Set-Theoretical Operations on k-multiple Languages

Jaroslay Král

It is shown that the class of k-multiple languages (see [1]) is closed under formation of finite unions and intersections. The two types of complements are k-multiple modulo e. The class of k-multiple modulo e languages is closed under the formation of finite unions, not, however, under formation of intersections and complements.

The k-multiple automaton was introduced in [1] as a generalization of the concept of finite automaton and as a device for the recognition of the so called k-multiple languages. For our purposes we reformulate here some definitions from [1].

Definition 1 (C̆ulík). The k-multiple automaton A is defined by the $(k+4)$ tuple $\left\langle V^{(1)}, V^{(2)}, \ldots, V^{(k)}, I, \Phi, i_{0}, F\right\rangle$ where
$V^{(i)}, i=1,2, \ldots, k$, are finite nonvoid sets called alphabets, elements of $V^{(i)}$ are called symbols;
I is a finite nonvoid set called the set of internal states of A;
Φ, the transition function, is a transformation from $I \otimes V^{(1)} \otimes \ldots \otimes V^{(k)}$ into I, \otimes denotes the cartesian product;
i_{0}, the initial state, is an element of I;
F, the set of final states, is a subset of I.
A is a device which can be in some internal state $i \in I$. This device has k inputs. After reading v_{1}, \ldots, v_{k} by inputs of A, the internal state i of A is changed to $i_{1}, i_{1} \doteq$ $=\Phi\left(i, v_{1}, v_{2}, \ldots, v_{k}\right) . A$ can be therefore interpreted as a finite automaton with k inputs instead of one.

Definition 2. We say that a string

$$
x=x_{1} x_{2} \ldots x_{s} x_{s+1} \ldots x_{2 s} \ldots x_{k s}
$$

is acceptable by a k-multiple automaton A if the expression

$$
\Phi\left(\Phi\left(\ldots \Phi\left(\Phi\left(i_{0}, w_{1}\right), w_{2}\right) \ldots\right), w_{s}\right)
$$

where $w_{i}=\left(x_{i}, x_{s+i}, x_{2 s+i}, \ldots, x_{(k-1) s+i}\right)$, has a meaning and defines some state from F. The string, the length of which is not the multiple of k, is not acceptable by the definition.

For a k-multiple automaton A and for an k-tuple x of symbols we shall use the terms such as " x is read by A ", " x puts A into state i " and so on in the similar sense as for a finite automaton.

Definition 3. k-multiple language L_{k} is a set of all strings which are acceptable by some k-multiple automaton A. The automaton A will be called the automaton of L_{k}.

Theorem 1. Intersection or union of two k-multiple languages is a k-multiple language.

This is proved by a slight modification of the proof that the union or intersection of two regular events is a regular event again; see [2] or [6].

Definition 4. Complement \widetilde{L}_{k} of the k-multiple language L_{k} is the set

$$
\tilde{L}_{k}=\bar{V}^{*}-L_{k},
$$

where \bar{V}^{*} is the set of all strings over $\bar{V}=V^{(1)} \cup V^{(2)} \cup \ldots \cup V^{(k)}$.
Example 1. Set $L_{2}=\left\{a^{n} b^{n} ; n \geqq 0\right\}$ is the two-multiple language (see [1]). But

$$
\tilde{L}_{2}=\{a, b\}^{*}-L_{2}
$$

and L_{2} contains the set $\left\{a^{n} ; n>0\right\}$, i.e. the strings the lenghts of which are not even and we have at once:

Corollary 1. Complement of the k-multiple language L_{k} is not necessarily a k-multiple language.

Definition 4a. The component complement \hat{L}_{k} of the k-multiple language L_{k} is the set of all strings $x \notin L_{k}$ of the form $d_{1} d_{2} \ldots d_{k}, d_{i} \in V^{(i) *}$ for $i=1,2,3, \ldots, k$.

Henceforward in this paper by $A=\left\langle V^{(1)}, \ldots, V^{(k)}, I, i_{0}, F\right\rangle$ an automaton of L_{k} will be denoted.

Example 2. $\hat{L}_{2}=\left\{a^{n} b^{m} ; m \neq n ; m, n \geqq 0\right\}$ is component complement of $L_{2}=$ $=\left\{a^{n} b^{n} ; n>0\right\}$ and it follows.

