
K Y B E R N E T I K A ČÍSLO 6, R O Č N Í K 1/1965

Real-Time and Complexity Problems
in Automata Theory

M í BEČVÁŘ

This paper analyses the background from which problems of complexity in automata theory
arise, and discusses a series of questions connected with action in real time.

1. INTRODUCTION

In recursive function theory, which provides an adequate basis for the description
of constructive objects as well as of algorithmic processes occurring in mathematical
logic and in the theory of deterministic digital computers, the attention was for a long
time concentrated on solution of problems in a principal sense. A typical example
is the question of decidability of some problem: if one succeeded in giving positive
answer to this question, one was not, as a rule, much worried about the complexity
of the decision procedure. Except for the important classes of elementary and pri
mitive recursive functions, no detailed classification of recursive functions was ex
hibited. Grzegorczyk's classification of primitive recursive functions [1] apparently
did not for many years attract due attention.

It was until in the 60's that the question of the complexity of constructive processes
became really actual, in connection with an intensive study of special types of auto
mata [2, 3] on the one side and of the generative power of various models of grammar
[4] on the other. Among other results which exerted a stimulating influence on this
development one can count Shannon's theory of measuring information, Post and
Kleene's [5] classification of unsolvable problems, and perhaps also the continuing
work concerning complexity of Boolean functions. It seems that the principal ideas
of a new theory emerged independently and almost simultaneously in the heads of
several persons. The first source to be found in the literature is Rabin's [6] summary
of a lecture held at a meeting of the Israel Mathematical Union in 1959. But the first
paper published in extenso is probably Yamada's [7a], where results of his two years
older dissertation [7] are summarized. Approximately at the same time, Kolmo-

gorov [8] developed his conception of measuring the complexity of algorithms in
a series of lectures at the Moscow State University. In the further development, an
important role has been played by McNaughton's [9] survey, where especially ques
tions concerning computations in real time are stated with perfect clearness and
urgency. Among the most important papers hitherto published (or to be published)
let us note [10, 11, 12, 13, 14]. A somewhat different direction is followed in the
papers of Ritchie [15] and Cleave [16]. The author was not familiar with the doctoral
dissertations of Blum [18] and Cole [18] when writing this report.

In this paper, which is intended partly as a survey, we shall pay special attention
to the background from which problems of complexity arise, and discuss a series
of questions connected with action in real time. Various types of automata will
be compared, first as far as their construction is concerned, then according to
their power when they are operating without or with certain restrictions on time,
space etc. Several examples will illustrate problems of real time computations. We
shall end with an account of some results of Hartmanis, Stearns, Trachtenbrot
and others.

2. RESTRICTIONS

We shall exclude from our considerations two properties, which are actually present
in almost all real devices, viz. a) probability, b) continuity; we shall thus restrict our
selves to a deterministic and discrete theory.

However attractive the use of the probabilistic concept of information in measuring
complexity may appear, it seems that, on the one hand, it is still unclear in what
direction the intervention of probability would be most appropriate. On the other
hand, in the area of algorithms, we are primarily faced with deterministic (or indeterm-
inistic, but not tied with probability [2]) processes, exhibiting, as their most character
istic feature, purely combinatorial internal relations. Accordingly, a combinatorial
variant of the concept of information would fit here, but a coherent theory meeting
properly the needs of the theory of algorithms does scarcely exist nowadays.

Continuity is currently present e.g. in the field of automatic control. It seems that
a really adequate theory of complexity of continuous processes may be somewhat
hampered by the fact of our ignorance of the (existing!) frontier, beyond which an
approximation of a continuous process by discrete, algorithmic ones is no more
feasible. Now, no matter what the microstructure of the world may be, it seems that
the macroview is for us of primary importance. This can be viewed as one of the
justifications of the discreteness supposition.

Let us note that both entropy and continuity appear in the extremely interesting
book [19] of Vituskin, the main result of which is that, in the domain of continuous
functions, an appropriate and nontrivial measure of complexity is njs (or w), for an
s times differentiable (or analytic) function of n arguments.

3. PRELIMINARY NOTES ON THE PROBLEM OF COMPLEXITY

There is some difference between how the concept of complexity is conceived in
everyday life (including mathematical practice) and how it is treated in the present
theory. Intuition and common sense tell us that the sequence 1011010001 is more
complex than 0000000000, that from two patterns the one is more complex (more
irregular) than the other, that a concrete proof is more complex than another, that
the task of finding the way out from a labyrinth is harder than from another labyrinth,
that the directions for use of one device are more complex than those concerning
another device, that exercize no 37 from a book is harder to solve than exercize no 12,
etc. These examples include a considerable variety of types of problems and it is
questionable whether it would be possible to reduce them all to one universal model.
A characteristic feature of a number of them is that they are (at least prima facie)
concerned with the complexity of one sole finite object. Measuring the complexity
of a single finite sequence of symbols is a typical example. (One possible way how to
measure this complexity is by determining the number of internal states of a minimal
finite autonomous automaton which, at its output, is able to produce this sequence.)

In contrast with this, the existing theory is concerned with measuring complexity
of infinite problems. Their solution is conceived as a process, running in (real)
time. Such a problem, consists as a rule of an infinity of partial problems (partial
results), thus one is especially focused not on individual, but on asymptotic estimates
of complexity.

It should be emphasized that the question of complexity of a problem includes as
its integral part following questions:

1) In what form are the data of the problem given (e.g., encoding); in what form
is the solution of the problem supplied.

2) Which means (e.g. which type of machine) are admissible for the solution.
3) Under which supplementary conditions (restrictions on time etc.) is the solution

to be reached.

To set up a classification of problems then means first to determine which problems
are solvable under which conditions, and then to compare them on the basis of
some (partial) ordering of the conditions themselves, e.g. according to the mutual
relations (magnitude) of time or space limits laid upon the solution, or according
to the power of the type of automaton needed for the solution, etc. One has to expect,
of course, that if the conditions, under which solutions to problems are to be supplied,
are hardly comparable, then the resulting classification will be accordingly interwoven
as well. Consequently, unless when led by special requirements of practice, we have
to try to reach a classification which would be universal enough and relatively
invariant under some intuitively unimportant changes of conditions 1) —3). Other
wise our results would have rather the character of industrial patents than of general
mathematical theorems.

4. BASIC PROBLEMS AND THEIR INTERPRETATION

The problems occurring in the literature in connection with complexity questions
are formulated rather nonuniformly, thus a normalization of them would be desir
able. Let us try to describe the problems in a slightly more systematic way.

