KYBERNETIKA ČÍSLO 4, ROČNÍK 3/1967

Set-Theoretical Operations on *k*-multiple Languages

JAROSLAV KRÁL

It is shown that the class of k-multiple languages (see [1]) is closed under formation of finite unions and intersections. The two types of complements are k-multiple modulo e. The class of k-multiple modulo e languages is closed under the formation of finite unions, not, however, under formation of intersections and complements.

The k-multiple automaton was introduced in [1] as a generalization of the concept of finite automaton and as a device for the recognition of the so called k-multiple languages. For our purposes we reformulate here some definitions from [1].

Definition 1 (Čulík). The k-multiple automaton A is defined by the (k + 4)-tuple $\langle V^{(1)}, V^{(2)}, ..., V^{(k)}, I, \Phi, i_0, F \rangle$ where

 $V^{(i)}$, i = 1, 2, ..., k, are finite nonvoid sets called alphabets, elements of $V^{(i)}$ are called symbols;

I is a finite nonvoid set called the set of internal states of *A*;

 Φ , the transition function, is a transformation from $I \otimes V^{(1)} \otimes ... \otimes V^{(k)}$ into I, \otimes denotes the cartesian product;

 i_0 , the initial state, is an element of I;

F, the set of final states, is a subset of I.

A is a device which can be in some internal state $i \in I$. This device has k inputs. After reading $v_1, ..., v_k$ by inputs of A, the internal state i of A is changed to $i_1, i_1 = \Phi(i, v_1, v_2, ..., v_k)$. A can be therefore interpreted as a finite automaton with k inputs instead of one.

Definition 2. We say that a string

 $x = x_1 x_2 \dots x_s x_{s+1} \dots x_{2s} \dots x_{ks}$

is acceptable by a k-multiple automaton A if the expression

$$\Phi(\Phi(\ldots \Phi(\Phi(i_0, w_1), w_2) \ldots), w_s),$$

6 where $w_i = (x_i, x_{s+i}, x_{2s+i}, ..., x_{(k-1)s+i})$, has a meaning and defines some state from F. The string, the length of which is not the multiple of k, is not acceptable by the definition.

For a k-multiple automaton A and for an k-tuple x of symbols we shall use the terms such as "x is read by A", "x puts A into state i" and so on in the similar sense as for a finite automaton.

Definition 3. k-multiple language L_k is a set of all strings which are acceptable by some k-multiple automaton A. The automaton A will be called the automaton of L_k .

Theorem 1. Intersection or union of two k-multiple languages is a k-multiple language.

This is proved by a slight modification of the proof that the union or intersection of two regular events is a regular event again; see [2] or [6].

Definition 4. Complement \tilde{L}_k of the k-multiple language L_k is the set

$$\tilde{L}_k = \overline{V}^* - L_k \,,$$

where \overline{V}^* is the set of all strings over $\overline{V} = V^{(1)} \cup V^{(2)} \cup \ldots \cup V^{(k)}$.

Example 1. Set $L_2 = \{a^n b^n; n \ge 0\}$ is the two-multiple language (see [1]). But

$$\tilde{L}_2 = \{a, b\}^* - L_2$$

and L_2 contains the set $\{a^n; n > 0\}$, i.e. the strings the lenghts of which are not even and we have at once:

Corollary 1. Complement of the k-multiple language L_k is not necessarily a k-multiple language.

Definition 4a. The component complement \hat{L}_k of the k-multiple language L_k is the set of all strings $x \notin L_k$ of the form $d_1d_2 \dots d_k$, $d_i \in V^{(i)*}$ for $i = 1, 2, 3, \dots, k$.

Henceforward in this paper by $A = \langle V^{(1)}, ..., V^{(k)}, I, i_0, F \rangle$ an automaton of L_k will be denoted.

Example 2. $\hat{L}_2 = \{a^n b^m; m \neq n; m, n \ge 0\}$ is component complement of $L_2 = \{a^n b^n; n > 0\}$ and it follows.

Corollary 2. Component complement \hat{L}_k of k-multiple language L_k is not necessarily a k-multiple language.

