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On the Statistical Decision Problems with 
Discrete Parameter Space 

IGOR VAJDA 

In this paper definitions of the Bayes risk and information in a sample concerning a parameter 
in the framework of a classical model of statistical decision with an abstract sample space and 
discrete parameter space are given and a relation between them is investigated. We try also to 
estimate these quantities by means of simpler expressions in order to obtain a platform for a study 
of an asymptotic behaviour of them. 

1. INTRODUCTION 

Let us consider the classical model of statistical decision with a parameter pro
bability space (X, 9C, (i), measurable sample space (Y <3t), set {vx}, xeX, of con
ditional distributions of the variable y e Y defined on the c-algebra 'W, decision 
measurable space (X, SC), and with a non-negative and SC ® ^-measurable loss 
function w defined on X ® X. In this paper we shall assume that the set X of the 
possible values, in general abstract, of the parameter x is countable, i.e. that the 
parameter space is discrete. Besides it we shall assume without loss of generality 
that 3C is the a-algebra of all subsets of X and that the prior probability \x(x) is positive 
for every parameter value xeX. 

For every xeX and for every decision function Q (i.e. for every ^-measurable 
mapping of the measurable space (Y <W) into (X, SC) we define the average value of the 
loss corresponding to them by 

(1.1) R(x,Q)=[w(x,Q{y))dvx(y), 

and for every decision function Q we define the average risk R(Q) by 

(1.2) R(Q) = £ fi(x) R(x, e) • 



In the paper we use the well-known Bayes principle of ordering of the decision HI 
functions based on the average risk. By optimal decision function (if it exits) we 
understand a decision function Q0 which minimizes the average risk, i.e. which satis
fies the following equality 

(1.3) R(Qo) = M R(e) = r , 
m 

where 01 is the set of all possible decision functions and where the non-negative 
number r is the so-called Bayes risk. Hence, the Bayes risk seems be a fundamental 
characteristics of the model we have considered. 

Another characteristics of great importance is the average amount of information 
I contained in the sample y concerning the parameter x. This quantity can be defined 
as it is described below. 

Let us denote by w the probability distribution defined on the Cartesian product 
<7-algebra SC ® <& by 

(1.4) w(E) = £ n(x) vx((E)x) for every £ e f ® f , 
xeX 

where (E)x is the x-section of the set E, i.e. 

(E), = {yeY:(x,y)eE}, 

and let us denote by a> the marginal distribution induced by OJ on the a-algebra <&, 
i.e. let 

(1.5) w(F) = Y Kx) vx(F) for e v e ry F e ® • 

(It is easy to see that, in view of (1.4) and (1.5), co < fi ® w, where u ® co is the 
Cartesian product distribution on 3C ® <&.) Then the corresponding average amount 
of information J is defined by 

(1.6) / = f logf(x,y)dco(x,y), 
Jx®Y 

where f(x, y) is the Radon-Nikodym density of the joint probability measure w with 
respect to the product measure ji® co. (Let us note that all logarithms in this paper 
are taken to the base e.) 

From the intuitive point of view it is clear that, though the information / does not 
depend on the loss function w, for a sufficiently wide class of loss functions there 
exists a relation between r and I. This fact is a platform for the study of statistical 
decision problems from the point of view of information theory. The data reduction 
theory recently developed by A. Perez [5] shows that the indicated relation plays 
a growing role in solutions of certain class of decision problems. 



The purpose of this paper is to estimate the Bayes risk and information in the 
framework of general model of statistical decision with discrete parameter space and 
to investigate the indicated relation between them. This general questions are studied 
in the following section. The results of this section are then used in Sec. 3 devoted 
to the study of of the rate of convergence of information and Bayes risk in some 
classes of decision models as it is more precisely described below. 

Let n = 1, 2 , . . . , oo be the size of mutually independent samples y = (yu ..., yn), 
i.e. suppose that the measurable sample space of the model is of the form 

(1.7) {Yn,<&n) = ® (Yj, <&?), n = 1 , 2 , . . . , oo , 
; = i 

where Y is the set of all yt's with a given cr-algebra lWi and suppose that the joint 
probability distribution of the n-vector (yt,..., y„) under the condition that xeX 
is the realized value of the parametr is a Cartesian product measure v". It is clear 
that, for every n = 1, 2, ..., v" is the restriction of vx on the c-algebra <W" c= <&">, 
where the latter inclusion (as well as the inclusions <Wt c <Wn, i = 1, 2, ..., n, n = 
= 1, 2 , . . . , oo, that will be used below) is written in accordance with a well-known 
identification convention for product a-algebras, and that 

vx = ® vxi for every x e X , 
; = i 

where vxi denotes over all the paper the restriction of vx on the sub cr-algebra <Wt <= 
c <WCC. 