Corollary 2. Component complement \hat{L}_{k} of k-multiple language L_{k} is not necessarily k-multiple language.
Definition 5. Let $V^{(1)}, \ldots, V^{(k)}$ be alphabets not containing e. A set L_{k} of the strings of the form $d_{1} d_{2} \ldots d_{k}, d_{i} \in V^{(i)^{*}}, i=1,2, \ldots, k$, is a k-multiple modulo e language if and only if there exists a k-multiple language L_{k}^{\prime} with alphabets $V^{(i)} \cup\{e\}$ so that for every $x \in L_{k}$ there is a $y \in L_{k}^{\prime}$ for which $x=y(\bmod e)$ (i.e. x is equal to the y in the sense of a free semigroup with the identity symbol e generating y) and vice versa
for every $y \in L_{k}^{\prime}$ there exists $x \in L_{k}$ so that $y=x(\bmod e)$. In other words L_{k} is k-multiple modulo e if every string of L_{k} belongs to a k-multiple language L_{k} if a suitable insertion of e^{\prime} s is done and vice versa by erasing e^{\prime} s in arbitrary $y \in L_{k}^{\prime}$ a string $x \in L_{k}$ is obtained.

Theorem 2. \tilde{L}_{k} is a k-multiple modulo e language.
Proof. We shall construct a k-multiple automaton

$$
A^{0}=\left\langle V^{0}, V^{0}, \ldots, V^{0}, I^{0}, \Phi^{0}, i_{0}^{0}, F^{0}\right\rangle, V^{0}=\bar{V} \cup\{e\}
$$

which accepts \tilde{L}_{k}. Each string $x \in L_{k}$ is expressible in the form

$$
\begin{equation*}
x=d_{1} d_{2} d_{3} \ldots d_{k} \tag{2.1}
\end{equation*}
$$

where d_{i} are strings over $\bar{V}=V^{(1)} \cup V^{(2)} \cup \ldots \cup V^{(k)}$ and if x has the length $s k+j, j<k$ then $d_{1}, d_{2}, \ldots, d_{j}$ have the length $s+1$ and d_{j+1}, \ldots, d_{k} have the length s. We shall construct A^{0} so that A^{0} accepts only the strings x of the form $(i=0,1,2,3, \ldots)$:

$$
\begin{equation*}
x^{0}=d_{1} e^{i} d_{2} e^{i} \ldots d_{j} e^{i} d_{j+1} e^{i+1} \ldots d_{k} e^{i+1} \tag{2.2}
\end{equation*}
$$

where $e^{i+1}=e^{i} e, i>0, e^{0}$ is an empty string and d_{i} has the same meaning as in (2.1). It follows that the alphabets $V^{(i)}$ of A^{0} are for all $i=1,2, \ldots, k$ equall to $V^{0}=$ $=\bar{V} \cup\{e\}$. The construction of Φ^{0}, I^{0} and F^{0} is now straightforward although rather cumbersome.

If an automaton A of L_{k} is given by $\left\langle V^{(1)}, \ldots, V^{(k)}, I, \Phi, i_{0} F\right\rangle$ we put $i_{0}^{0}=i_{0}$,

$$
I^{0}=I \cup\left\{i_{w}^{*} ; w=2,3, \ldots, k-1\right\} \cup\left\{i_{D}\right\} \cup\left\{i_{l}\right\}
$$

where all $i_{w}^{*}, w=2,3, \ldots, k-1, i_{l}$ do not belong to I. Φ^{0} coincides with Φ on $I \otimes V^{(1)} \otimes \ldots \otimes V^{(k)} . \Phi^{0}\left(i, v_{1}, v_{2}, \ldots, v_{k}\right)=i_{l}$ for $v_{1}, v_{2}, \ldots, v_{k} \neq e$ and either $i=$ $=i_{l}$ or $i \in I$ and $\Phi^{0}\left(i, v_{1}, \ldots, v_{k}\right)$ is undefined, i.e. A^{0} is in the state i_{l} if a symbol not belonging to $V^{(i)}$ has already been read by i-th input and the symbol e has not been read yet.
$\Phi^{\circ}\left(i, v_{1}, \ldots, v_{w}, e, e, \ldots ., e\right)=i_{w}^{*}$ for $w=2,3, \ldots, k-1$ and $i \in I$ or $i=i_{l}$ (i.e. the reading of the last but one k-tuple of symbols is realized);
$\Phi^{0}(i, e, e, \ldots, e)=i$ for all $i \in I^{0}$ (i.e. reading of (e, e, \ldots, e) causes no change of the internal state of A°).

In all other cases $\Phi^{0}\left(i, v_{1}, v_{2}, \ldots, v_{k}\right)=i_{D}$.
Putting $i_{0}^{0}=i_{0}$ and

$$
F^{0}=(I-F) \cup\left\{i_{l}\right\} \cup\left\{i_{w}^{*} ; w=2,3, \ldots, k-1\right\}
$$

we see that A^{0} has all desired properties.