There are several reasons not to be mentioned here which condition the fact
that, in machines, information is encoded mostly in the serial (sequential) manner.
Accordingly, it is processed gradually, in correspondence with the flow of real time.
Thus it is natural to formulate the basic problems in a way which is in harmony with
the idea of a theoretical model of automaton, which is provided with a sequential
input and output (in autonomous automata, the input may be absent, or it is irrelevant;
more about various types of automata will be said in sect. 5).

I. Problems of the type stimulus-response. Usually solved by automata with
input and output. There are four basic types according as the sequences of symbols
representing the stimulus and the response are finite or infinite.

II. Recognition problems. Sequences are to be classified with respect to a given
property. This problem can be viewed as a special case of the previous one; the
machine accepts an input sequence (recognizes whether it has or has not the given
property) on the basis of an associated property of the corresponding output sequence
(in machines, the output sequence is often identical with the sequence of states of
some central unit of the machine; among the states there may be some "final" states;
their appearance in the sequence of states determines the above mentioned pro
perty of the output sequence).

III. Generation problems. The machine has to generate a sequence (usually infinite)
of symbols. Solved mostly on autonomous automata.

To these three, schematically formulated basic problems, the majority of all known
problems can be reduced. The interpretation used of course plays its role and has
bearing on the evaluation of the complexity of the solution of a problem. Let us
quote some of the possible interpretations.

I'. 1) Input and output sequence finite.
Computation of an arithmetical function of the type N -> N or N x ... x iV->

%$* -> N (N = the set of natural numbers).
2) Input and output sequences infinite.
A mapping of the type <0, 1> -> <0, 1>, i.e. from real numbers into real

•\ v numbers. Alternatively: realization of a constructive operator (transforma-
/ tion).

3) Input sequence finite, output sequence infinite. Can be viewed as a (less
traditional) variant of the generation problem, e.g. the input sequence
represents the conjunction of axioms of a finitely axiomatizable theory, the
output provides an enumeration of all theorems of this theory.
4) Input sequence infinite, output sequence finite. Perhaps never investigated.

A.C^O
According to II above, there is a possible interpretation as a recognition prob- 47?
lem for real numbers from <0, 1>.

Mixed interpretations are also possible, e.g. in computations of partial recursive
functions the output sequences will generally be both finite and infinite.

II'. 1) Recognition of sets (predicates) of natural numbers by computing their
characteristic functions.
2) Recognition of properties of words in abstract languages.

III'. 1) Generation of a real number from <0, 1>, i.e. of its dyadic expansion.
2) Generation of a set of natural numbers (words). The codes of the numbers
are in the output sequence separated by a special symbol.

Besides these interpretations of the basic problems, less traditional ones have been
studied as well. E.g. many problems may be formulated both as stimulus-response
problems and as generation problems. The problem III' 1) may be viewed as the
computation of a function f, where the value j(n) is displayed by the n-th symbol
of the output sequence. (Let us note that if as the generating device a Turing auto
maton with several working tapes and an ever-moving output tape is used, then the
function j is primitive recursive [20]. An arbitrary general recursive function can
be obtained in this way only under the supposition that the output is not all the time
productive; this is the case of a nonuniform output, see sect. 5). Similar interpretation
may be given to the problem III '2): herej(n) is the number whose code lies between
the n-th and (n + l)-st occurence of a separating symbol in the output sequence.
Another mode how to use the process of generation for the computation of a function
is Yamada's [7a]: The output sequence contains only the symbols 0 ,1 . If we denote as
g(n) the n-th member of the output sequence, then Yamada's machine defines a func
tion j such thatj(n) is the least m with the property £ g(i) = n. On the other hand,

; = i

the problem III' 2) of generating a set of words may conversely be put as a stimulus-
response problem. E.g. in Trachtenbrot [14], the Turing machine is interpreted
alternatively as generating the set of those words which are images of all possible
finite input words. Still another method how to evaluate constructively (but without
respecting requirements of economy and of real time) a function j would be by gener
ating the sequence of exactly the pairs of type (n, f(n)). To close this section, let us
note that, curiously enough, in the theory of abstract languages, automata have
been used almost exclusively for recognition purpose, though the most frequent
approach to languages (i.e. via grammars) is the generative one.

5. TYPES OF AUTOMATA

Here we intend to survey some of the types of automata hitherto considered in the
literature, among them those used in recent papers dealing with complexity questions.
As real-time operations constitute one important part of the general complexity

problem, we shall discuss several questions concerning real time already in this and
the next section, in close connection with some relevant features of the design and
interpretations of various types of automata.

As it is known, in the abstract theory of discrete synchronous automata the length
of tacts (units of operation time) is irrelevant, important being but their succession
(order). Thus the concept of real time loses here in fact its primary importance: it
remains here only as the reflection of an idea of how many operations can be realized
in a time unit. Experience tells us that in real devices (at least in those which are akin
to different variants of the Turing machine) the number of possible operations per
unit of time is a priori limited. (This is true independently of the idea that the restric
tion upon velocity of operations implies a restriction upon the space — e.g. upon the
number of squares on a tape — which can be processed in 1 sec. Even if we should
imagine that the squares may indefinitely diminish with increasing index, so that
the machine would not need to be of a potentially infinite size, the insurmountable
bound on the velocity of operations still remains to exist, conditioned by the ever
increasing difficulties as to the performance of such microoperations.)

Having thus substituted for real time the number of internal operations perform-
able during a tact, we tacitly assumed that that part of the machine which becomes
active in this time has an a priori limited complexity (which, according to what has
already been said, may be reduced to the supposition of its limited size). In the iter
ative nets [21,22] the situation is different and the active part may be steadily growing.
The requirement of limited complexity of the active part is to be replaced in them
by an obvious local variant. We shall however leave these devices aside, as well
as the problems concerning the coordination (may be multi-level) of the activity
of their parts which, as in the case of an ever augmenting population, may be com
bined with essential difficulties.

Let us now first consider three concepts, basic with automata: input, output, end
of activity.

A) Input. Let us distinguish two cases:

a) Free input. At time t, immediately accessible to the automaton is only the t-th
symbol of the input sequence. (If the automaton has to use, at t, the information
concerning another input symbol — usually the t'-th where t' < t —, then it must
store it in the internal state, or on a special tape, or it must have an additional reading
head.) Free input may be realized in an automaton either without tape of with the
aid of an input tape, on which an input reading head is moving uniformly and with
out rewriting, one square per unit of time.

b) Bound input. We always suppose that the input sequence is given to the
automaton independently so that it cannot choose it freely and when it exerts some
changes upon it, this is a part of the internal action of the automaton. We speak
of a bound input when the automaton is provided with an input tape (see a)
above) on which, besides the input head, another, working head is moving and

processing the tape in an arbitrary manner. In usual formulations, the input head
is passed over in silence and it is supposed that the input sequence has been written
on the tape prior to the begin of the action of the machine. In cases where the input
sequence is finite one can manage with one sole head (at the rate of the prolongation
of action), modifying the head so as to serve both as input and working: first the
head puts upon the tape symbols of the input sequence and then, as soon as the head
begins to be fed by a special "neutral" input symbol signalizing that the input
sequence is over, the head gradually returns to the first square of the tape and then
starts operating as an actual working head.

