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Methods for Storage and Processing of Analog 
Data, Ušed in MUSA-6 

JIŘÍ KRÝŽE 

Sampling, PDM encoding, recording, reproducing, multiplication, interpolation and summation 
of samples of analog signals are analysed as parts of a data processing chain and their error contri
bution to the total error is evaluated, when different kinds of deviations from ideal operation are 
assumed. 

INTRODUCTION 

The machine MUSA-6 is a specialized analog machine, designed mainly for statistical computa
tion. Its memory consists of a six track magnetic tape, corresponding to six main working channels 
of the machine. This led to its name (Magnetic tape Universal Statistical Analyser with six chan
nels). It was designed for the following main tasks: 

1. Evaluation of autocorrelation and crosscorrelation functions. 
2. Evaluation of distribution functions. 
3. Evaluation of Fourier integrals. 
4. Computation of convolution integrals. 
5. Simulation of a time lag, which depends on some variable. 
6. Formation of a memory for an analog computer. 
7. Transformation of time scales of continuous processes. 

The basic principles of these computations, the block structure of the machine and its use for 
flexible programming of various tasks were described in previous papers [14] and [15]. The scope 
of this paper will be concentrated to analog algorithms used for storage and processing of analog 
signals, used in the machine. 

As the machine was intended especially for research work, the demand for accuracy was 
substantially more stressed than in some previous works dealing with this kind of analog compu
tation. A machine error substantially lower than the method error was required. This consequently 
led to the demand for the maximum accuracy which could be achieved with the analog principle 
and hardware given. 

The effort in developping improved techniques o f analog signal storage resulted in some new 
analog algorithms which are much more characteristic for the machine construction than the basic 
computation principles, which have a great deal in common with those known from previous work. 



SIGNAL REPRESENTATION 

The high demands for accuracy forced a time-discontinuous method to be chosen 
for tape recording. 

Contrary to some previous works, where discontinuous methods of tape recording, 
such as frequency modulation, pulse repetition frequency modulation or pulse width 
modulation, were used for the same reasons, the time-discontinuous form of signals in 
the MUSA is not limited to the read and write circuits. It is the basic form used through
out the machine. All operations are performed on equidistant samples and the output 
signals are obtained by interpolating the samples of the result. In this respect there is 
a definite analogy with the operation of a digital computer. This gives a possibility for 
simple exact mathematical formulations of all machine operations. The influence of 
inherent frequency response limitations on the result obtained can be computed 
exactly and the involved errors corrected in further processing, if necessary. The fact 
that, at least in equidistant intervals, the output signal has practically exactly the cor
rect value, is of importance in nearly all planned applications. 

When transforming continuous signals into time-discontinuous forms, the men
tioned goals cannot be achieved by using methods inherently bound to non equidistant 
sampling, such as the methods based on comparison of continuous signals and some 
coding signals (saw-tooth for instance), or frequency modulation methods. These 
methods are bound to filtering by complex filters. The resulting very complex mathe
matical relation between instantaneous imput and output signal values includes linear 
and non-linear error terms, which can be supressed only by frequency-band limi
tations. These limitations are tolerable when an accuracy in the range of 1% is ac
ceptable, but when the total error (including noise) has to be reduced to l°/oo> o r 

even less, the frequency response limitations become severe in spite of the great pulse 
density on the tape used for frequency modulation recording. There is one further 
point: 

For frequency modulation recording, the value of percentual speed fluctuations of 
the tape transport has to be substantially lower than the acceptable percentual noise 
and error level when not very complex correction circuitry, based on some form of 
clock signals on auxiliary tracks, is to be used. 

This is not necessarily the case with PDM methods, as used in MUSA-6. 
Therefore, the FM recording which is most frequent for analog signal recording, 

was abandoned and a refined PDM method used. The first step of this method is based 
on first sampling and then converting the equidistant samples into a duty-cycle pulse 
modulated signal. 

SAMPLING 

The sampling and holding of equidistant instantaneous values of continuous 
signals seems to be very simple in theory, but gives much trouble in practice, when 



146 great accuracy and higher sampling frequencies are demanded. This means charging 

a capacitor in microseconds to an exact value, and holding this value exactly for a time 

two or three orders of magnitude greater, and making it available on a low-impedance 

output without the possibility of using the benefits of negative feedback from output 

to input. 

Besides these practical difficulties, there are theoretical ones, too. The mixing action 

of sampling causes undesirable distortion components with frequencies lower than 

half the sampling frequency to appear in the sampled output signal, when frequencies 

Fig. 1. Mean value samp
ling circuit with correct
ion filter. 

higher than half the sampling frequency are contained in the input signal. Thus, un-

desired high-frequency components, such as hum and noise, can affect the sampled 

values very substantially. 

The above mentioned difficulties led to the decision to sample, instead of the in

stantaneous values, the mean values of the continuous signal in the respective 

sampling intervals. This resulted in a considerable reduction of undesired frequency 

components higher than the sampling frequency on the one hand, and in a possibility 

of using a negative feedback loop on the other hand, as shown in figure 1. 

Here A is an operational amplifier, SH is a conventional sampling and holding 

circuit with unity gain, with an electronic switch s and a capacitor memory. (Its cir

cuitry is, of course, much more sophisticated than the basic principle shown in SH in 

Fig. 1.) The time constant R0C0 is equal to the sampling interval 5 and R = R0. Then, 

by trivial analysis, it can be shown that 

(1) 

where 

1 Г i 

= ÅJ'{,) dí 

i+1 = t + э 

are the sampling instants, xt is the negative value of the sampled output — x(t) in the 

i-th sampling interval, beginning with 6>; and terminating in 0i+1. It is evident that 

long-time drifts and non-linearities of the sampling and holding circuit behave in the 

same way as similar errors of the output stage of the amplifier. Their influence on the 

transfer of slowly varying signals can be made sufficiently small by choosing the gain 

of A sufficiently great. Thus, the specifications for the sampling and holding circuit 



can be made much less severe. Influence of nonlinearity and gain variations of SH 
have to be respected only with rapidly varying signals. Denoting by a the gain of the 
sampling and holding circuit the equation (1) can be written in its more general form. 

For x*(t) = const = xc the solution is 

(3) x ; = + ^ x c 

and is independent of a and C0, as far as the difference equation (2) is stable, that is, 
as far as 

a9 
1 -

l^OCO 
< 1 . 

Deviations in the value of a9/R0C0 from 1, caused by changes in a (nonlinearity, for 
instance, or aging) #, R0, C0 affect only the dynamic properties, by introducing the 
undesired term xt in the difference equation (2). The consequence is a distortion of the 
response to an ideal step function in x*(t) (the step beginning in some 0;), which is in 
case of eq. 1 an ideal step (delayed by 9) too, but in case of (2) a stepwise exponential 
transient, damped by the coefficient (1 — [a#/R0C0]) for each step. When jl — 
— (a&/R0C0)\ < 10 - 2 , then the error in the step value in the first sampling interval 
will be smaller than 1% of the step value and smaller than 0.01% in the following 
interval. Thus, the influence of possible imperfections in SH quality is quickly ruled 
out by the feedback loop. 