Theorem 3. \hat{L}_{k} is a k-multiple modulo e language.
Proof. We shall construct a k-multiple automaton

$$
A^{c}=\left\langle V^{0}, V^{0}, \ldots, V^{0}, I^{c}, \Phi^{c}, i_{0}^{c}, F^{c}\right\rangle
$$

which accepts \hat{L}_{k}. (For the meaning of V^{0} see the proof of the previous theorem.)
First we shall construct a k-multiple automaton \bar{A} which accepts the set $L_{k}^{\text {ord }}$ of strings being expressible in the form

$$
x=d_{1} d_{2} \ldots d_{k}
$$

d_{i} is a string over $V^{(i)}$ for $i=1,2, \ldots, k$. Let

$$
\begin{equation*}
\bar{A}=\left\langle V^{0}, V^{0}, \ldots, V^{0}, \bar{I}, \bar{\Phi}, \bar{i}_{0}, \bar{F}\right\rangle \tag{3.1}
\end{equation*}
$$

\bar{A} is constructed in order to accept only the strings of the form (2.2). The construction of \bar{A} is a simple matter if alphabets $V^{(i)}$ are mutually disjoint or if all $V^{(i)}$ coincide. In the general case the construction is more difficult. As the construction of \bar{A} is rather cumbersome its main ideas will only be indicated. All alphabets of \bar{A} are identical and equal to V^{0}. If $x \in L_{k}^{\text {ord }}$ is expressed in the form $x=d_{1} d_{2} \ldots d_{k}$ where the lenghts of d_{i} are s or $s+1$, then $x^{j}=d_{1}^{j} d_{2}^{j} \ldots d_{k}^{j} \in L_{k}^{\text {ord }}$ for $j=1,2, \ldots, s+1$, where (as well as below) d_{i}^{j} denotes the string formed by the first j symbols of d_{i}. If follows that after reading x^{j} there exists a finite set B_{j} of vectors $b=\left(b_{i}, \ldots, b_{k}\right)$ where $b_{i}=q_{i}$ if symbols from $V^{\left(q_{i}\right)}$ can be read by the i-th input, $i=1,2, \ldots, k$, so that

$$
x^{j+1}=d_{1}^{j+1} d_{2}^{j+1} \ldots d_{k}^{j+1}
$$

remains a member of $L_{k}^{\text {ord }}$.
Obviously B_{j+1} having the same meaning for x^{j+1} as B_{j} for x^{j} is a subset of B_{j}. Now let I contain the states of the form i_{B} where B is one of the above mentioned sets. Let $\Phi\left(i_{B_{j}}, V_{1}, \ldots, V_{k}\right)=i_{B_{j+i}}$ where $x^{j+1}=d_{1}^{j} v_{1} d_{2}^{j} v_{2} \ldots d_{k}^{j} v_{k}, B_{j}$ containing a vector $t=\left(t_{1}, \ldots, t_{n}\right)$ so that $v_{i} \in V^{(t i)}$ for $i=1,2, \ldots, k$. We note that these relations have a meaning as B_{j+1} is uniquely determined by B_{j} and $v_{1}, v_{2}, \ldots, v_{k}$. If B_{j} does not contain any vector of such a property some "absorbent" state i_{D} is reached i.e. for i_{D} it is true that $\Phi\left(i_{D}, v_{1}, v_{2}, \ldots, v_{k}\right)=i_{D}$ for all $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. The set of all i_{B} is finite and it can be shown that adding some auxiliary states and putting $i_{0}=i_{B_{0}}, B_{0}=$ $=\left\{\left(t_{1}, t_{2}, \ldots, t_{k}\right) ; 1 \leqq t_{1} \leqq t_{2} \leqq \ldots \leqq t_{k} \leqq k\right\}$ it is possible to construct \bar{A} of all desired properties.

Let us now construct the automaton A^{c}. The set of its states is formed by the set of pairs of the form $\left\langle i_{1}, i_{2}\right\rangle$ where $i_{1} \in \bar{I}$ and $i_{2} \in I$ and by some additional states (i.e. the states of A^{c} are ,,pairs of states" of \bar{A} and an automaton A of L_{k} and some aditional states).

Let $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ and

$$
\begin{equation*}
\Phi^{c}\left(\left\langle i_{1}, i_{2}\right\rangle, v\right)=\left\langle\bar{\Phi}\left(i_{1}, v\right), \Phi\left(i_{2}, v\right)\right\rangle \tag{3.2}
\end{equation*}
$$

if both Φ and $\bar{\Phi}$ are defined;

$$
\begin{equation*}
\Phi^{c}(i, e, e, \ldots, e)=i \tag{3.3}
\end{equation*}
$$

for all $i \in I^{c}$

$$
\begin{equation*}
\Phi^{c}\left(\left\langle i_{1}, i_{2}\right\rangle, v\right)=\left\langle\bar{\Phi}\left(i_{1}, v\right), i_{F}\right\rangle \tag{3.4}
\end{equation*}
$$

if $\Phi\left(i_{2}, v\right)$ is not defined;

$$
\begin{equation*}
F^{c}=\left\{\left\langle i_{1}, i_{2}\right\rangle ; i_{1} \in \bar{F}, i_{2} \notin F\right\} \cup\left\{\left\langle i_{1}, i_{F}\right\rangle ; i_{1} \in \bar{F}\right\} . \tag{3.5}
\end{equation*}
$$