Definition 5. Let $V^{(1)}, \ldots, V^{(k)}$ be alphabets not containing *e*. A set L_k of the strings of the form $d_1d_2 \ldots d_k$, $d_i \in V^{(i)*}$, $i = 1, 2, \ldots, k$, is a *k*-multiple modulo *e* language if and only if there exists a *k*-multiple language L'_k with alphabets $V^{(i)} \cup \{e\}$ so that for every $x \in L_k$ there is a $y \in L'_k$ for which $x = y \pmod{e}$ (mod *e*) (i.e. *x* is equal to the *y* in the sense of a free semigroup with the identity symbol *e* generating *y*) and vice versa

for every $y \in L'_k$ there exists $x \in L_k$ so that $y = x \pmod{e}$. In other words L_k is *k*-multiple modulo *e* if every string of L_k belongs to a *k*-multiple language L_k if a suitable insertion of *e*'s is done and vice versa by erasing *e*'s in arbitrary $y \in L'_k$ a string $x \in L_k$ is obtained.

Theorem 2. \tilde{L}_k is a k-multiple modulo e language. Proof. We shall construct a k-multiple automaton

$$A^{0} = \langle V^{0}, V^{0}, ..., V^{0}, I^{0}, \Phi^{0}, i^{0}_{0}, F^{0} \rangle, \quad V^{0} = \overline{V} \cup \{e\}$$

which accepts \tilde{L}_k . Each string $x \in L_k$ is expressible in the form

$$(2.1) x = d_1 d_2 d_3 \dots d_k$$

where d_i are strings over $\overline{V} = V^{(1)} \cup V^{(2)} \cup \ldots \cup V^{(k)}$ and if x has the length sk + j, j < k then d_1, d_2, \ldots, d_j have the length s + 1 and d_{j+1}, \ldots, d_k have the length s. We shall construct A^0 so that A^0 accepts only the strings x of the form $(i = 0, 1, 2, 3, \ldots)$:

(2.2)
$$x^{0} = d_{1}e^{i}d_{2}e^{i}\dots d_{j}e^{i}d_{j+1}e^{i+1}\dots d_{k}e^{i+1}$$

where $e^{i+1} = e^i e$, i > 0, e^0 is an empty string and d_i has the same meaning as in (2.1). It follows that the alphabets $V^{(i)}$ of A^0 are for all i = 1, 2, ..., k equall to $V^0 = V \cup \{e\}$. The construction of Φ^0 , I^0 and F^0 is now straightforward although rather cumbersome.

If an automaton A of L_k is given by $\langle V^{(1)}, ..., V^{(k)}, I, \Phi, i_0 F \rangle$ we put $i_0^0 = i_0$,

$$I^{0} = I \cup \{i_{w}^{*}; w = 2, 3, ..., k - 1\} \cup \{i_{D}\} \cup \{i_{l}\}$$

where all $i_{w^*}^*$ w = 2, 3, ..., k - 1, i_l do not belong to I. Φ^0 coincides with Φ on $I \otimes V^{(1)} \otimes ... \otimes V^{(k)}$. $\Phi^0(i, v_1, v_2, ..., v_k) = i_l$ for $v_1, v_2, ..., v_k \neq e$ and either $i = i_l$ or $i \in I$ and $\Phi^0(i, v_1, ..., v_k)$ is undefined, i.e. A^0 is in the state i_l if a symbol not belonging to $V^{(i)}$ has already been read by *i*-th input and the symbol *e* has not been read yet.

 $\Phi^{\circ}(i, v_1, \dots, v_w, e, e, \dots, e) = i_w^*$ for $w = 2, 3, \dots, k-1$ and $i \in I$ or $i = i_i$ (i.e. the reading of the last but one k-tuple of symbols is realized);

 $\Phi^0(i, e, e, ..., e) = i$ for all $i \in I^0$ (i.e. reading of (e, e, ..., e) causes no change of the internal state of A^0).

In all other cases $\Phi^0(i, v_1, v_2, ..., v_k) = i_D$.

Putting $i_0^0 = i_0$ and

$$F^{0} = (I - F) \cup \{i_{l}\} \cup \{i_{w}^{*}; w = 2, 3, ..., k - 1\}$$

we see that A^0 has all desired properties.