We shall denote by J„ or rn the information or Bayes risk respectively corresponding 
to the measurable sample space (1.7). Since <Wn, n = 1, 2, ..., is an increasing sequence 
of c-algebras, /„, n = 1, 2, ..., is a non-decreasing sequence (cf. Th. 12 in [4]) and 

(1.8) lim /„ = /« , , 

whereas r„,n = 1, 2, ..., is a non-increasing sequence (cf. Th. 6.1 in [5]) and 

(1.9) lim r„ = r<D . 

From the point of view of application it is important to ask which is the rate of 
convergence above. This question was studied in [6] under the assumption that X 
is finite. According to [6], both r„ and /„ converge to their limit values r„ and Ix 

exponentially in a sufficiently wide class of decision models with finite parameter 
space, for example when vx, xeX, are stationary and mutually different Cartesian 
product measures. It seems that an analogical assertion need not be true when the 
parameter space is infinite. Sec. 3 of this paper is devoted to the rate of convergence 
mentioned above under the assumption of a discrete parameter space. 



2. GENERAL INEQUALITIES 

The first our result it obvious. Let y be a real valued function defined on the para
meter space X by 

(2.1) y(x) = inf w(x, x') , 

where the infimum is extended over all x' e X different from x, and let us denote 

4v*> v ) = sup \vx(E) - vx.(E)\ . 
Ee® 

Theorem 1. If the loss function w is bounded from above by w0, then 

(2-2) ~^^f^% (1 ~ -( _. v,)) _ r < w0 I ,(x) (1 - v_(__)) 
/<(x)y(x) + n(x)y(x) xeX 

for every x =j= x' such that the left side has a meaning and for every measurable 
disjoint decomposition {Ex}, xeX, of the sample space Y. 

Proof. The right inequality is clear. The left inequality is non-trivial only if both 
y(x) and y(x') are positive. If this condition is satisfied, then, according to (1.2) and 
(1.3), there exists a decision function Qee M such that 

Y, /((x) R(x, Qe) < r + s for every £ > 0 , 
xeX 

and consequently 

R(x, Qe) < ~ + - i _ for every xeX . 
Rx) K*) 

Hence, if we denote Ex„ = {yeY: gE(y) = x") for every x" e X, we can write 

v(x) Y. **<&*") = I w(x> x") \(EX„) = R(x, Qe) < — + - i - , 
/i(x) /i(x) 

and similarly 

. (* ' )_> , , (£ , „ ) < _ _ _ + _ _ _ . 
-""*' /J(X') /x(x') 

Since 

j£_Vx(£x-) = 1 - Vjt(__) , 

and since, in view of x H= x , 

yx(Ex) > l 
Kx) . (x) џ(x) y(x) ' 

.(£„) < ~~~~ + i — 
!-(* ) ?(*') /фc') y(x') 



114 it follows from the definition of A(vx, vx,) that 

A(vx, vx.) ^ 1 - ( L - + 1 \ (r+e). 

\n(x) y(x) n(x') y(x')J 

Since this inequality remains true for arbitrarily small s > 0, we can write 

1 1 
A(vx, vx.) ^ 1 - r 

џ(x) y(x) џ(x') y(x') 

the desired inequality is proved. 
If the parameter space is finite, then it is well-known and frequently used that 

/ g H(n), where H(p) is the entropy of the parameter space. The non-negative 
difference H(fi) — I has been called equivocation by Shannon. The following extension 
of validity of the latter inequality will be often used in the sequel. 

Lemma 1. If H(fi) is the entropy of the parameter probability space, i.e. if 

(2.3) HQi) = - ; £ > ( x ) l o g K x ) , 
xeX 

then 

(2.4) / ^ H(fi) . 

If H(fi) < co then the sign of equality in (2.4) holds if and only if A(vx, vx,) = 1 
for every x + x . 

Proof. If H(n) = co, then the assertion of the Lemma is clear. Let, consequently, 
H(n) < oo. 