B) Output

a) Free output. The symbols of the output sequence are given uniformly, one sym
bol per tact. This includes also the case of a nonuniform (free) output, when among
the output symbols there may again appear a neutral one. The corresponding inter
pretation of the output sequence then consists in dropping occurrences of this symbol
in the final result. Again the machine may or may not have an output tape. If it has,
then the neutral symbols may be eliminated from the result by stipulating that their
appearance means that the output (printing) head does neither print nor move.

b) Bound output. The output sequence is worked out on a tape which simul
taneously serves as working tape. In the case of a finite output sequence this variant
can again be reduced to the preceding one: During the actual operation of the machine
a free output will produce neutral symbols. After the halt of the original machine,
the new machine will return to the first square of the working tape and then, through
its output, reproduce the result.

Q E n d

a) Natural end. According to what has already been said in II, sect. 4, the standard
way of indicating the end is by means of final internal states of the (central unit of the)
automaton. (To this case also other variants may be reduced, e.g. when the head
goes off the working tape, etc.) Alternatively it is possible to signalize the end by the
appearance of a special "final" symbol in the output sequence [23].

b) Forced end. We are faced with this kind of end when there are some external
restrictions (of the kind of time or space limits, etc.) laid upon the operation of the
machine. The most typical example is the classical finite sequential machine, where
the machine is supposed to end its action at t, if the length of the input sequence is t.
(Note that there the "final" internal states of the machine do not correspond to a real
stop of the machine, since they may appear — when considered as output symbols —
several times in an output sequence. Finite automata having a natural end instead
of a forced one and consequently capable of producing output sequence whose length
is different from the input sequence were studied e.g. in [23,15].) In the case of general
prescribed limits the forced end comes in when the machine exceeds these limits.
If, in addition, the machine is provided with means for a natural end, then either this

end is reached within the limits or it is not. In the latter case we have to do with
a forced end and the result (output sequence) is either viewed as identical with the
partial result hitherto reached or alternatively this kind of end is interpreted as non-
resultative. The interpretation used may be of importance especially in recognition
problems, in connection with the difference between the concepts of strong and weak
recognizability. (A set A of sequences is strongly recognizable by an automaton, when
the automaton is capable of giving the answer "yes" to all sequences belonging to A
and the answer "no" to sequences not belonging to A. Weak recognizability means
that the automaton gives the answer "yes" just to sequences belonging to A, but it
may be without result for the remaining sequences.) Note that, as a rule, the restric
tions which are taken into consideration are external - they are not "built in" the
automaton —consequently it is not obvious that e.g. the complement of a weakly
recognizable set should be recognizable under the same restrictions.

Now, let us schematically review some of the types of automata occurring in the
literature, especially in connection with real-time and complexity questions, and let
us specify them according to some of the characteristics just discussed.

(The variety of types of automata as well as of interpretations of the basic
problems is responsible for the sometimes considerable difficulties concerning the
possibility of comparision of the complexity of the (solutions of the) problems).

I. Automata without special working tapes

1) Classical finite state sequential machines.
Free input; free output.

2) Two-way (one-tape) finite automata [2].
Bound input, input tape with a two-way motion of the working, only writing head;
free output.

3) Linear-bounded automata [3].
Bound input, input tape having the length of the input sequence and provided
with a two-way moving and rewriting working head; free output.

4) Combinatorial automata [23].
Several variants, including also the preceding cases. Bound input, input tape gener
ally with a two-way moving and rewriting head, subject to various types of restrictions;
free nonuniform output.

5) Classical Turing machines.
Bound input; bound output. The input tape serves simultaneously as output
tape and as working tape.

II. Automata with special working tapes

l) Push-down automata [24, 12].
Push-down working tape, free output. The input is either free or (in [12]) bound,
with an input tape provided with two-way moving and only reading working head.

2) Turing automata with special working tapes. 485
They have all a free output, generally nonuniform. Working tapes are processed
in an arbitrary manner.

a) [13, 12] Free input; free output; one or more working tapes.
b) [12] Bound input, the input tape is provided with a two-way reading only

head; free output; one or more working tapes.
c) [11] As sub a), with the only difference that there may be several heads on

a working tape.
d) [1] As sub a), but the working tape is only one and it is many-dimensional.
e) [7a] As sub a), but without input. The output is uniform.

6. COMPARISON OF SEVERAL TYPES OF AUTOMATA

Let us now discuss the possibility of simulating the operation of one automaton
by another in real time.

First, let us compare the classical Turing machine Tx with the Turing machine T2

having a free input and output and one working tape, since it seems that T2 stands
to Ti in a very close relation. It turns out, however, that a faithful and simple mutual
simulation of these two types of automata is hardly possible. To see it, consider
first T.. It has bound input (and consequently an imaginary, writing only input
head), whereas the input of T2 is free. Of course we can suppose that T2 starts with
an empty working tape, since all input information is fed into it through input.
Despite of the further difference consisting in T2 having free and Tx bound output,
it seems that to simulate at least the proper action of Tx on T2 in real time is possible
only if we admit (what is very natural) that the working tape of T2 will be provided
with an additional, writing only head, which corresponds to the imaginary input
head of Tv This head brings directly from the input the initial tape information
of T! and puts it on the working tape. Thus the new machine will not be a pure T2

machine. Similar situation seems to arise whenever one wishes to simulate in real
time a machine with bound input on a machine with free input.

Conversely, trying to simulate T2 on Tu we are meeting with the main difficulty
that to T2, the t-th member of the input sequence is accessible at t. Tx has no possi
bility to mimic this fact, even when we decide to introduce in Tx the mentioned imagin
ary input head, since this head has in Tx no direct connection with the central unit.