As can be seen from the structure of the sampling circuit in Fig. 1, it answers only 
to mean values of x(f) and x(t), and equations (1) and (2) are expressions for relations 
between these mean values. 

Thus, if leakages in the memory condenser or other parts of the SH unit cause x(t) 
not to be strictly constant during one sampling interval, equations (1) and (2) still hold 
if xt is taken as the mean value of x(t) in the respective sampling period. 

But by taking mean value of x*(t) instead of the instantaneous value in 0h the 
frequency response of the sampling method is greatly affected. By means of Taylor 
series expansions or by Fourier representation of the output it can be shown that this 
change is equivalent to filtering the continuous signal by a filter with a transfer 
function: 

(4) e " * ' . —stab- -? 
w &p 2 

before applying it to the input of a conventional sampling circuit for instantaneous 
sampling. 



148 Therefore, a correction filter with a transfer function 

(5) i^P , i &2P2 • 7 S V 
sinh p p 24 5760 

should be used for correction. The time delay -|9 in (4) is of no importance in the 
applications involved. It only adds to the intentionally generated time delays which 
are necessary for the machine operations. 

A correction filter with the transfer function (5) is not realisable because of inherent 
instability. Therefore, some approximation has to be tried. Taking the first two terms 
of the series expansion in (5) seems to be the simplest solution. However, it means 
introducing the second derivative, which is undesirable both from the hardware point 
of view and from high frequency noise considerations. Therefore, a correction filter 
(Fc(p) in Fig. l) formed by a simple passive RC network with a transfer function 

(6) Ec(P) = _ J - ± J ^ _ = l-^! + ... 
V ' V ' 1 + 3rp + T V 24 
with 

24 

was finally chosen. This filter does not stress frequencies higher than 1/9, on the con
trary, it damps them. 

Thus, the resulting transfer function [valid for frequencies lower than 1/(29)] of 
the whole sampling circuit in Fig. 1, including the J9 delay of the holding action, is 

(7) Fs(p) = 1 + 3 X P
2 2 . «-* • - sinh *E , 

V ' V ' 1 + 3rp + T V 9p 2 

and the value of xt is a very close approximation of the instantaneous value of x(t) in 
the middle of the preceding sampling interval, the term (92p2)/24 in (5) and (6) series 
expansions reflecting the first-order influence of x(t) waveform curvature on the diffe
rence between the mean and the mentioned instantaneous value. 

The absolute value of the frequency response characteristic is 

ľ«i=;5љтЛ 1+-9Л,' x . ^ л ^ . ^ . . . 
+ 7T2CO2 + T4o)4j 5760 

The amplitude characteristic, thus, remains constant to frequencies very close to the 

theoretical maximum 1/(29). 

The phase shift (without regard to the harmless fixed delay 9) is 

3ft)3T3 

tgXs = 1 + 8 o ) V ' 

and is also harmless over a substantial part of the frequency band. 



Of course, the method used does not exclude the use of better and more sophistic- 149 
ated correction filters, if necessary. 

CODING 

For the conversion of the sampled signal in a duty cycle pulse modulated signal 
(abreviation PDM signal), comparison with a triangular coding waveform was used 
(see Fig. 2). The instants of coincidence of the sampled signal x[t) and the coding 

1 y- <P< -hv %x^ T lm \\nu\WJ' І>tl 

Fig. 2. Coding waveforms. 

waveform uA are instants of polarity changes of the PDM signal x(i). The value xf is 

represented in the i-th interval of x(t) by the relation of the positive ($*) and negative 

(3f) parts of the PDM signal in the respective sampling period to the whole period 9: 

(8) s,-»Lz2mk»t-*T 
3 .9 

Here k denotes the peak amplitude of uA. The maximum value of |x,-| is supposed to 
be 1. Then 1/fc expresses the maximum modulation depth of the PDM. Instead of the 
triangular waveform, a saw-tooth waveform is frequently used for similar purposes. 
In fact, there is little difference in principle. The triangular waveform can be dealt with 



as a composition of two saw-tooth wave-forms with an opposite slope. But the 
inherent symmetry of the triangular waveform yields many valuable advantages, e.g.: 

a) Influence of waveform distortions. 
The linear parts of the triangular and saw-tooth waveforms are to be generated 

by integration of constant voltages. This integration is never quite ideal. Instead of 
the ideal integration transfer function 
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Fig. 3. A generalized exponential distorted triangular waveform. 

the transfer function of the integration network is 

1 
(10) 

xp + a 

or an even more complex one. Here a is due to the finite gain and pass band of the 

integration amplifier, or to leakage in the integration condenser, and so on. Thus 

the waveforms are not strictly linear, but formed by exponentials. In the case of 

transfer function (10) the wave forms consist of parts of two simple exponentials 

(see Fig. 3). 



The two exponentials are characterized by their time constants TX and T2 and their 151 
asymptotic values fea, and fea2 respectively. The leading edge of the coding waveform 
is described by the equation 

(11) n(t) = fc[l - a (( l - e - " - ) ] 

with 

T, 1 (12) 
3, ln(l-2/a,V 

so that 

yM = - k. 

Similarly, for the trailing edge 

(13) y2(t) = fc[l - a2(l - e-<" '»"-)] 

with 

' ' T2~ ~ In (1 - 2/a2) 

9a and 96 are found from the conditions 

(15) y1(3a) = y2(3i)) = x . 

Then the coding error with respect to (8) has to be defined as 

(16) t-k>»^L*-S-k.*h^*^± 

and can be expressed as 

(17) 8 ~ Ikh. - fc - 3c + - ^ to *__-_!--+_! - ^ l n
f c a * ~ k ~ \ 

' S S ktii S ka2 

Using series expansions of (12), (14) and (17), valid for a, and a2 sufficiently large 
and supressing terms of order aj~4, a j 4 and lower, an approximation may be found 
as follows: 

„, t(.__l\M_/1 + ± + A\ i f 1 + ± + J_\_ 
V k')\2xts\ «, 3«;/ 2«2»V «. H) 

(UD --irAA+AUAfi + l^ l - iA-^yi i - .M}. 
v 3<.L«.n «./ «->\ ««/J A *')\"l» «_»/. 

For the isosceles triangle waveform #, = £»2 = |_* and also T, = T2 = T and 
a, = a2 = a, as the same fixed parameter integration network is used, as a rule, 
for generating the two edges. 