Theorem 3. \hat{L}_k is a k-multiple modulo e language. Proof. We shall construct a k-multiple automaton

$$A^{c} = \langle V^{0}, V^{0}, ..., V^{0}, I^{c}, \Phi^{c}, i^{c}_{0}, F^{c} \rangle$$

which accepts \hat{L}_{k^*} (For the meaning of V^0 see the proof of the previous theorem.) First we shall construct a k-multiple automaton \overline{A} which accepts the set L_k^{ord} of

strings being expressible in the form

$$x = d_1 d_2 \dots d_k,$$

 d_i is a string over $V^{(i)}$ for i = 1, 2, ..., k. Let

$$(3.1) \qquad \overline{A} = \langle V^0, V^0, \dots, V^0, \overline{I}, \overline{\Phi}, \overline{\iota}_0, \overline{F} \rangle$$

 \overline{A} is constructed in order to accept only the strings of the form (2.2). The construction of \overline{A} is a simple matter if alphabets $V^{(i)}$ are mutually disjoint or if all $V^{(i)}$ coincide. In the general case the construction is more difficult. As the construction of \overline{A} is rather cumbersome its main ideas will only be indicated. All alphabets of \overline{A} are identical and equal to V^0 . If $x \in L_k^{\text{ord}}$ is expressed in the form $x = d_1d_2 \dots d_k$ where the lenghts of d_i are s or s + 1, then $x^j = d_1^j d_2^j \dots d_k^j \in L_k^{\text{ord}}$ for $j = 1, 2, \dots, s + 1$, where (as well as below) d_i^j denotes the string formed by the first j symbols of d_i . If follows that after reading x^j there exists a finite set B_j of vectors $b = (b_i, \dots, b_k)$ where $b_i = q_i$ if symbols from $V^{(q_i)}$ can be read by the *i*-th input, $i = 1, 2, \dots, k$, so that

$$j^{j+1} = d_1^{j+1} d_2^{j+1} \dots d_k^{j+1}$$

remains a member of L_k^{ord} .

Obviously B_{j+1} having the same meaning for x^{j+1} as B_j for x^j is a subset of B_j . Now let *I* contain the states of the form i_B where *B* is one of the above mentioned sets. Let $\Phi(i_{B_j}, V_1, ..., V_k) = i_{B_{j+i}}$ where $x^{j+1} = d_1^{j}v_1d_2^{j}v_2 ... d_k^{j}v_k$, B_j containing a vector $t = (t_1, ..., t_n)$ so that $v_i \in V^{(ti)}$ for i = 1, 2, ..., k. We note that these relations have a meaning as B_{j+1} is uniquely determined by B_j and $v_1, v_2, ..., v_k$. If B_j does not contain any vector of such a property some "absorbent" state i_D is reached i.e. for i_D it is true that $\Phi(i_D, v_1, v_2, ..., v_k) = i_D$ for all $(v_1, v_2, ..., v_k)$. The set of all i_B is finite and it can be shown that adding some auxiliary states and putting $i_0 = i_{B_0}$, $B_0 =$ $= \{(t_1, t_2, ..., t_k); 1 \le t_1 \le t_2 \le ... \le t_k \le k\}$ it is possible to construct \overline{A} of all desired properties.

Let us now construct the automaton A^c . The set of its states is formed by the set of pairs of the form $\langle i_1, i_2 \rangle$ where $i_1 \in \overline{I}$ and $i_2 \in I$ and by some additional states (i.e. the states of A^c are "pairs of states" of \overline{A} and an automaton A of L_k and some additional states).

Let $\mathbf{v} = (v_1, v_2, ..., v_k)$ and

$$\Phi^{c}(\langle i_{1}, i_{2} \rangle, \mathbf{v}) = \langle \overline{\Phi}(i_{1}, \mathbf{v}), \Phi(i_{2}, \mathbf{v}) \rangle$$
(3.2)

if both Φ and $\overline{\Phi}$ are defined;

$$\Phi^{c}(i, e, e, ..., e) = i$$
 (3.3) 319

for all $i \in I^c$

$$(\langle i_1, i_2 \rangle, \mathbf{v}) = \langle \overline{\Phi}(i_1, \mathbf{v}), i_F \rangle$$
(3.4)

if $\Phi(i_2, \mathbf{v})$ is not defined;

$$F^{c} = \left\{ \langle i_{1}, i_{2} \rangle; i_{1} \in \overline{F}, i_{2} \notin F \right\} \cup \left\{ \langle i_{1}, i_{F} \rangle; i_{1} \in \overline{F} \right\}.$$
(3.5)

It is easily seen that A^c has the desired properties as a state from F^c cannot be reached if $x \in L_k$ (see (3.3) and (3.4)) or if x is not expressible in the form $d_1d_2 \ldots d_k$ where d_i is a string over $V^{(i)}$ for $i = 1, 2, \ldots, k$ (see properties of \overline{A}).