Now, let us look at the relation between the types II 2a) and II 2c) (see sect. 5),
i.e. between Turing machines with several working tapes and one single head on
each tape, and Turing machines with several (finite number) heads on each working
tape. First we find that the operation of a machine T with n working tapes and
one single head upon each can be simulated in real time by a machine T with one
working tape and n heads upon it. It suffices to show this for n = 2. The working
tape of T is obtained by considering the tapes of Tas one tape:

The working symbols in T will be the pairs %. The two heads of T' will in fact
be the heads of T, and each of them will be processing "its" half of the new tape.
Note that obviously in T the condition is satisfied that if the heads are both scan
ning the "same" square of the new tape, they both produce the same new symbol
on it; on the other hand, the possibility is not excluded of both heads scanning on
different squares the same symbol, but rewriting it differently.

An argument similar to the above shows that, more generally, the operation of
a machine with several working tapes and several heads upon each may be simulated
in real time by a machine with one working tape and several heads upon it. Thus
the machine with one working tape and several heads is universal from the point
of view of operation in real time (with respect to machines of the type II 2 c).

On the other hand, a similar reduction of a one-tape many-head automaton to
the many-tape one-head type seems not to be known. For simplicity, let us consider
a machine with one tape and two heads. Then it is possible to formulate two conditions
concerning its action (compare above):

(Cj) Strong compatibility
If both heads are scanning the same symbol (may be on different squares), then
both do change it into the same symbol.

(C2) Weak compatibility
If both heads are on the same square, then the scanned symbol is changed by both
heads into the same symbol.

A machine satisfying the condition (C2) is only capable of recognizing the
coincidence of the heads on a square. It would be interesting to know in what mutual
relation stand machines satisfying these two conditions, and especially whether the
formal difference of these conditions has any bearing on the possibility of the elimina
tion of more heads on a tape at the rate of introducing more tapes. Similarly it would
be of some interest to study many-tape one-head machines which are capable of
recognizing whether or not two heads on different tapes are scanning squares with
the same index. If we assume that the tapes do not move (moving are only the heads;
for a motivation, see next sect.), and that they are parallel, then such a supposition
as to the ability of a machine is quite natural and materially justified.

To conclude, let us note that, following [12], it is easy to show that if in the opera
tion of a machine we are not interested in time, but in space used, i.e. in the number
of squares successively scanned on all working tapes, then it is possible — at the rate
of the prolongation of necessary time - to simulate the action of an arbitrary many-
tape and many-head machine on a machine with one working tape and one head
processing it.

7. INADEQUACY OF MANY-TAPE AND MANY-HEAD MACHINES

FOR REAL-TIME COMPUTATIONS

The classical Turing machine (i.e. without the special input head which would
begin to write the input sequence on the tape simultaneously as the working head
starts to process the tape) may be viewed as a purely mathematical model, regardless
of the possibility of its realization. On the other hand, this model was designed with
the intention to represent an abstract version of the constructive treatment of inform
ation as is accomplished by men or real machines. Especially, the elementary acts
are chosen so as to have a limited complexity and as to be realizable within the time
reserved for a single tact (see sect. 5). This intention has some consequences as to the
interpretation of the motion along the tape. Sometimes it is supposed that the cen
tral unit and the head (let us assume that they are fixedly attached to each other)
remain without motion and that what is moving is the whole tape. Even if we sup
pose that the tape is growing, thus having always only finite length, nevertheless
its length may exceed an arbitrary limit or, more precisely — e.g. when the tape is
wound up — it will occupy an arbitrarily large space. (It has already been pointed out
that to imagine the tape to be concentrated in a limited piece of space is combined
with essential difficulties.) Then it seems not to be realistic to assume that to put
such a tape with an astronomical size into motion is an operation of limited complex
ity (e.g. the energy needed for this is apparently arbitrarily large). Consequently, one
is led to adopting the alternative interpretation, according to which the tape remains
immobile and the pair head + central unit (which is a device of finite size) is moving
along it.

Similar reasons lead us to adopt this point of view with a machine having working
tapes, with one head upon each. If there are several tapes, then of course the central
unit can no more be fixedly attached to all the working heads, since, in view of the
immobility of the tapes, the heads may generally find themselves at an arbitrary
distance. At the same time, whatever may be the position of the central unit, at least
one head will have an arbitrary distance from it. But then it is no more possible
to ignore the velocity of the propagation of signals between the heads and the central
unit. Even if we assume that the operation of transfer of a signal is an operation of
limited complexity (of course this is highly questionable) which lays claim only to
time (the central unit waits until it receives the signal from the more distant head,
in order to be able to process it in synchronization with the signal from the other
head), it is however evident that we have no more justification to interpret this mode
of action as an action in real time and to measure real time by the number of tacts.

A similar argument (which of course is not purely mathematical) may be set up
against machines with several heads on the tapes, even if the working tape is only
one. And, finally, difficulties of an analoguous kind arise even with the classical
Turing machine when we assume it to be supplied with a special input head (see
above). If we suppose (which seems reasonable) the central unit attached to the

ordinary, working head, then the input head will generally, after a sufficiently long
time, find itself at an arbitrary distance from the central unit. Though there is no active
communication necessary between the input head and the central unit, it is somewhat
inconvenient to find such an important and surely active part of the machine as the
input certainly is to be operating somewhere at an uncontrollable distance from
the main body of the automaton. It would perhaps bring some profit and it would
reflect more realistically the state of affairs, if we introduce into such models of auto
mata the concept of a special channel (denoted e.g. as transporting tape), which would
serve only the purpose of the transport (may be at a sufficiently high speed) of signals.
Note that in the field of digital computers the comparability of the speed of operation
with the velocity of signals also leads to new problems.

Let us finally put the following question: What can be said about the kind of
operation of automata with many tapes and many heads upon each, if we know that
the distances of all the heads (on the same as well as on different tapes) remain during
the action always limited by a fixed number? From the point of view of simulation
in real time, we may, according to the result from sect. 6, restrict ourselves to the
sole case of an automaton with one tape and several heads. It is then possible to
show that, under the assumption that the distance of the heads is always limited, the
kind of operation of this (and consequently of others as well) type of automaton may
be simulated in real time by an automaton with one working tape and one head
only. Thus under the mentioned conditions, this most simple type of automaton
is already the most universal. It is convenient to divide the proof into two steps.
First by encoding the information on the tape by sufficiently large blocks we are able
to construct a simulating machine in which the heads will always scan either the same
or two neighbouring squares. Second, by an additional modification of the new
machine, we can achieve that the information as to the action of the heads on neigh
bouring squares can always be stored in the internal state of the central unit of
the machine. Consequently, one head will be enough.