Then 

<"> '---<H)Ul+l 
Finding the maximum deviation of <5 from an optimally chosen strainght line 

5 = kx 

eads to the maximum nonlinearity error 

For a saw-tooth waveform 92 4 9t, 9j = >9 and a2 cannot be smaller than 2. Thus 

(2i> ' *£GH 
when terms of lower order in a t are neglected. Then the nonlinearity error is 

(22) 8„ - — . 
V ; 4fca. 

The comparison of (20) and (22) shows that the error due to finite a is much 
smaller in the case of an isosceles triangular waveform. For example, when 5„ < 1 0 - 4 

is acceptable, for k = 1-25, ax has to be larger than 2000 in the case of a saw-tooth 
waveform, whereas a larger than 23.8 is sufficient for a triangular voltage. When the 
edges of the coding voltages are generated by integration of a constant voltage 
«0 = kJK, then ;c(a — 1) is the minimum necessary gain of the operational amplifier 
used in the integrator. The gain necessary for triangular waveforms is thus much 
smaller, which is of great value for higher coding waveform frequencies. 

b) Influence of sampling omitted. 

Fig. 4 shows the situation when an unsampled signal x(t) is directly coded by 
means of a triangular coding waveform. When for x(i) only the first two terms of its 
series expansion in the centre of the sampling interval are taken 

(23) x(t) = Xj + x\. t, 

and 9f is computed and the error definition (16) is applied, then 

(24) S,A k)\*k) 
l+m 

\Ak 

is obtained. This equation shows nonlinear distortions which become significant 
when the increment 9x', of x(t) during one sampling interval 9 increases. But with 



such rapidly varying signals, distortions due to higher derivatives become significant, 
so that the limitations on signal variations imposed by omission of sampling are even 
stronger. Equation (24) is of great importance with respect to the necessary quality 
of the holding action of the sampling circuit. The leakage of the memory condenser 
in the SH unit in Fig. 1 causes an approximately linear variation of its output voltage 
during one sampling period. But the mean value of this voltage is correct. This is secur-

Fig. 4. Coding of nonsampled waveforms. 

ed by the feedback. Equation (24) thus indicates that a rather poor holding action 
characterized by 10% full scale drift during one sampling period, is still acceptable. 

This is not the case with a saw-tooth coding waveform. If a falling ramp is used, 
the expression for 5 becomes 

(25) « . - -
SX^XÌ 

2/c + &X'І 

and indicates a much greater error. For 5 < 10~3 and k = 1-25 Sx' < 2-5 . 1 0 - 3 is 
necessary. 

Thus it is obvious that the inherent symmetry of an isosceles triangular coding 
waveform has substantial advantages when high precision is to be scured. 

RECORDING 

The information density on the magnetic tape, expressed in the number of samples 
per unit length of one track, is limited by the minimum distance of two pulses. When 
the tape speed v is used, the minimum distance is 

(26) Amin = » a i . = x . tó. 



154 where X = v& is the sample distance on the tape. Evaluation of #+
in from (8) for 

x = — 1 yields 

<27> f('-K 
and 

(28) Amta = p A - i y 

The equations (26), (27) and (28) are valid for both the triangular and saw-tooth 
coding waveforms, and so these waveforms are quite equivalent from the information 
density viewpoint. 

From (28) it can be seen that for a given Amin the sample distance X is to be increased 
if the modulation depth 1/fe increases. Thus a choice of a small modulation depth 
seems to be advantageous. 

But a certain random error in the position of recorded pulses exists, due to a tape 
coating structure, head gap dimensions, and varying tape to head contact. As 
a result, the intervals _»+ and #7" are, after being recorded and reproduced, obtained 
with a random error, due to a random shift of the recorded pulses by a maximum 
amount AX, depending on head and tape quality. Written (8) in the form 

(29) g,-fc__L ~ l r , 

where X* = u9+ and XJ = u9f', permits the determination of the maximum error 
inx caused by AX when it is assumed that for a given sampling interval the two polarity 
changes of x[t) were shifted in opposite directions 

(30) Az_kW+2AX)-(K-2AX)_kAA>. 

' X X 

For a maximum acceptable Ax given, we obtain from (28) and (30) 

(31) X > 2Amin + i ^ 
Ax 

and 

(32) Jfc < 1 + i -= . . -* . 
V ' AX 2 

Thus, both the values X and k are limited through accuracy requirements and 
recording process qualities. Amin has to be chosen so as to secure complete indepen
dence of adjacent pulse waveforms when reproduced. Any superposition of adjacent 
pulses results in a distortion of 3 + and S~ intervals in reading, and a nonlinearity 
in signal transmission is the consequence. 



For MUSA-6, Xmin = 100|X was found necessary, and it seems possible to reduce 155 
it very substantially by improving head quality which is here the main limiting factor, 
especially at the highest tape speed used (10 m/sec). AX was found to lie below 0-2 \x 
for an Agfa MF-3 tape, and thus for Ax < 10~3, X = 1 mm and k = 1-25 was 
chosen. 

For a given accuracy the quantity X and the quantity 5, which is to be chosen ac-

x(t ) 

a) wr i te current 

read pulses 

P+ 

b) wr i te current 

read pulses 

Fig. 5. PDM reading and 
writing methods. 

cording to the spectral composition of x(t), determine the necessary tape speed 

X 
(33) 

S 

To meet different requirements for different kinds of processes x(t) and to secure 
economy in tape and machine time, a number of tape speeds have to be used. In 
MUSA-6 the speed range is from 1 mm/sec to 10 m/sec in 8 steps with a ratio of ^/lO, 
and the respective range of l/# from 1 c/s to 10 kc/s in similar steps. 

Moreover, this enables the processing of recorded processes at a maximum speed, 
regardless of the speed which was used for recording. 



The PDM signal x(t) can be recorded on the tape and restored to its original form 
by two basic methods, both used in MUSA, and illustrated in Fig. 5. The instants of 
polarity changes are determined by points of the first coincidence (P+ and P_ in 
Fig. 5) of the read and amplified pulses with the corresponding d level. The d levels 
are near zero (~ 5% amplitude) in case b) and approximately 50% amplitude in 
case a). Method a) does not require erasing, but is insensitive to pulse amplitude 

Fig. 6. Multiplicator output in one sampling 
interval. 
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variations. Method b) requires erasing, is insensitive to pulse amplitude variations, but 
sensitive to the noise level between pulses. Both methods can give acceptable results. 