It is easily seen that A^{c} has the desired properties as a state from F^{c} cannot be reached if $x \in L_{k}$ (see (3.3) and (3.4)) or if x is not expressible in the form $d_{1} d_{2} \ldots d_{k}$ where d_{i} is a string over $V^{(i)}$ for $i=1,2, \ldots, k$ (see properties of \bar{A}).
Theorem 5. The union of two k-multiple modulo e languages is a k-multiple modulo e language.
The proof is similar to the proof of the theorem 1. The only difference is that instead of considering strings x we consider the strings x^{\prime} obtaining from x by convenient insertion of $e^{\prime} s$.

Example 3. Let us have two-multiple modulo e languages:

$$
L_{1}=\left\{a^{n} b^{n} c^{m} ; m, n>0\right\}
$$

which is accepted by the two multiple automaton $\left\langle\{a\} \cup\{e\},\{b, c, e\},\left\{S_{1}, S_{2}, S_{3}\right\}\right.$, $\left.\Phi, S_{1},\left\{S_{1}, S_{2}\right\}\right\rangle$ where $\Phi\left(S_{1}, a, b\right)=S_{1}, \Phi\left(S_{1}, e, c\right)=\Phi\left(S_{2}, e, c\right)=S_{2}, \Phi(S, e, c)=$ $=S$ for all $S, \Phi(,)=,S_{3}$ in all other cases and

$$
L_{2}=\left\{a^{m} b^{n} c^{n} ; m, n>0\right\}
$$

which is accepted by the similar automaton. But then

$$
L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} ; n>0\right\}
$$

is a three-multiple modulo e language, not a two-multiple modulo e language. It follows

Corollary 3. The intersection of two languages which are k-multiple modulo e is not necessarily a k-multiple modulo e language.

Corollary 4. The complement of k-multiple modulo e language is not necessarily a k-multiple modulo e. By the complement of L_{k} we mean the set

$$
\tilde{L}_{k}=C-L_{k}
$$

where C is the set of all strings over \bar{V}.
Proof. We note that for every two sets A, B

$$
A \cap B=\left(A^{c} \cup B^{c}\right)^{c},
$$

where ($)^{c}$ denotes the complement and that the assertion of the theorem follows from corollary 3 and theorem 5 .

Corollary 5. The component complement \hat{L}_{k} of k-multiple modulo e language, i.e. the set

$$
\hat{L}_{k}=C-L_{k},
$$

where $C=\left\{d ; d=d_{1} d_{2} \ldots d_{k}, d_{i}\right.$ is for $i=1,2, \ldots, k$ a string over $\left.V^{(i)}\right\}$ is not necessarily a k-multiple modulo e language.
The proof is the same as the proof of the previous corollary.
(Received June 1st, 1966.)

REFERENCES

[1] K. Culík, I. Havel: On multiple finite automata. (In print.)
[2] N. Chomsky: Chapters 11-13 in Handbook of Math. Psychology. John Wiley 1963.
[3] N. Chomsky, M. P. Schützenberger: The algebraic theory of context-free languages. In Computer programming and Formal systems. North-Holland 1963.
[4] K. Culík: Some notes on finite state languages and events represented by finite automata using labelled graphs. Casopis pro pěstování matematiky 86 (1961), 1, 43-55.
[5] S. Ginsburg, J. S. Ullian: Ambiguity in contex free languages. J. of ACM 13 (1966), 1, 62-89.
[6] В. Н. Глушков: Синтез цифровых автоматов. Физматгиз, Москва 1962.
[7] E. F. Moore: Gedankenexperimente on sequential machines. In Automata studies, Princeton 1956.
[8] C. C. Elgot, J. E. Mezei: On relations defined by generalized automata. IBM J. of Res. and Develop 9 (1965), 1, 47-68.

VYTAH
Množinové operace nad k-násobnými jazyky

Jaroslav Král

V článku jsou zkoumány tak zvané násobné jazyky tj. jazyky akceptovatelné tzv. násobnými automaty (viz [1]), jež jsou zobecněním tzv. regulárních výrazù. Je dokázáno, že třída násobných jazyků je uzavřena vůči průniku a sjednocení, ale nikoliv vůči doplňku. Třida k-násobných modulo e jazykủ je uzavřena vůči sjednocení, ale nikoliv vůči průniku a tedy ani doplňku.