8. EXAMPLES OF REAL-TIME COMPUTATIONS

We now give several examples of how many-tape and many-head machines can
be used for solving problems in (strict) real time. All the problems are recognition
problems, having connection with various kinds of grammars (in the sense of
Chomsky [4]). The symbol w will always mean a nonempty word consisting of
symbols from some finite set. (In the examples I —IV, this set will be {au ..., «„}.)
The symbol w"1 means the converse word. All the machines which will be considered
are Turing machines with free input and output, generally with several tapes and
several heads upon each tape.

I. Words of the type w§w~l. They form a linear context-free language (linear in the
sense that on the right side of each substitution rule, there appears at most one
nonterminal symbol). Grammar:

Terminal symbols: au ..., a„, §
Nonterminal symbols: S
Rules:

S-> fljai (1 g i ^ n)

§ -» « ; § « >

This set can trivially be recognized in real time by a one-tape one-head machine.
II. Words of the type ww~1. They again form a linear context-free language.

Grammar:
Terminal symbols: au ..., a„
Nonterminal symbols: S, At, ..., A„
Rules:

S -> A;a;

A; -> atAjaj (1 g i,j ^ n)

It seems not to be known whether this set is recognizable in real time by a many-tape
one-head machine (cf. [9]). We do not know whether this is possible even by a many-
head machine. It would be interesting to know whether a recognition in real time is
at all possible (by a suitable machine).

III . Words of the type w§w. They form a context-sensitive language. Grammar:
Terminal symbols: au •.., a„, §
Nonterminal symbols: S, Au ..., An, BU...,B„
Rules:

S -* a^Bi Aflj -» ajAi (1 ^ i,j g n)

B, -> a, AfBj -»• ajBt

§ - » a j § i * (

This set can trivially be recognized in real time by a one-tape two-head machine.
On the other hand, P. Strnad [25] has recently shown that this can also be achieved
by a three-tape one-head machine. Let us outline how this machine operates. Let
w = bi ... bk and, for simplicity, let us suppose that fc is even, k = 2m. The action
of the machine, when its input is fed by a word of type bt ... bk§ ci ... c^is divided
into three time intervals A, B, C, corresponding to the following tacts:

1, 2, ..., fc, fc + 1 (= appearance of §),

(fc + 1) + 1, (k + 1) + 2, ..., (fc + 1) + m ,

((fc + 1) + m) + 1, ..., ((fc + 1) + m) + m = 2fc + 1

The machine starts with empty tapes and with each head scanning the first square

of its tape. The action on the tapes Tl5 T2, T3 during these intervals is as follows:

A) T1: The head moves uniformly to the right and writes by, ..., bk.
T2: The head marks the first square and then, in each even tact, goes one square

to the right, writing nothing.
T3: The head is standing on the first square and does not write anything.

B) Tx: Uniform motion to the left. The head reads bk,..., bm + 1 and, through central
unit, sends this information to T3.
T2: The head moves to the left and writes cu ..., cm.
T3: Uniform motion to the right. The head writes the symbols bk,..., bm+1,

supplied by T1.
C) T%: The head continues to move to the left and reads b„„ ..., &..

T2: The head moves to the right and reads cm, ..., c±.
T3: The head goes to the left and reads bm + 1, ..., bk.

During the third time interval C, the central unit, in addition, accomplishes two
kinds of action which make the final recognition possible: a) Comparison of the
input symbols cm+1, ..., ck with the symbols bm+1, ..., bk read on T3. b) Comparison
of the symbols b,„, ...,b1 read on Tt with the symbols c„„ ..., c1 read on T2.

It would be interesting to know whether in this problem three tapes constitute
the minimal number of necessary tapes. In the case of an affirmative answer, this
would mean that it is generally not possible to simulate in real time a one-tape n-head
automaton by an rc-tape one-head machine.*

IV. Words of the type ww. It can be shown that this set is a context-sensitive
language. On the other hand, like in the example II, we do not know whether it is
at all recognizable in real time.

V. Let, for a symbol c, be ck = cc ... c (k times).
Let

R1 = {w : w = 0ml*aOm ; m, n = 1, 2, . . .} ,

R2 = [w : w = OmlkM" ; m, n = 1, 2, . . .} ,

R = R! VJ R2 .

Then Ru R2, R are context-free linear languages.
The grammar for R (including simultaneously grammars for R1; R2):

Terminal symbols: 0,1, a, b
"Nonterminal symbols: 5, A, M, B, N
Rules:

S -* 0A0 S -» N1BI

A ^OAO B -» 1B1

* Added in proof: P. Strnad has recently succeeded in showing that this language can be
recognized by a two-tape one-head machine.

A -> ш R -> ь

м-> ш Лľ->ЛЮ

M -> Ű Лt-> 0

Rabin [13] has proved that R is recognizable in real time by a one-tape one-head
machine.

VI. For a set D, let D°° be the set of all nonempty words consisting of symbols
from D. Let U = {0, 1}, V = {2, 3} and let

R! = {w : w = uvau~1; a e U00, y e V00} ,

R2 = {w : w = uvbv'1; u e U°°, p e V00} ,

R = Rx U R2 .

Then R is again a linear context-free language. Grammar:
Terminal symbols 0, 1, 2, 3, a, &
Nonterminal symbols: S, A, B
Rules:

S -> XAX S -> ЛÍ>'Бy
A —> XAX ß -> yБj;
A -> yM R -> b X Є U, J» Є 1'

M ->>>M N -> Лfx
M -> д У ->x

Again Rabin [13] shows that R is recognizable in real time by a two-tape one-head
automaton. (Consequently, as we know from sect. 6, there is a recognition by a one-
tape two-head machine.) On the other hand, Rabin proves that R is not recognizable
by a one-tape one-head machine.

VII. Let U = {0, 1} and let

R = {w:(w = u 1 § M 2 § . . . M » & (n ^ 1) & (J /] ; ..., u,„veUm)&

& (there exists such an i, 1 j£ i :g n, that w; = V1)} .

Then R is a context-free language. Grammar:
Terminal symbols: 0, 1, §

Nonterminal symbols: S, A, B, C, 0, 1

Rules:
S -» x A x x -»J3§
A -> x A x 5 -> x
A -> § R -> XR
A -> §5§ B -> xC
x -> x C -> 8R

Hartmanis and Stearns [11] prove that R is not recognizable in real time by any
many-tape one-hand machine. It is an open question whether R is recognizable
in real time by a one-tape many-head machine. It would be interesting to know whether
the set of the converse words

jR-1 = {w : w _ 1 6 R }

which, at first glance, seems to be recognizable more simply than R, is in fact recogniz
able in real time.