MULTIPLICATION 

For multiplication the well known method of combining pulse duty modulation 
and amplitude modulation is used (Fig. 6). In a modulation unit the restored PDM 
signal x(t) obtains in its ith inteval accurate levels yr, corresponding to the rth 
sampled value of a signal y(t). Then, the mean value of the signal wir obtained in this 
way in the ith period is, with respect to (8), 

(34) (Wir)niean = 7 Xiyr • 
k 

The necessity of sampling the signal y(t) is to be stressed. Should the sampling 
be omitted, (34) would change to 

p5) «--is*-':|[4-(1+!)) 
if for y(t) the first three terms of its series expansion in the centre of the sampling 



interval are used: 

(36) 
, ч - < „ t2 

Д t ) = Уr + Уr • t + Уr • — 

From (35) it follows that for a nonlinearity error smaller than 1%0 of full scale 
(x ; = yr = 1), the maximum deviation of y(t) from an optimally chosen straight line 
in the given sampling period equal to y" . ($2/16), should be (for k = 1-25) smaller 

• . f t i + Í M 

Fig. 7. Multiplicator output for 
saw-tooth coding. 

than 1-5 . 10~3. That is a very severe limitation. On the other hand, equation (35) 
indicates that a linear change of y(t) causes no distortion, so that slight deterioration 
of the holding action of the SH circuit in Fig. 1 has no effect on accuracy. This does 
not hold, if a saw-tooth coding voltage is used. In such case one interval of the 
signal w(t) has the form indicated in Fig. 7 (for a falling ramp saw-tooth). Taking an 
unsampled input y(t) instead of the sampled yr then leads to a mean value 

(37) (",>)» 
1 - - 3 , 

" Г ď ' + 4 Л 1 - - í -
k 

„ &2 x3 

if for y(t) the series approximation (36) is used. 
Equation (37) indicates a large amount of nonlinear distortion due to the first 

derivative of y(i). For l ° / 0 0 of full scale accuracy the change in y(t) during one inter
val 9 has to be below 4 . 10~3. 

INTERPOLATION 

After multiplication, it is usually necessary to gain a smooth signal 

(38) w(t) = x(t - r) y(t) 

or 

(39) w(t) = x(t - T) . 



In the latter case y(t) = 1 is used, x denotes the time lag, due to the time the tape 
takes to travel from one block of heads to the other. Complex low-pass filters are 
usually employed for attenuation of the high frequency components of w(t) and so 
a smooth output waveform is obtained. The attenuation of the sampling frequency 
1/9, which is the most significant, has to be of the order of 103, if less than l°/ 0 0 

ripple is required. Therefore, it is hardly possible to obtain a response time of the 
order 1/9 to a step change in the (w,r)mean values. To overcome these limitations and 

. . 
12 ҢP) 

1 
12 ҢP) 

SH u(t) 
ҢP) SH ҢP) w(t) 

A 
Fig. 8. Generalized interpolation circuit. 

the problems of buliding very complex filters for frequencies form 1 c/s to 10 kc/s, 
classical filters were abandoned and discrete active filters used. 

In MUSA-6, the mean value of each individual interval 9 of w(t) is computed and 
the values (w, r)m e a n so gained are interpolated parabolically. The circuit used for 
this purpose is based on generalization of the sampling circuit in Fig. 1. If the 
filter F in Fig. 1 is omitted and w(t) used as input, then according to (2) and (34) 
for (a9IRC0) = 1 and R/R0 = k the output of the SH circuit would be equal to ytyr. 

Fig. 8 shows a generalization of the circuit in Fig. 1. Here F(p) denotes the transfer 
function from u to w and G(p) transfer function form u to i: 

(40) G(P) = % 
u(p) u(p) 

Now it can be demonstrated that it is possible to find such an F(p) and G(p) that 
the output w(t) in every sampling interval is formed by a parabolic arc of the mth 
order traced through m + 1 succeeding values 

(41) w, = fc(w;,.)mean = 5c;jv . 

Using the discrete form of Laplace transform and designating 

the transforms of u(t) and w(t) are 



(42) _(_)«!«,_', w(_j-IV, 

where wc and wf are the values of „(f) and w(i) during the ith sampling interval. 
Similarly, we can use the z-transform for the sequence of values w(t). We define 

Wj(e) as 

(43) w/e) = w(0j + e9) , 0 ^ e ^ 1 , 

that is, the value of w(() taken in the ith interval in an instant e9 after the correspond
ing sampling instant. Then 

(44) w(e, z) = Y>i(e) z ; . 
i 

The desired interpolation law may be expressed in a general form 

(45) vv(£, z) = zvvv(z) Y (£ + - 1 ! . f ~ Z ) m " ; lm 

W .=o (e + A - m - 1)! (e + A - i) m! \ i 

The value of the coefficient with z m + v - i in (45) is 1 for e = - A + i and zero for 
e = — A + /c; k = 0, 1, . . . , m; k + i. Therefore, when e goes successively through 
the values - A, - A + 1, . . . , — A + m; w(e, z) goes through the values w(z) zm+v, 
vv(z) zm+v~~',..., w(z) zv, that is, wt(g) goes through the values w ,•_,„_„, w, + m _ v + 1 , . . . , 
. . . , w i+v. The polynomials with z

m + v _ i in (45) are of the order m; thus (45) is an 
equation of an interpolation parabola of mth order, determined by m + 1 succeding 
points of W;. Of course, only the parabolic arc for 0 = e = 1 actually appears in the 
output signal w(t). 

The waveforms of w(t) are generated from u(t) by means of the transfer function 
F(p). u(t) is constant during one sampling interval, and suffers sudden changes only 
in the sampling instants. The waveforms of w(t) during one sampling interval are 
purely parabolical; so it is evident that they are generated by simple integrations: 

(46) ^)=I^-
n = 0 y p 

From this it follows that there will be no change in the polynomial describing w(t), 
if there is no change in u(t). That is, the polynomial valid for the ith interval would 
give the same values, as an extrapolation of the polynomial for the (i — l)th interval, 
if Mj = «,_!• This can be expressed by 

(47) vv(e, z) = z w(e + 1, z ) . 

Thus the difference 

(48) w(e, z) - z w(e + 1, z) 



160 is the response of F(p) to a step 

Aut = M; — Mj_! 

or 

(49) A u(z) = (1 - z) U(z) 

in z-transform. Evaluating (48) from (45) yields 

(50) w(e, z) - z w(e + 1, z) = zrw(z) (^ + \ 1 - z ) m + - . 

Comparing (49j and (50) shows that only if 

(51) u(z) = A w(z) (1 - z)m zv 

(50) has a form 

(52) w(e, z) - z w(e + 1, z) = - J u(z) (£ + X\, 

which can be understood as a response to a unit step A u(z) generated by a transfer 
function of the form (46), where 

--mm. 
Thus, for an interpolation of mth order, G(p) has to be chosen in order to secure the 
appearance of mth difference of the input values on the output of the sampling unit, 
and F(p) has to be chosen according to (46) and (53). 

Denoting by it the mean value of i(t) taken on the ith sampling interval, we can 
form the z-transform 

(54) l(z) = JV . 