Theorem 5. The union of two k-multiple modulo e languages is a k-multiple modulo e language.

The proof is similar to the proof of the theorem 1. The only difference is that instead of considering strings x we consider the strings x' obtaining from x by convenient insertion of e's.

Example 3. Let us have two-multiple modulo e languages:

 Φ^{\prime}

$$L_1 = \{a^n b^n c^m; m, n > 0\}$$

which is accepted by the two multiple automaton $\langle \{a\} \cup \{e\}, \{b, c, e\}, \{S_1, S_2, S_3\}, \Phi, S_1, \{S_1, S_2\}\rangle$ where $\Phi(S_1, a, b) = S_1, \Phi(S_1, e, c) = \Phi(S_2, e, c) = S_2, \Phi(S, e, c) = S_3$ for all $S, \Phi(, ,) = S_3$ in all other cases and

$$L_2 = \{a^m b^n c^n; m, n > 0\}$$

which is accepted by the similar automaton. But then

$$L_1 \cap L_2 = \{a^n b^n c^n; n > 0\}$$

is a three-multiple modulo e language, not a two-multiple modulo e language. It follows

Corollary 3. The intersection of two languages which are k-multiple modulo e is not necessarily a k-multiple modulo e language.

Corollary 4. The complement of k-multiple modulo e language is not necessarily a k-multiple modulo e. By the complement of L_k we mean the set

$$\tilde{L}_k = C - L_k$$

where C is the set of all strings over \overline{V} .

Proof. We note that for every two sets A, B

$$A \cap B = (A^c \cup B^c)^c,$$

where $()^{c}$ denotes the complement and that the assertion of the theorem follows from corollary 3 and theorem 5.

Corollary 5. The component complement \hat{L}_k of k-multiple modulo e language, i.e. the set

 $\hat{L}_k = C - L_k \,,$

where $C = \{d; d = d_1 d_2 \dots d_k, d_i \text{ is for } i = 1, 2, \dots, k \text{ a string over } V^{(i)}\}$ is not necessarily a k-multiple modulo e language.

The proof is the same as the proof of the previous corollary.

(Received June 1st, 1966.)

REFERENCES

[1] K. Čulík, I. Havel: On multiple finite automata. (In print.)

[2] N. Chomsky: Chapters 11-13 in Handbook of Math. Psychology. John Wiley 1963.

- [3] N. Chomsky, M. P. Schützenberger: The algebraic theory of context-free languages. In Computer programming and Formal systems. North-Holland 1963.
- [4] K. Čulik: Some notes on finite state languages and events represented by finite automata using labelled graphs. Časopis pro pěstování matematiky 86 (1961), 1, 43-55.
- [5] S. Ginsburg, J. S. Ullian: Ambiguity in contex free languages. J. of ACM 13 (1966), 1, 62-89.
- [6] В. Н. Глушков: Синтез цифровых автоматов. Физматгиз, Москва 1962.
- [7] E. F. Moore: Gedankenexperimente on sequential machines. In Automata studies, Princeton 1956.
- [8] C. C. Elgot, J. E. Mezei: On relations defined by generalized automata. IBM J. of Res. and Develop 9 (1965), 1, 47-68.

VÝTAH

Množinové operace nad k-násobnými jazyky

JAROSLAV KRÁL

V článku jsou zkoumány tak zvané násobné jazyky tj. jazyky akceptovatelné tzv. násobnými automaty (viz [1]), jež jsou zobecněním tzv. regulárních výrazů. Je dokázáno, že třída násobných jazyků je uzavřena vůči průniku a sjednocení, ale nikoliv vůči doplňku. Třída k-násobných modulo e jazyků je uzavřena vůči sjednocení, ale nikoliv vůči průniku a tedy ani doplňku.

Jaroslav Král, prom. matematik, Ústav výpočtové techniky ČSAV-ČVUT, Horská 3, Praha 2.