Suppose that the sample space is discrete (i.e. countable or finite) and that the 
cr-algebra <W contains all its subsets. Under this assumptions it is easily verified that 
the Radon-Nikodym density / of the distribution co with respect to the product 
distribution \i ® a> is of the form 

j(*,y) = , V*°° 
IK*) v*(y) 
xeX 

Since we can write 

- n(x) log n(x) = - £ n(x) vx(y) log n(x) 
yeY 

and since, in view of (1.6), 

I-iin*Reoiog(v;f° A 



we can write 

(2.5) HO)-/--XI<K*,.v). 
x r 

where 
0 if vx(y) = 0 , 

(2.6) <P(x, y) = { (YKx) vx(y), t/LP-K*") 'x\J)\ 

Å*Ьáy)Ш* , if v , ( » Ф O . 
V Áx) VxІУ) ) 

It is clear that \\i(x, y) S; 0 and consequently the inequality (2.4) under the conditions 
we have considered holds. In order to extent the validity of (2.4) to the case of general 
measurable sample space (Y, <&) we can use an obvious procedure based on Th. 13 
in [4]. 

If, for every x =j= x , A(vx, vx.) = 1, then there exists a countable disjoint measur
able decomposition {Ex}, xeX, such that vx(Ex) = 1. (cf. (3) in [6]). Let us consider 
a measurable sample space (Y*, <&*) defined by Y* = {Ex}, xe X, <W* = 
= £f({Ex},xeX) c <W (here and in the sequel £?(•) denotes the least cr-algebra 
generated by the indicated class of sets) and denote by I* the information correspond
ing to this space. Then, by (2.5), (2.6), and H(j.i) < co, the equality H(fi) = I* holds. 
Since, according to Th. 12 in [4], I* g I, the desired equality H(fi) = / is proved. 
The proof of the converse assertion will be based on the following 

Theorem 2. If the loss function w is bounded from above by w0 and if I < co, 
then 

(2.7) r £ - ^ 5 _ (H(M) - / ) . 
2 log 2 

Proof. If H(n) = co, then the assertion of the Theorem is clear. Hence let us 
assume H(n) < co. 

(a) Let both Z a n d Ybe finite sets, say X = {1,2, ..., m}, Y= {1,2, ..., n}, and 
let n(i) and V;(j) be defined in accordance with Sec. 1. In information theory it is 
usually defined the so-called minimum probability of error P by 

mf 

P = m i n 5 > ( 0 v , . ( Y - E), 
i=l 

where the minimum is taken over the set of all disjoint decompositions {EJ of Y. 
It was proved earlier (cf. [ l ] , [2]) that in this case the following inequality holds 

2 log 2 

(A similar result is proved in [2] also in case Yis the real line and v;, i = 1, 2,..., m, 
are absolutely continuous probability distribution on it.) As, for every loss function 



116 w ^ w0, a routine verification gives r = w0P, the inequality (2.7) holds under the 
condition that both 2' and Yare finite. 

(b) Let us denote the elements of X subsequently by xu x2, ..., and let fi„ be 
a priori distribution derived from p. by 

H„(x,) = n(xt), i = 1, 2, . . . , n - 1 , 

J"«0O = JC K*i) • 
i = n 

It is easily proved that in this case 

(2.8) lim H ( / 0 = 77(ju) • 

(c) Let us denote by r„ the Bayes risk and by 7„ the information obtained by the 
replacing of p by \i„ (cf. Sec. 7 in [4] and Sec. 5 in [5]). According to Th. 12 in [4], 
/„ g J and, according to Th. 6.1 in [5], rx ^ r2 — . . . ^ r and, moreover, 

0 g r„ - r ^ 7(2w0r„(7 - /„)). 

As it follows from w = w0 that r t ^ w0, we obtain 

(2-9) 0 g r„ - r ^ w0 7(2(7 - /„)) . 

According to Th. 13 in [4], there exists a sequence S ^ ^ c . . . of finite measur
able disjoint decompositions of Y such that Im S I«> 

(2.10) lim lm„=l„, 

where lm is the information defined with respect to ^ = S?(2>m), n = \i„, m, n = 
= 1, 2 , . . . . One more application of Th. 6.1 in [5] together with (2.9) yields that 

0 = C - r ^ C - r„ + r„ - r = w0 72(7(7,, - 7?) + 7(7 - 7„)) , 

where the meaning of rm is clear. Since 

(2.11) lim7„ = 7 

(2.12) lim lm = 7 

(cf. Th. 12 in [4]), we conclude that 

(2.13) lim rm = r. 