The dependance of the values lx on the values u{ can be expressed in terms of a z-
transform transfer function <p(z) 

(55) i(z) = u(z)cp(z), 

cp(z) being fully determined by the choice of G(p). 
The basic equation of the feedback loop of Fig. 8 then follows as 

(56) " - 1 = » i - ^ + - ( 0 . ^ ) d t = « i - ^ ^ - | » i . 

Putting 

(57) A = J-t 
kRC 



forming the z-transform of (56) by using (55) leads to 1 6 1 

a 
u(z) = z u(z) — zA w(z) z u(z) <p(z) 

or to 

(58) u(z) = **& . 

1 — z H z cp(z) 

According to (51) we need 

u(z) = Azv(l - z)m w(z) , 

so that cp(z) has to be chosen according to 

(5 9) r <p(z) = v T T — v ^ — • 
C z (1 — z) 

Because of the term zv in the denomitator such a transfer function is realizable only 
for v = 1: 

{ CA) ( l - z ) ' « h(l-zf 
Let us form a transfer function 

k + n 

The response of such a transfer function to a unit step will be 

« ^ { ^ ( « + r ' L 
The sum in (62) is evidently a series expansion of the function 

and thus 

(64) Gn(0 = 4 ( i + n~ 1 

d f \ » 
The mean value of Gn(t) taken over the interval 

i8£t£(i + 1)9 



will be 
1 p(i + D* 

(65) 

and forming the z-transform of the sequence 

(66) Gn(z) = Y, Gniz> = 

ь-ìГw-Г.-лЬ-KÏÏ 
( 1 - 2 ) " • 

The z-transform of a unit step is 1/(1 - z); therefore z-transform of the response i(z) 
to a unit step in u(z) according to (60) is: 

(67) i(z) = u(z)cp(z) = £ Y 9 » . 0 ( i - zy+>' 

Comparison of (66) and (67) indicates that 

(68) G(P) = ~ E W G B + I ( p ) = f t f - ^ , 

where 

*-[(rsc:0L 
Both E(p) and G(p) are thus known for a given choice of m, A, A, & and C. The 

values of A and C are to be chosen from signal level considerations. The parameter X 
determines the position of the actually used section of the interpolating parabola 
with respect to the determining set of (m + 1) points vv;_m_v, . . . , W;_v. The cor
responding set of values a is — ) . , . . . , — X + m. Best interpolation results are 
obtained in the central interval, that is for . 

(70) _ i + _L__^8<i + _ _ _ _ _ ^ . 

y ' 2 2 ~ 2 2 

If we choose this central interval as the actually used one 

0 _ e £ 1 
it is evident that 

(71) x = HLZI 
2 

is necessary. 
The interpolation is bound to an inherent delay. Putting in (45) 

e = - X + i 
yields 

(72) w (8 ,z) = w ( z ) z m + v - i . 



Thus, w(.) goes, for t = ©k + s&, through the value vvfc_m_v+i which appeared 163 
on the input in the interval from 0k — (m + v — i) 9 to ®fc — (m + v — i — l) 9. 
Taking the mean of these two values, we obtain the delay 

(73) xd = (s + m + v - i - i) 5 = (m + v - A - f) 9 = (m - X + f) 3 . 

For a symmetric interpolation according to (71) 

(74) т í - [ - + l ]S . 

ÏV,_4 

rd = | , 9 
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/ 
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Fig. 9. Forming the interpolating output waveform in the i-ith sampling interval for a symmetric 
cubic interpolation. 

This delay is of no principal importance in the applications in MUSA-6, as it only 
adds to intentionally created delays. 

As an example we can take a symmetric cubic interpolation (Fig. 9) characterized 
by m = 3, X = 1. Choosing A = 1 and designating 

(75) 

(57) yields 

Further, in (53) 

I-
*«*-. 

C m 0 = łЃE + ̂  б(£ ~ ̂  = ł£3 " ł£ 



164 and thus 

and 

In (69) 

and thus 

and 

a0 = 0 , otj. = - £ , oc2 = 0 , a3 = 1 , 

1 1 

ð V 6^P * ) - . * - . . - • 

Y (S + U) = — (e4 + 1023 + 35e2 + 50£) 
„=o \n + l) 24 V ' 

Д o - f f . Л - î f . / » 2 - | . / » 3 - 1 , 

» -/ \ 1 5 - 35 1 25 
R0 G(p) - _ + - _ + - _ . _ + - - . S»V 2 S V 12 3p 12 

The delay according to (74) is 

t, - fa. 

The interpolation used in MUSA at present is a quadratic nonsymmetrical one 
(Fig. 10). A compromise with hardware considerations led to this decision. It is 
characterized by 

mm 2, A - 1 , A = l ; 

m = ~2+~> R0G(p) = \ + - + ^; 
P 2p p2 p 6 

T . - f X . 

The practical circuit shown in Fig. 11 differs from Fig. 8 in that the feedback is not 
taken only from output. But this is of no principal importance, if the correct transfer 
from u(t) to input is secured. It has only to be noted that it is necessary to have some 
galvanic connection from output to input, otherwise the integrators involved in 
synthetizing F(p) would cause a great output drift. If this galvanic feedback is used, 
the output drift is determined only by R and R0 values and the input drift of the 
input amplifier. It can be seen from Fig. 11 that to change 3 requires only to change 
three capacities. This is of great practical importance, when a large set of 9 values 
has to be used, as it is in the case of MUSA. A detailed analysis shows that it is 
possible to synthetize interpolators for 3rd and 4th order interpolation with the same 
number of amplifiers, as in Fig. 11. The number of necessary resistors and capacitors 
increases, of course. 

One of the simplest connections for 3rd order symmetric interpolation is shown 
in Fig. 12. 



*-!* 
— i 
Wi-1 | 

/ / ' v? , - 2 
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«... ,-1 6>, 1 

Fig. 10. Forming the interpola
tor output waveform in the /'-ith 
sampling interval for a asym
metric quadratic interpolation. 

Fig. 11. Quadratic interpolation circuitry. 

Ow(t) 

Fig. 12. Cubic interpolation circuitry. 