9. PROBLEMS OF REAL TIME. METHODS OF MEASURING

COMPLEXITY

Though various requirements on operation in real time provide but one of the
possible tools for measuring complexity of processes, there is an intuitive feeling,
supported by everyday experience, that problems of real time are, when considered
from the practical point of view, of a special urgency. Thus it is worth beginning
with several heuristic considerations concerning the mutual relation between some
practical aspects of real time and the position which real time takes on in the abstract,
mathematical theory of automata and consequently in the theory of complexity
as well.

One encounters in everyday life a series of situations where some task must be
achieved within certain time limits: production of newspapers, forecast of weather,
TV transmission etc. In these examples the "input" is relatively independent of the
"output". This corresponds, in the language of automata, to devices with an unregul
ated input. All machines considered in sect. 5 were intended to solve problems with
an unregulated independent input information. Now, properly speaking, this kind
of practical activity in fact represents a rather rare exception, though time limits
mostly remain to be present: automatic control, chess playing, driving of a car,
tennis etc. Here there is always a feedback between input and output. This is especially
true for the most common activity in real time, namely for the whole life of an animal
or man: We are steadily influencing our input by motion, speech, work, etc. Thus the
models of machines from sect. 5 as well as the problems that we have stated as basic
for them do represent but a limited portion of actually arising situations. Second,
and this seems to be more important, we realize that no machine or animal is exposed
to severe requirements of action in real time (especially with unregulated input)
for an unlimited period of time. There are long periods of time where the input is so
to speak "in rest" or highly indifferent (sleep, current conversation). Moreover, for
the solution of important problems in real time, machines and animals are usually
being prepared in advance by training, gathering of information, learning, preparing
new materials etc.; the action in real time then begins only when the preparations
are found sufficient for a successful solution, meeting the needs of real time. Further,
let us emphasize that while the action in real time as a rule consists of solving, in real

time and iteratively, a may be unlimited succession of single problems of limited
complexity, we do not know of any single practical problem to be solved in real time
which would consist of partial problems involving arbitrarily long input sequences.
On the other hand, in basic problems described in sect. 4 arbitrarily long input
sequences are current. Thus this feature is in contrast with actual real-time processes:
they do not provide for a sufficient time for encoding quantities discretely with an
arbitrary precision which, when serial coding is used, requires long sequences and
unlimited delay. E.g. in TV transmission, one has to restrict the precision of encoding
and consequently the length of input sequences. To conclude, we see that the practice
of serial discrete encoding of information in automata has as its consequence that,
for long sequence, the concept of real time is a mathematical extrapolation which
does no more reflect the urgency which real time has in practical processes or in the
case of treating "short" information.

Now, let us return to the mathematical side of the question and let us try to set up
some general principles serving as a basis for measuring complexity of the basic
problems. (In this connection, let us recall the importance of the conditions 1) —3)
from sect. 3.) These problems are mostly capable of being divided into an infinity
of finite partial problems. E.g. the stimulus-response problem naturally consists
in finding concrete response to a concrete stimulus. If the stimulus and the response
in a problem are always finite, then if, on the basis of some characteristics of the
solution (concerning space, time etc.), we are able to associate with every stimulus
(input sequence) P a certain number s(P), then s is a signalizing function (term
due to Trachtenbrot) which yields a certain characteristic of the solution of the whole
problem. Sometimes one takes for the basic parameter not the sequence P but its

length n, and accordingly one considers the function s'(n) = max s(P), where P runs
p

over all sequences of length n. Further, in questions of asymptotic behaviour, it is
convenient to consider the "smoothened" function s"(n) = max s'(i). Let us note

that the use of signalizing functions was anticipated by Trachtenbrot already in [26],
where they were introduced in connection with the study of constructive operators,
appearing in Post's problem of recursive reduction. (Following Trachtenbrot, a func
tion s is a signalizing function of a function / defined by a system E of equations, if,
for every n, there is a computation of the value f(n) from E in which the maximal
involved number does not exceed s(n),)

In the case when the solution of a problem represents one or more infinite processes,
then one has to find another way how to divide it into partial problems. Thus e.g.
in the problem of generating an infinite sequence on the output of an autonomous
automaton, the above parameter n may be associated with the n-th partial output result,
be it the n-th output symbol (when generating an expansion of a real number), or, more
generally, the n-th output word (when generating a set of words or natural numbers),
or in this latter case n may be associated with the lengths of the output words. Again,
we thus receive some signalizing function which characterizes the process.

Note that a signalizing function does not characterize a problem but only its
concrete solution under given conditions. The most important and most frequently
used signalizing functions are (for simplicity, we give only the unaccented notations
and use capital letters; according to the type of problem, n has one of the meanings
mentioned above):

a) Time function: T(n) = the number of tacts (steps) necessary for reaching the
result.

b) Space function: L(n) = the number of squares used on various tapes tor reach
ing the result.

Trachtenbrot [14] takes into consideration also the following signalizing functions:
c) Regime: R(n) = the maximum of transgressions of the head of the common

boundary of two neighbouring squares of the tape during the process of reaching
the result, the maximum being taken over all squares.

d) Oscillation: 0(n) = the number of changes of the direction of the motion of the
head in the process of reaching the result.

If especially T(n) ^ n, then we say that the solution is reached in (strict) real time.
With automata having input and output, this corresponds, in stimulus-response
problems, to the idea of a free input, or of a bound input with a special input head.
In connection with the problem of generation on an autonomous automaton, this
terminology is adequate only if the n-th partial result is the n-th output symbol and the
output is uniform. Thus e.g. Yamada's functions computable in real time actually
do not fit into this pattern. The output of his machines is nonuniform (instead of
Yamada's output symbol 0 we may imagine a neutral symbol; cf. sect. 5) and if we
conceive, following a standard formulation, the computation of a function as a sti
mulus-response problem, then the value j(n) is generally not provided in strict real
time, determined by the length of the stimulus, i.e. of the code of n. Since Yamada
uses unary encoding of the numbers, we may imagine an alternative arrangement
of such computations, where the argument n is given to the input of some machine
and the value f(n) is simply the number of tacts needed by the machine to reach the
final state. Then the time function T(n) of the computation is directly equal to the
computed function. This is, properly speaking, the true sense of Yamada's term
"real time". Thus Yamada in fact does not classify functions according to T(n),
but he exhibits a certain class of functions, computable in certain manner. It
would be interesting to know the mutual relation of his kind of computing his
functions with the more standard one just mentioned.