(d) The tools are now at hand to prove (2.7). If we apply this inequality to the 
finite parameter space {x., x2, •••, x„) and finite sample space Y= 3im, n, m = 



= 1, 2, ... (cf. (a)), then we get 

and using (2.12) and (2.13) we complete the desired proof. 
Now we can conclude the proof of Lemma 1. It remains to prove that the equality 

H(fi) = I together with H(fi) < oo implies that A(vx, vx) = 1 for every x #= x'. 
According to (2.7), H(n) = I implies r = 0 for every bounded loss function and hence 
also for w(x, x') = 0 or 1 depending on whether x = x' or x 4= x'. In this special 
case y(x) = 1 for all x e X and the desired assertion follows from Theorem 1. 

Lemma 2. / / H(/i) < oo, then 

(2.14) H(n) - J £ £ VIX*) v,(E*) ( X A-X) v(£,0)] + 
x.x'eX x"*x 

+ EVD'Wv.(E0)(i:^")v,"(Eo))] 
xejf x " * x 

/or every class {Ex}, Ex e <W, x e X, where 

E0 = n(Y-Ex). 
xeX 

Proof, (a) Let Y be a discrete space all subsets of which are contined in 'St. By 
(2.5) it holds 

(2.15) H(n) - I l J X ftx, y) + I £ *(*, y). 
i . i ' e l ysEx' xeX yeEo 

Since for every z > 0 

log (1 + z) < V z > 

we can write 

•Kx, >0 = VM*KM ( £ M<> v(y))] 
x " # X 

(cf. (2.6)). If we apply the Schwarz's inequality to the series 

I AKx)vx(y)(yLKx")vx„(y))], 
ysEx' x"*x 

then we obtain 

and similarly 

£ tfx, y) s VW*) Vx(£,0 ( I M*") v(£x-))] 
yeEx' x"*x 

I *(*, y) =g Vl>W v*(£o) (. I Ф") v Ы ] • 
yєE0 x " * x 



118 The latter two inequalities together with (2.15) imply the desired inequality (2.14). 
(b) Let (Y, 9) be an arbitrary measurable space and define a disjoint measurable 

decomposition _> of Yin a following way: Ee3) if and only if there exist sets _., E2,... 
..., E„, Ei e {Ex}, xeX,or Et = E0 such that 

E = n E1 . 
i = l 

If we put in (a) Y = _>, <& = ^(_>), and if we define 

/ * = [ log/*(x,y)dco(x,y), 
JX®Y 

where / * is ^(^)-measurable version of the Radon-Nikodym density / then, accord
ing to (a), 

H(p) - I * £ l VIX*) vx(Ex.) ( £ n(x") vAEx,))] + 
x,x'eX x"*x 

+ IVW^)v,(£o)(I^")v,.<Eo))]. 
xeX x"*x 

Since it follows from Th. 12 in [4] that I* S I, we have H(p) - / <. H(n) - I* and 
the proof of (2.14) is complete. 

Theorem 3. / / H(fi) < oo, then 

(2.16) 2 log 2 f(*)/j(*\ (1 - A(vx, vx,)) < HO) - / g 
//(x) + H(X ) 

= IV[>(*) a - v»(_,))] (i + Z V/tW) 

/or euery x 4= x' and for every disjoint measurable decomposition {Ex}, x e X, 
of sample space Y. 

Remark. The upper estimate has a meaning only in case J^-Jn(x) < oo; it is 
easily proved that if this condition is satisfied, then H(/i) < oo. 

Proof, (a) As {EJ, x eX, is a decomposition of Y, E0 in the preceding Lemma 
is empty and hence 

(2.17) HO) - I < £ VOW v„(jy ( I K*") v(-Q)] + 

+ H VM*) v,(£,0 ( I iter) VX„(EX.))1 . 
xeX x'tx x"*x 

The first sum can be easily estimated from above by 

1^/1^)1 ^")(l-vAEX"))] 
xeX x"*x 



and hence also by 

I V W * ) I K * ' ) ( I - M J E , 0 ) ] 
xeX x"sX 

or by 

I V ^ O E V M ^ ^ - v A " ) ) ] ) . 
xeX x"eX 

If we apply to the second sum in (2.17) the Schwarz's inequality again, then we obtain 
the following upper estimate of it: 

L V [ X K*K(£*.)( I /<(v) x vx.,(E,.))] = 
xeX x ' # x x " * x x ' #x 

= I VM*)v*( U £x0 X K*") V,,( U Ex-)] £ IvTM*) (i - vx(£x))] -
xeX x ' # x x"#x x'*x xeX 

In view of this estimates and in view of (2.17), the right inequality in (2.16) holds, 
(b) Let us define in Theorem 2 the zero-one loss function w similarly as above. 