The quality of interpolation may be judged in terms of a frequency characteristic 
or transfer function, valid for frequencies lower than half the sampling frequency 1/5. 
From this standpoint, we see that from a sequence of discrete input values w, (which 
may be dealt with as a sequence of Dirac pulses centered in their intervals) at first the 



signal u(l) is formed, which consists of rectangular pulses with amplitudes determined 
by (51). Thus the equivalent transfer function will be 

Az(\ - zf ) L Z S H ea"/2 = Ae~9"/2 . — (1 - e- 9")m + 1 = 
9p Qp 

(76) = A . — e-(-"+2"5p/2 sinh'"+1 ^ . 
9p 2 

Then the signal u(t) is passed through the filter F(p) and so the total interpolation 
transfer function becomes 

Fl(p) = AfAsinhM F(p)(9pf e-C" + -2)Sp/2 

(77) Fj(p) = e-<'" + 2>9"/2 ( 1 sinh ^ Y + ' f" 3 * / \(-X' (' + *) 
\9p 2) k = o L \ ^ e / V m J 

It may be noticed that for a symmetrical interpolation X = (m — lj/2 the polyno
mial in e is even for an even m and odd for an odd m, so that the sum in (77) is 
always even in p. Hence, all the phase shift in Fj(p) is due to the delay xd = (m + 2)Sp/2 
To better see the influence of raising the frequency, it is convenient to expand 

(78) e-*"- F J O ) = 1 + £ a , (H 2 f c • 
t = i 

A detailed analysis, not given here, indicates that for X = (m — l)/2 

at = 0 

for k = \m. Thus, a higher interpolation order allows the transfer of higher frequen
cies for a given decrease or overshoot in amplitude. But this gain in the pass-band is 
rather small for m > 4, because for the sampling frequency 

<» = •—, Fj(j(«) 

always goes through zero. 
If the interpolated output w(t) is to be used for multiplication (e.g. if a correlation 

i s being computed) it has to be sampled in coincidence with the sampling instants of 
the PDM input of the multiplicator. 

Therefore, it is interesting to know the exact formulation of the signal transfer 
from interpolation input to sampling output. 

The situation is as in Fig. 13 where S denotes the mean value sampling circuit 
(Fig. 1) and Fc(p) the correction filter used with it. 



ш 
_ _ _ ) - y a>< 
N(p) V 1 + xkp 

Putting 

(79) 

with 

(80) 

and assuming that the sampling instants of y(t) are shifted with respect to the sampling 
instants of w(t) by an amount s9, 0 si e _i 1, we can, after a somewhat tedious 

MÍ 
я* = ч — ^ -^ , 

N"( 

» w H z м 
_U(Z) 

ғ(« -Ü») ӯ(e,z) 

0, + єů 

Fig. 13. Interpolation and resampling transfer functions. 

calculation, not given here, express the values yt as a linear function of the values w;. 
In z-transform we get 

y(z, z) = z w(z) f_><-p(l, z) + (1 - z)'" + 2 __ _____ + 
I k 1 - &z 

(81) + ( l - z ) T O £ ' Z ) f - ( 0 r i ) l 
v ; ^ \ i - i (fc + i )!9 t + 1 j ' 
where 

_t = |fl,[F(p)]_ = _1/tI[; fc-V™; Fc(0f+1) = [ ( ^ J + W ] ; 

and \j/m<x(s, z) is the interpolation polynomial used, known from (45): 

+m A(a, z) = l " <_____ M ______! -

' ' t=0 (s + A - m - 1)! (e + A - fc) V fej m! 
*_>"' /- + A - m + fc - 1\ .. ._ 

•»?.( fc ) ( 1 - Z ) ; 

*&(«, 2) = (£)V_._>.z)• ^ k z ) = [V_>, -) da; 

(82) ^ f t M ~ D ^ ' M . U • 



Equation (81) may be written also: 

(83) y(s, z) = z w(z)lil>m+ux+i(s, z) + P(E, r) + Q(£, z ) ] = w(z) L(E, 2) 

with 

Ћ 'A + i 
m̂ + 

where 

9p/2 
rcro(p) = 

sinh — 
2 

is the ideal correction filter transfer function, and 

dV+' , n /iv*> /d\vr 
*»-[(i)^L Q-Ш 

and finally 

(85) Q(s, z) = (1 - z)Y, jjfff^i (Ff + l) (0) - F&'XO)). 

Equation (83) shows that the sampled y(t) corresponds to ideal samples of a signal, 
gained by interpolating the w; values by an interpolation polynomial of the order of 
(m + 1), with X increased by \ and by adding the correction terms P and Q. It has to 
be noted that il/m+1:x+i corresponds to a symmetrical interpolation if ^m,A is a sym
metrical one. 

The term P corresponds to transients, due to discontinuities of w(t) and its deriva
tives in sampling points. These transients, as can be seen from (83), are of a form of 
steps with exponential fronts, occuring in sampling points (s = 0, s = 1). The 
amplitudes of these steps are proportional to the (m + 2)-nd difference of w;. if w;. 
The term Q is due to the non-ideal transfer fuction of the correction filter used. 
From (85) and (82) it can be seen that this term is proportional to (1 — z)r if 

(86) P<*>(0) - Fg>D(0) = 0 

for k g r. Thus, if w, has not great high order difference values, P and Q can be 
neglected. For the interpolation method and correction filter (given by (6)) used 
in MUSA 

(87) P(s,z) = f4(l - zf + (1 - zf \-±*L + _4«L1 
|_i - QXZ 1 - e 2 z j 



with 

A1 = -0-00168; A2= - 0 - 0 0 3 ; e . = 0-154 ; Ql = 2-77 . lO"6 , 
and 

n f l . . 2M = f+V(!)(i-zf. 
Defining by 

(88) R(k&) = £ 1WiaW,-t, 
i 

fc being an integer, a correlation function computed from the discrete values V 
and 2wt, and using for - - j f . - - j f o R(k9) the z-transform 

R(z) = 1vv(z-1)2w(z), (89) 

we find that a value of the correlation function, computed for a shift (fc + s) 9 by 
means of y(t), gained by interpolating and resampling the values of 2w; according to 
Fig. 13 that 

(90) R(E,z) = ^ ( z - 1 ) y ( e , z ) = R(z). ^ 4 = R(z)L(£,z). 
w(z) 

Thus, a value of a correlation function computed for a shift (fc + e) 9 follows from 
(81) or (83) as a linear combination of the neighbouring values R(fc9) and, as (83) 
shows, this linear combination is equivalent to a (m + l)-order interpolation of 
these values if high order differences of R(fc9) are small enough, as is usually the 
case with smooth correlation functions. 

Therefore, the position of the points R(T), for which the correlation function is 
actually computed, with respect to the "sampling point values" R(fc9), has only 
a negligible influence on the result. This simplifies the technical problems bound with 
the automatic setting of T substantially. 

INTEGRATION 

In most applications of MUSA, an integral of the multiplicator output is necessary. 
For instance, for correlation computations, an output 

(91) Wt = ~ ^ + iw(t)dt = - ^ ( t ) ^ - t:>d., 

ti+1 = f, + T, T i+1 = T, + Ax 
is required. 

The machine operation is organised in such a way that the integration intervals 
are equidistant. (The tape is closed in an endless loop, maximum 200 m in length, 
and T equals one revolution of this loop.) 

Then it is obvious that the mean value sampling circuit or any described interpola
tion circuit can be used for gaining the Wt values when 9 is set equal to T and the 



170 synchronizing @; pulses to the SH unit are replaced by tx pulses, gained from auxiliary 
tracks. 