Instead of measuring, with the aid of signalizing functions, the complexity of some
concrete solution of a problem, we should perhaps like to achieve more than this,
namely determining complexity of the problem itself. The problems would then be
classified into classes of equally complex problems. Such a classification apparently
has not yet been given. Instead, one is trying to define when one problem is decisively
more complex than another. Such an ordering was given by Rabin in [6] for the

class of all recursive functions, under the condition that the functions are computed
by means of Post's canonical systems. A criterion used is the number of necessary
steps (applications of productions). Since Post's systems are not monogenic, whereas
it is convenient to work with algorithmic (deterministic) devices, let us try to restate
the main idea using instead the concept of the classical Turing machine and the
time function T(n). If M is a machine computing a function / , let TM(n) be the
number of tacts needed by M to compute f(n). Then we say that a function g is
more complex than a function / if there exists a machine M computing/ such that,
for every machine L computing g, there exists n0 such that TM(n) < T,_(n) for all
n > n0. Rabin states a result to the effect that the ordering of recursive functions
which corresponds to this relation is nontrivial. (Unfortunately, there is no indica
tion as to the place of most common functions in this classification and as to its
structure as well.)

It seems, however, that a series of reasons provides motives for a somewhat
different treatment of the whole problem than is a machine-independent, theoret
ically exhaustive and fine classification. Let us introduce the most important of them.

a) When trying to determine directly the complexity of a singular problem by
means of signalizing functions we may find that it is not at all obvious that, among
the various signalizing functions corresponding to various concrete solutions of the
problem, there can be found some which, according to a certain ordering of the signal
izing functions, would be minimal. Then all we can do is to try to find lower and
upper bounds on the complexity of solution of the problem.

b) Signalizing functions of (concrete solutions of) concrete problems may be very
complex and they are subject themselves to a classification (may be the same). In
order to obtain something less complex than which we started with, it is advisable
to exhibit a priori an auxiliary (may be incomplete) classification or ordering of some
sufficiently reasonable signalizing functions. Simultaneously, it is profitable to con
sider these functions not as immediate signalizing functions, but only as their estim
ates. This leads to the constitution of large classes of problems each of which has
a solution with a signalizing function satisfying the given estimate. (Another approach
is Ritchie's [15], where functions and the signalizing functions of their computations
are subject to the same inclusive classification: the (i + l)-st class contains all func
tions having a computation with the signalizing function belonging to the i-th class.)

c) We are not equally interested in all problems or functions, but mostly in those
occuring rather frequently or deriving their importance from other branches of
research (e.g. various kinds of languages).

d) We have decisive reasons to be interested in the (possibility of) solution of
problems with the use of some special kind of machines. Especially, we are interested
in the converse problems of determining, whit the use of estimates of signalizing
functions, the power of various types of machines themselves.

These motives are partly responsible for the emphasis laid upon the mutual rela
tion, sometimes considerably complex, between the following things: a) type of pro-

blem, b) type of machine, c) type of grammar, d) estimate of signalizing function,
e) type of signalizing function.

10. SOME RECENT RESULTS

In this last section, let us survey some of the interesting results obtained recently
by Hartmanis, Stearns, Lewis, and Trachtenbrot. With the exception of the
work of Trachtenbrot, let us restrict, for simplicity, to recognition problems, though
the main body of results in the basic papers [10, 11] is concerned with problems of
generating expansions of real numbers.

In the two mentioned papers which are concerned with a theory of complexity
using time estimates of problems, these estimates ("time functions") are mostly
chosen to be Yamada's real-time computable functions. The machines considered
are Turing machines with free input and free nonuniform output, having several
working tapes. There is a somewhat unorthodox definition of recognizability by such
a machine M: M (strongly) recognizes a set R of words if, for any infinite input
sequence and for any n, the n-th output symbol is 1 iff the initial segment of length n
of the input sequence is a word belonging to R. Moreover, given a time function T,
the set R is said to be T-recognized by M, if it is recognized by M in such a manner
that the rc-th output symbol is given within T(n) or fewer tacts. Then there is first
a variant of the "speed-up theorem": If R is T-recognizable and T(n) — n + E(n),
E(n) _ 0, then, for every e > 0, R is TE-recognizable, where Te(n) = n + e.E(n).
Thus the rate of time E(n) exceeding the necessary real-time minimum n may be reduc
ed in an arbitrary linear manner. Second, a hierarchy of recognition problems results
on the basis of the following result: If, for two time functions Tx, T2 real-time com
putable and monotone increasing, we have sup Tx(n)j\T2(n). lg T2(n)] = oo, then
there is a Tx-recognizable set which is not T2-recognizable. Finally, as far as the
relation between one-head and many-head machines is concerned, there is the fol
lowing result: If a set R is T-recognizable by a many-tape, many-head machine,
then it is T1-recognizable by a one-tape one-head machine.

Space estimates of complexity of recognition problems are the main object of the
paper [12]. The machines used are again Turing machines with free nonuniform
output, but the input may be free or bound (then two-way, without rewriting)
and, in addition, the working tape may be of a push-down type. There is a whole
series of results, from which let us mention only the following ones. (The space
function L provides an estimate of the number of squares of the working tape which
are used in order to obtain the result of recognition. Let us recall (cf. sect. 7) that in the
space theory, one working tape is enough.) First there is an analogy of the speed-up
theorem, now taking on the form of a linear compression statement: 1/ sup Lx(n) :
: L2(n) < oo, then every Lx-recognizable set is L2-recognizable. Again there is
a nontrivial hiararchy of recognition problems, resulting from the following result:
/ / - under minor restrictions as to Lx — we have sup Lx(n)JL2(n) = oo, then there

exists a L^recognizable set which is not L2-recognizable. There are further many

problems and partial results concerning the mutual relation between languages,

types of automata and types of space estimates. Let us mention only the results which

are concerned with the lowest portion of the hierarchy, occupied .by finite state

languages (i.e. sets recognizable by finite automata). The authors state the following

theorem: For each machine model indicated below, there is a space function L 0

such that, for every space function L satisfying the equation lim L0(n)jL(n) = oo,

every set which is L-recognizable (by the respective model) is already a finite state

language. The functions L 0 are as follows:

Model: L0(n):

one-way Turing machine Ign
two-way Turing machine lg lgn
one-way push down machine n

two-way push down machine lglgи

(The specification "one-way" means free input, "two-way" means a bound input

without rewriting.)

Now let us turn to Trachtenbrot's paper [14]. His model is essentially the classical

Turing machine. He does not restrict himself only to recognition problems, but he

considers chiefly general computational processes of the type stimulus — response. Re

cognition of a set is meant classically as the computation of its characteristic function.

The main interest of Trachtenbrot is in the lowest portions of hierarchy and

in mutual relations between restrictions involving the four kinds of signalizing func

tions (see sect. 8): a) time, b) space, c) regime, d) oscillation. His results are perhaps

best displayed in a table where an arrow means that if there is a solution (computation)

of a stimulus-response problem which satisfies the condition on the left, then there

is a solution of the same problem (may be on another machine) satisfying the con

dition on the right. (See Fig. 1.)