In this special case y(x) is identically 1 and the left inequality in (2.16) is a consequence 
of (2.7) and (2.1). 

3. DECISION MODEL WITH INDEPENDENT SAMPLES 

In this section we shall deal with the classical model of statistical decision with 
descrete parameter space under the assumption that for every realized value of the 
parameter x e X the sequence of samples yu y2,... is an independent (not necessarily 
stationary) random sequence. Over all the section we shall follow the notation and 
terminology employed above. 

Lemma 3. //, for every xeX, the sequence of samples is independent, then, for 
every n = 1,2,... and for every Fie&j, i = 1,2, ...,n, there exists a disjoint 
measurable decomposition {Ex}, xeX, of Y" (i.e. Exe<2/n) such that 

(3.1) v"x(Ex) > 1 - 2e-"""(x), n = 1, 2 , . . . , 

where 

1 
(3.2) nn(x) = inf 

X-ФX 5n 
I Ығù - *ЛFд) n = 1,2,... 

Proof. Let n be an arbitrary and define on (Y", <Wn) a sequence fuf2, •••,fn of 
measurable functions by 

fi(yi, y%, • • •, y„) = Xrfrd > i = -> 2> • • •>" > 

where x is the characteristic function. It is to see that for every probability distribution 
vn on (Yn, <&"), / are independent random variables taking values between 0 and 1 



120 with expectations vxi(Ft) and with variances uniformly bounded from above by %. 
Under this conditions a routine verification (using inequality § 18.1. A in [3], Chapter 
V) gives for every 0 < T < \, 

v"(Y" - £X(T)) < 2e" t n , 
where 

Ex(x) = \(y,,..., y„) : * | £ (fly,,..., y„) - vxi(F,)) 

Let us define 

/ Ex{n„(x)) if n„(x) > 0 , 

N 0 if n„(x) = 0 . 

Since 0 < n„(x) <. j , the preceding inequality yields 

vx(£x) > 1 - 2c-"""ix) for every x e l . 

Since (3.2) implies that, for every xe X such that n„(x) > 0, 

1 
E Ы Ғ . ) - vAF,)) < 2t]„(x) for every x' 4= * , 

we conclude that E^ n E*x, = 0 for every x 4= x'. If we put £x = Ex for all x £ X 

except one, say x0, and if 

Exo = E-xo u (Y- - n £ j , 
jceX 

then { £ j , x e X, is a disjoint system of sets of the desired properties. 
If we use Lemma 3 together with Theorem 1 and 3, we get the following 

Theorem 4. If, for every xeX, the sequence of samples is independent, then, 

for every sequence Ft e <&\, i = 1,2,..., 

(3.3) HO) - In = (1 + X .>(*)) I VOW e-**t0 , n = 1, 2,..., 
seX xeX 

and if the loss function is bounded by w0, then 

(3.4) r„ < 2w0 ^ /x(x) e~"*-'x), n = 1, 2 , . . . , 
xsX 

where nn(x) is defined by (3.2). 
We shall say that an independent random sequence yu y2,... is stationary, if 

(Y, <&}) = (Yj,<Wj) and vxi = vXJ- for every i, j = 1, 2 , . . . 

If the sequence of samples is, for every realized value of the parameter, independent 
and stationary, then the model of statistical decision is completely described by a para-



meter probability space, loss function, one-dimensional measurable sample space 121 
(Yjj <Wi) and by a set of one-dimensional conditional probability distributions v1, 
x e X, on <Wi, This will be respected in the remainder of this paper. 

The following Theorem is just a restatement of Theorem 4 to the stationary case. 

Theorem 4s. If, for every xe X, the sequence of samples is independent and 
stationary, then, for every set F e <WU 

(3.5) HOO - in = (i + 2 VK*)) I V(M*) e-»w), - = 1, 2,... 
xeX xeX 

and if w :g w0, fhen 

(3.6) r„ < 2w0 £ K*) e_""('v) M every n = 1, 2, . . . , 

where 

(3.7) n(x) = inf | |vi(F) - v*.(.F)| /or ecerv x e A'. 