The practical circuit used in MUSA is shown in Fig. 14. It allows for zero order 
(for digital voltmeter output) or first order (for graphical record) interpolation of the 
computed values. The change of the interpolation block from Fig. 11 connection to 

T=(fc4-1)R0C R0C = 1sec 
k=0n-99 

Fig. 14. Zero and first order interpolation circuitry for integral evaluation. 

Fig. 14 connection is accomplished by replacing a plug-in unit. The time Tis set by 
means of decade resistors kR0 in steps of 2 msec in the range 1 -f-100 sec. 

SYNCHRONISATION 

As can be seen from the above, to restore the PDM signals by interpolation 
knowledge of the sampling instants 0 ; is necessary. 

For this purpose the relative position of 0 ; with respect to the moment of polarity 
changes of x(t), is used. 

Denoting the moment of the positive and negative polarity changes in the i-th 
interval by T + and zj~ respectively, we can see from Fig. 2 that 

(92) 

where 

(93) 

Ö, = *. + T i -1 
2 

< + *r 

Thus, we are able to derive the 0,- moments from measured T ; values. Of course, only 
past values can be used in defining the Qt in question. The simplest algorithm would 
be as follows: 

?i + *i-, (94) i+1 = -î + 5 . 

But more sophisticated algorithms are required in practice. The main factors to be 
respected here are disturbances in the tape velocity which cause undesired noise in 



the reproduced signal. This noise can be held to an acceptable level not only by mecha
nical means, which are very bulky and expensive, but by an appropriate choice of the 
synchronisation algorithm, too. 

For this purpose, let us suppose a sinusoidal disturbance of tape velocity, which 
causes a time shift At in reproducing a pulse which otherwise would occur in a correct 
time interval t 

(95) At = cc9 sin (cot + cp) = a(t). 

From (8) we find 

(96) T
+ = 0 i + * - » ( i + ^W = e; + l + »(/i + ^ 

V 2 4V k) ' 2 4 V k 

Designating the corresponding time shifts by <5 + and <5T we find for 0t = i9 

<5+ = a9 sin (CAT+ + cp) = a& sin (zt — X^), 

(97) <5r = aS sin (COT^ + cp) = aS sin (et + X) , 

where 
(98) 8,. = Q(i + i) + co ; A, = fl M + 2 i \ . - ; fl = co9 . 

Let us suppose for simplicity's sake that a constant value is encoded in the PDM 
output of the multiplicator which is connected to the input of the interpolator circuit 
from Fig. 8. As a consequence of the pulse shifts <5+ and <5r an error <5f in determining 
the sampling instant position 0 ; will appear. The errors c5 + , c5r, <5; cause a noisy 
output w(t). Assuming a low noise level, we can neglect the influence of small devia
tions from equidistance of 0t synchronisation pulses on interpolation circuit 
dynamics and treat the noise to a first approximation as caused by the false determina
tion of mean values of only the large signal inputs to the first integrator of Fig. 8. 
These are two: the signal w(t) and the feedback from w(t) (noise neglected). 

With A = 1 in (51) and (53) we can for w(i) = constant = w0 take F(p)jG(p) = 
= CJ9- as am = fim = 1 according to (53) and (69). Then 

(99) i = JW°-

Further, respecting (57), we find the equivalent value of the noise signal 

i C®1+1 

(100) Aw, = - - [w0 + k w(t)~\ df. 
# J0, 

For w(t) of the form of Fig. 6 for a constant xt = x0 and j7; = y0 and respecting 

w0 = - x0yo 



172 we obtain 

(loi) AWi = | v0 [W, - a, (- + 7 ) + -(** - *r)] • 

Now an algorithm has to be found, determining 6>; from measured values xt, that 
is, determining <5; from values (<5+ + <5f)/2 gained by comparing xt with equidistant 
time pulses separated by an interval 5. 

From (97) we find 

_+ + 5~ = 2a9 sin et cos 1 

^102-* 1 <5;
+ - ð; = - 2 a 9 cos e, sin Я 

where 

^M^-
The algorithm determining for <5; has to show a good stability and quick response, 
thus the choice of a response of a finite number of steps is optimal. We thus choose 

(103) <5;+1= _ r _ . _ w + «r), 
„ = 0 

where the symbol _1* denotes the fcth difference. Substituting (102) and (103) into 
(101) then leads to the result 

Awi • 1 41 . Q v _ . k Q . T fe + 1 "I 
— = — sin A cos e, H sm — cos A >, 2*£>t sin" — sin e, (_2 — i.) I -

4afcj>0 Q 2 _t,o * 2 |_ 2 V 'J 
(104) 

Now we wish to have Awt as small as possible for a maximal range of Q. For 
•Q = 0 we hawe X = 0 and _lw; = 0 and we demand 

dJw ; _ , d 2 Jw ; 

• = 0 and ~ = 0 

dQ &Q2 

which leads to conditions 

(105) 60 - _ and _ _ = , . 

All algorithms (103), satisfying this condition, can be written in the form 

(106) a, = Ip,+ +*+_ + _r + _,-. - /i2 x>_ _*(./• + $D1 , 

where the a_ have to satisfy the condition 

_>. = -. 
t=o 



Using (106) in (101) leads to 

Aw, ( , sin Q . A , 4X . s Q - , ok . k G . f 
— = cos e,[ / cos X sin X M sin — cos X > 2Kak sin — sin s, — 

4afcy0 V O / G 2 *=0 2 [ 

(107) --Lti^-^J. 

To the simplest transfer function satisfying (105) 

(108) . j + 1 = i[3(<5,+ + . f ) - (St-1 + *,"-i)] 

corresponds a0 = 1 and 

^./.n\ ^ w . t i , sinG . A 4 / . 3 G , / G \ 
(109) — = cos 8; I / cos X sin / |H sin — cos X cos { e; . 
V ' 4afey0 V O J Q 2 \ 2) 
The vanishing of the first two derivatives of Q is equivalent to the vanishing of the 
first two derivatives of the pulse shift tr(i'); thus with this simplest algorithm, neither 
a constant error in tape velocity, nor constant acceleration of the tape causes any 
error in the reproduced signal. This is a very important quality, achievable with 
PDM, which substantially simplifies the design of mechanical blocks. 

X in (107) is a function of x0 as well as Q. It is not possible to suppress higher 
derivatives of Q than the second for all values of x0. But the ak values can be chosen 
in such a way that the influence of x0 is held to minimum. 

Studying the expression 
(110) KX COS X — s in / 

we can find for a given lmax = (1 + 1/fc) £2/4 by series expansions an optimal 
K = /(Amax) = f(Q) for which \KX cos X — sin l|max on the interval 0 = X _̂  Xmax 

is minimal. 
The first terms of the series are 

(HI) K = i + _ _ U i L A4 +______ A*. 
; 4 240 22 400 

Equation (107) then may be written 

(112) — = cos 8;(K:1 cos X — sin X) + 

4akya 

H cos XJ(sin Q — KQ) COS e; + 4 sin3 — Y,2kak sin* — sin e; (Q - n)\t. 