As to the recognition problems, Trachtenbrot proves that if R is a set recognizable

by a machine so that the corresponding time signalizing function satisfies the con

dition lim (n Ig n)JT(n) = oo, then Ris a finite state language. This includes as a special
n-»oo

case Hennie's result [27], following which R is a finite state language whenever it is

T-recognizable with inf nJT(n) > 0.

To conclude, let us note that in a recent paper [28] Gladkij investigates a class

of grammars, having a "restricted delay", i.e. grammars with the property that there

exists a constant c such that, for every word w of length n, there is a derivation (in

the grammar) of w using at most en steps (substitutions). The class of corresponding

languages then lies strictly between context-free and context sensitive languages.

Gladkij's approach, following which the complexity of a problem (here: generation

0(ri) = 1

T(ri)
Iim — — = 0

Җri) < C L(n) <n+ C

T(ri)
sup < co

T(ri)
sup — < oo

n\gn

L(ri)
sup < co

When the input words are running over all finite sequences

Fig. 1.

T = time function
L = space function
R = regime
O = oscillation

problem) is measured by the minimal number of steps which are necessary for the

solution of it within some nonmonogenic combinatorial system is akin to the original

conception of Rabin [6].
(Received May 11th, 1965.)

REFERENCES

[1] A. Grzegorczyk: "Some classes of recursive functions". Rozprawy matematyczne, IV (1953),
Warsaw.

[2] M. O. Rabin, D. Scott: "Finite automata and their decision problems". IBM J.Research and
Development, 3, (1959) 114-125.

[3] J. Myhill: "Linear bounded automata". WADD Tech. Note No. 60-165, Univ. of Pennsyl
vania Rept. No. 6 0 - 6 2 (1960).

[4] N. Chomsky: "Three models for the description of language". IRE Trans, on Information

Theory, IT-2, (1956) 113-124.
[5] S. C. Kleene, E. L. Post: "The upper semi-lattice of degrees of recursive unsolvability".

Ann. Math., 59, (1954) 379-407.
[6] M. O. Rabin: "Speed of computation of functions and classification of recursive sets". Bull.

Res. Counc. of Israel, vol. 8F, (1959) 69 -70 .
[7] H. Yamada: "Counting by a class of growing automata". PhD Thesis, Moore School of

Elect. Eng., University of Pennsylvania (1960).
[7a] H. Yamada: "Real time computation and recursive functions not real-time computable".

IRE Trans, on Electronic Computers, EC-11 (1962) 753-760.
[8] Oral communication by S. V. Jablonskij (1962).

[9] R. McNaughton:! "The theory of automata, a survey". Advances in Computers, vol. 2,
379-421, ed. F.L. Alt, Academic Press, New York 1961.

[10] J. Hartmanis, R. E. Stearns: "On the computational complexity of algorithms". Trans.
Amer. Math. Soc. (in press).

[11] J. Hartmanis, R. E. Stearns: "Computational complexity of recursive sequences". Proc. of the
Fifth Annual Symposium on Switching Circuit Theory and Logical Design, held at Princeton
University, (1964) 82 -90 .

[12] J. Hartmanis, P. M. Lewis 11, R. E. Stearns: "Classification of computations by time and
memory requirements". Text of an invited paper read at the ÍFIP 65 Congress in New York,
May 1965.

[13] M. O. Rabin: "Real time computation". Israei J. of Math., 1 (1963), 203-211.
[14] B. A. Trachtenbrot: "Turing computations with logarithmic delay" (in Russian). Algebra

ilogika 3 (1964), no 4, 33 -48 .
[15] R. W. Ritchie: "Classes of predictably computable functions". Trans. Am. Math. Soc, 106

(1963) 139-173.
[16] J. P. Cleave: "A hierarchy of primitive recursive functions". Zeitschrift f. math. Logik und

Grundlagen d. Math. 9 (1963) 331-345.
[17] M. Blum: "A machine-independent theory of complexity of recursive functions". PҺD

Thesis, M.I.T., Departm. of Math. (1964).
[18] S. N. Cole: "Real time computation by iterative arrays of finite state machines". PҺD Thesis,

Computation Laboratory, Harvard University.
[19] A. G. Vituškin: "Ocenka složnosti zadači tabulirovanija". Gosudarstvennoe izdateľstvo

fiziko-matematičeskoj literatury, Moscow 1959.
[20] V. A. Uspenskij: „Lekcii o vyčislimych funkcijach", p. 470. Gosudarstvennoe izdateľstvo

fiziko-matematičeskoj literatury, Moscow 1960.
[21] F. C. Hennie: „Iterative arrays of logical circuits". M. I. T. Press 1961.
[22] J. Holland: "Iterative circuit computers".Proc. Western Joint Computer Conf., pp. 259 — 265,

San Francisco 1960.
[23] J. Bečvář: "Finite and combinatorial automata. Turing automata vvith a programmingtape".

Proc. of the IFIP congress 62, 391-394, North-Holland Publ. Co., Amsterdam 1963.
[24] N. Chomsky: "Context-free grammars and push-down storage". QuaгterlyProgress Report

No. 65, M.T.T., 187-194 (1962).
[25] Oral communication.
[26] B. A. Trachtenbrot: "Tabular representation of recursive operators" (in Russian). Doklady

Akad. nauk SSSR, 101 (1955), 417-420.
[27] F. C. Hennie: "One-tape, off-line Turing machine computations".Information and Control

(to be published). Reference from [12].
[28] A. V. Gladkij: "On the complexity of derivations in immediate constituents grammars".

(In Russian). Algebra i logika 3 (1964), no 5 — 6, 29 — 44.

498 V Ÿ T A H

Problémy reálného času a složitosti v teorii automatů

JIŘІ BEČVÁŘ

Autor se zabývá možnostmi precizace intuitivního pojmu složitosti problémů;
jedná se o klasifikaci třídy řešitelných úloh, přičemž za základ klasifikace jsou
brány časové a prostorové nároky, které klade řešení vyšetřovaného problému
na automatu. Automat přitom není uvažován prostě jako matematický předmět,
na který aplikujeme abstrakci potenciální uskutečnitelnosti, nýbrž jsou uplatňovány
argumenty vycházející z představy automatu jakožto fyzikálního zařízení operujícího
v reálném čase a prostoru.

Doc. Jiří Bečvář, Vysoká škola strojní a textilní, Málkova 6, Liberec.