Corollary 1. Let for J = {1, 2,...} the assumptions of Theorem 4s be satisfied 
and let there exists such a > 0 that 

(3.8) n(0 = — for every ieX , 

where a,'s are bounded from below by a > 0. Let s(t) and s(t) be non-negative func
tions defined for t 2; 1 by 

(3.9) s(0 = £ tfO 
•'=['] 

5(0 = £ v/xo, 
,=[(] 

where [«] denotes the least integer greater than or equal to t. Then rx = 0 and 

(3.10) r„ < 2w0[n*(1~E) e-""" + s(na(1 _,i))] , n = 1, 2, ... 

for every 0 < e < 1. If 5(1) < oo, then Ix = H(n) and 

(3.11) H((i) -In< V2(l + s(l)) [n"(1~E) e - ( ' ^ / 2 + s(n"(1-">)] 

for every 0 < e < 1 and n = 1,2, . . . . 
Proof. According to (3.6) we have, for every n = 1, 2 , . . . , 

rn <. 2w0 £ ,x(i) e-""(i) < 2w0( £ e-"" ( i ) + £ fi(i) e~""(i)) ^ 
i = l i = l i = m + l 

-n min -(I) 

<2w0(me l g i S m + s(m + 1)) < 2wo(me_"Wm"") + s(m + 1)) 



122 for every m = 1, 2, ... Let m be an integer satisfying the inequality 

n«U-«) _ i < m < „«<i-«>. 

where 0 < e < 1. Then it is easily proved that 

me-n(a/m«/«) < n a ( 1 - E ) e - n . U ; 

s(m + 1) ̂  s(na(1_£)) 

and hence that (3.10) holds. The equality rx = 0 is clear. 
Similarly, according to (3.5), 

HQi) - h < V2(l + 3(1)) (me-'""2""*1 + S(m + 1)), 

for every m = 1,2,. . . and the conclusion of the proof of (3.11) is now clear. 
Since the assumption 3(1) < oo implies that 

lim 3(0 = 0 
I-.0O 

the equality Im = H(ji) follows from (3.11) and (1.8). 

Example 1. Let us consider the case when the prior distribution /. is geometrical, 
i.e. 

MO = A*' > i = 1,2, ... , where 0 < /A < 1 . 

In this case 

s(t) = J.M-* 

i - v l t 

Suppose that (3.8) is satisfied for some a, say a = \. As in this case 3(1) < oo, we 
get from Corollary 1 that rx = 0, Ix = H(/j), where 

H(n) = fl + I + 1 ) log I + 
H l* J At 1 - H 

and, according to (3.10) or (3.11) for e = i , we obtain that 

r n < 2 w 0 ( „ 1 / 4 e - " " 2 a + ^ " 4 ) , 

H(X> - /„ < V2 (l + JQ-fh (nU\-WV + y/(LzA ^"'/A 
V l-y/pj\ 1 - V A* / 

for every n = 1, 2, . . . 



Example 2. In order to find an example of decision problem satisfying the con- 12: 
dition (3.8) let us proceed in the following manner. Let X = {1, 2 , . . . } , Yt = {0, 1}, 
<WX = {0, {0}, {1}, {0, 1}}, and let, for every ieX, the probability distribution vj 
on (Wl be defined by 

W O ) - * 

,!(o) = i - - . 

If we put F = {1} e Stj, then, according to (3.7), 

where 
;2 

c7, = > 1/10 for / = 1, 2, ... 
5/(1 + 1) -

Consequently, in this case the condition (3.8) is satisfied for a = 1/10 and a = 1/2. 

Corollary 2. Let for X = {1, 2, ...} the assumptions of Theorem 4s be satisfied 
and let there exists 0 < /? < 1 such that 

(3.12) n(i) = afi[ for every i e X, 

where the set [at, a2, ...} is bounded from below by a > 0. Then rro = 0 and 

(3.13) rn < 2w0\ —-\ognt~"c" + s( ^ T - l o g « ) , n = l , 2 , . . . 
Llog (1//?) VM1//0 )\ 

for every 0 < £ < 1. If s(\) < oo, then Ix = H(fi) and 

(3.14) HO) - /„ < ,/2(l + 5(1)) r - - ^ — log n e ~ ™ + » ( - — - - log »)] 
Llog (1//J) Vlog (1/J») / J 

for every n = 1, 2 , . . . and 0 < s < 1. 
Proof. It was proved above that 

— n min l/(i) 

r„ < 2w0(me 1 = ' s " + s(m + 1)) 

for every n, m = 1, 2 , . . . so that, in view of (3.12), 

r„ < 2w0(me-'"""" + s(m + 1)). 



