives 

(9) C13 = 1 - (1 + «22Z~X - a21a32z~2 - a31z~l) + 

+ (a22z~l - a3la22z~2) = a^z'1 + a2la32z~2 - a31a22z~2 . 

Fig. 2. 

Fig. 3. 



40 To compute C22, one constructs from the graph in Fig. 1 with the aid of Theorem 2 
the graph in Fig. 3. The first Mason rule gives •' 

(10) C22 = 1 - (fluz-1 + a33z~l + a3lal3z-2) + alta33z~2 . 
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Určení přenosových funkcí z grafů signálových toků 

LUDVÍK PROUZA 

V článku [ l ] odvodil Ramamoorthy novou metodu pro výpočet přenosových 
funkcí v lineárním diskrétním systému. Metoda není popsána explicitním návodem 
a kromě toho při její aplikaci vzniká řada zbytečných vzájemně se rušících sčítanců 
ve výsledné formuli, V tomto článku se odvozují dvě věty, které odstraňují uvedené 
nevýhody. 
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