124 It is necessary to choose m = m(n) satisfying the following two conditions 

lim m(n) = 0 , 

lim m(n) e^" '""" = 0 . 

In order to achieve this define m by 

; n — 1 — m < log n . 
log (HP) log (1/b) 

It is easily verified that 

s(m + 1) <, s l o g n ) , 
Vog(l//5) 

~log(ljß) 

and consequently (3.13) holds. The remainder of the proof is clear. 

Example 3. If the prior distribution \i on X is geometric (cf. Example 1) and if 
n(i), ieX, satisfy the condition (3.12) for, say, /? = e _ 1 , then we easily obtain by 

, means of (3.13) and (3.14) (for e = 1) that in this case 

and (if w = w0) 

t l _ / J \l/4l0g(l//!)-! 

logne v'm + ( - ) 
for every n = 1, 2 , . . . . It is clear that there exists a positive integer n0 such that for 
n > n0 

/ l \l/41og(l/u) 
Hfju) - /„ < const. -

^ ^ l / 2 1 o g ( l / ^ ) 

r„ < const. ' 

Example 4. In order to give an example of decision problem satisfying the con
dition (3.12) we proceed in the following manner. Let X= {1,2,. . .} and let 
(Y , ^ j ) be Borel line. Let, for every i e X, the probability distribution v- on <3t1 be 
Poisson distribution with parameter i, i.e. let 

v.(j) = e - ' ^ j = 0 , 1 , 2 , . . . 



If we put F = {0} e Yi, then it is clear that 

»/(i) = a . e _ i 

(cf. (3.7)), where 
a = l _ e " 1 > 0 

so that the condition (3.12) is satisfied for /? = e _ 1 and a given above. 

(Received June 21st, 1966.) 
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O statistických rozhodovacích problémech s diskrétním 
parametrovým prostorem 

IGOR VAJDA 

V práci je stručně definován klasický model statistického rozhodování s abstrakt
ním výběrovým prostorem a s nejvýše spočetným (diskrétním) parametrovým 
prostorem a základní charakteristiky tohoto modelu: informace I kterou nám 
poskytne výběrová hodnota o parametru a Bayesovské riziko r. 

Jedním z nejdůležitějších problémů, které v souvislosti s uvažovaným modelem 
přicházejí v úvahu je asymptotické chování rizika r a informace I při opakovaném 
pozorování s rozsahem výběru konvergujícím do nekonečna. Proto prvním cílem 
práce je poskytnout odhady veličin r a / pomocí jednodušších výrazů, kterých by 
pak bylo možno použít k vyšetření zmíněných asymptotických vlastností. Výsledky 
jsou obsaženy v § 2, Theorem 1 a 3. Tyto výsledky jsou pak v § 3 aplikovány na stu-



dium asymptotického chování r a / za předpokladu, že posloupnost výběrů je nezá
vislá (Theorem 4) a nezávislá stacionární (Theorem 4s) náhodná posloupnost. 
V § 3 jsou též ukázány třídy rozhodovacích problémů, pro které riziko r„ resp. 
informace J„, příslušné rozsahu výběru n, jsou dány vztahy r„ = o(X"), I„ = H(/f) — 
- o(X"), kde 0 < X < 1, resp. r„ = o(na), /„ = H(p) - o(na), kde a < 0 a kde 
fí(ju) je entropie parametrového prostoru. 

Dále, přestože informace nezávisí na ztrátové funkci, z intuitivního hlediska je 
jasné, že mezi r a / existuje pro dostatečně širokou třídu ztrátových funkcí jakýsi 
vztah v tom smyslu, že čím je informace větší, tím je riziko menší. Vyjasnění tohoto 
vztahu je velmi důležité, protože existuje celá řada statistických problémů, kdy 
potřebujeme znát r a nepotřebujeme znát optimální rozhodovací funkci, která jedině 
nám umožňuje stanovit r přímo a která se obvykle konstruuje velmi obtížně. Proto 
druhým cílem práce je přispět k vyjasnění tohoto vztahu (Theorem 2). 

Ing. Igor Vajda, Ústav teorie informace a automatizace ČSA V, Praha 2, Vyšehradská 49. 