The first term expresses the minimum possible disturbance with any choice of ak. 
The second term can be held arbitrarily low by an approximate choice of ak. The 
most reasonable demand is to keep the second term to zero for some important 
disturbing frequency, for instance the perforation frequency or gear tooth frequency. 



For this it is necessary to choose 

a2 = 1 — (1 + 2 cos O0) q , 

( U 3 ) a. = - 4 sin2 2 t + q (\ + 4 sin -*• sin | O 0 

where 

a 0 = 1 - a t - a 2 , 

кO 0 — sin O 0 

4 sin O sin2 (O0/2) 

and K0 designates the value of K for the frequency O 0 for which the noise has to be 

minimized. 

For small values of Amax (Amax < \) the minimized noise corresponding to the first 

term in (112) can be estimated as 

(114) Aw, = aky0 . * = "J^J^L tf . y„. 3 V»«) . jfl ±JL!Z . 
V ; 3 192 ' ° w 192 

Thus, the influence of velocity changes can be suppressed very strongly by an appro

priate synchronisation algorithm. The first derivative of a(t) is proportional to the 

relative tape velocity errors in writing (Avw) and reading (Avr) 

t / . Avw + Avr 

a (t) = __z :. 
v 

Thus, a velocity variation of 1% amplitude in reading or writing, that is Avjv = 

= a90 sin (cot + cp), aBco = aQ = 10~2 may cause only a noise (for k = 1-25) 

3-7 . 1 0 " 4 O2 of full scale. This is a negligible value for all values of O, for which 

this estimation is valid, that is, for O < 1, a> < 1/9 which corresponds to velocity 

variations with frequencies close to half the sampling frequency. 

It is interesting to note that the tape velocity noise supression obtainable with the 

described synchronisation algorithms is comparable with that obtained with 0 ; 

synchronisation pulses taken from an auxiliary track. In the latter case 

(115) .5; = aQ sin (co0; + <p) = a9 sin (e, - — ) , 

<>І+I — <5; = 2a9 cos є. sin — , 

2 
and 

(116) Awt 

Aakyo 

I . O \ 
' s i n — \ 
1 sin A I cos 8 ; , 

O 



the first term of series expansion being 

, „ . , Aw, fP M2\ Q3 / x0\fx
2

0 A 
(117) = ) cos e, = ( 3 + — ) ( — - 1) cos e.-

' 4aky0 \6 2 4 / 384 \ k)\k2 ) 

yielding a maximum error for x0jk = 2/^/3 - 1 

O3 

(118) Awt = aky0 — , / 3 = 4-012 . i 0 _ 2 a y 0 a 3 , 

whereas (114) yields for the same value of k = 1-25 

(119) Awt = 3-1. 10~2ay0Q
3 . 

For the simplest algorithm (108) the error estimation is 

(120) Aw, = ^ 5 . | 1 + 1^ ( 1 + - ) - 1 6 1 ^ 3 = 0-598ay0£23 for k = 1-25 

and would be satisfactory only if the velocity error were low or slow. A PDM signal 
based on a saw-tooth coding seems to have the advantage of carrying the synchronisa
tion track in itself — one of the polarity changes of the PDM corresponds to the 
steep front of the saw-tooth which has to be separated from the sampling instant by 
a small fixed interval. 

But in spite of this an analysis quite similar to the above indicates that the noise 
situation is much worse in this case. From Fig. 7 and (100) we can derive 

(121) Aw, = - ~ yJd, + 1 + 8, + ^ (di+l - a,) - 2<5+l. 

Using for 6, (114) and for <5,+ 

(122) <5+ = sin L + ^ 

we obtain 

/•.-.-A dw, . ( Qx0 Q\ ( . Qx0 x0 . Q 

(123) — = sm £; cos — - — cos — I + cos s, ( sin — sin — 
f 2aky0 \ 2k 21 \ 2k k 2 

Maximum of noise appears for x0 = 0. Thus for the maximum amplitude of Aw, we 
have 

(124) Aw, = 4aky0 sin2 — = \aky0Q
2 . 

That is, of course, much worse than all preceding cases and indicates sensitivity 
to constant acceleration. Therefore the advantages of a triangular waveform are 
demonstrated once more. 



Finally, it may be stressed that all the advantages of a triangular coding waveform 
shown, that is 

a) low gain requirement for the generating integrator 
b) low quality requirements for the SH circuit in coding and multiplication 

applications 
c) possibility of high suppression of influence of tape velocity variations without 

use of an auxiliary synchronisation track 

may be used simultaneously in practice as the influence of waveform imperfectness 
and the sampling-holding action imperfectness on the intrinsic synchronisation 
information content of the PDM signal is only of secondary importance. This can be 
shown by detailed analysis which, however, is beyond the scope of the paper. 

APPENDIX 

Triangular waveform generation 

Fig. 15 shows the basic circuit structure used in MUSA for the generation of the triangular 
waveform. 

In Fig. 16 are indicated the waveforms in some points of the circuitry of Fig. 15. 
The rectangular output of A1 and A2 is integrated by A3. In the moment when the sum of 

voltages in points 1 and 2 is zero, a polarity change in the output of A4 is effected. The output of 

4 0 3? 

Fig. 15. Triangular waveform generator circuitry. 

RC=4# 

A4 by means of the diode D controls the pair of inverters Ai and A2. If the output of A4 is nega
tive, At is blocked and A2 is working. If the output of A4 is positive, the diode D is closed and Ax 

is working, maintaining —100 V on its output. Thus A2 is blocked by a great negative voltage on 
its grid. The polarity change of output of A4 thus effects a polarity change in the output voltage of 
At and A2, causing, in this way, an inversion of the slope of the triangular wave. We can see that 
the accuracy of peak amplitudes of the triangular voltage is given mainly by resistor accuracy and 
zero drifts of Ax, A2, A4, if the gain of At and A2 is sufficient. The transients due to the switching 
of At and A2 cause of course some slight distortion of the peaks of the triangular waveform. But 
only 80% peak amplitude of the coding waveform is actually used for coding with k = 1.25. Thus 
the peak distortion is harmless. 



The switches S are open when the triangular waveform is used for coding; they are closed when 
the scheme is used as a generator of synchronising @e pulses. These are derived from the negative 
edges of A 4 output. As a measure of the quantity <5f — i(df + <3f) the mean value of the output 
of the electronic switch ES is used. This switch is closed only for the positive polarity of x(0- The 

-1 + 100 

0 

J -100 

3 

(•), pul 
! _ ] 

+ Щ 

- Ł / я 

100 Fig. 16. Waveforms of the 
coding waveform gene
rator. 

synchronisation controller SC influences the amplitude and the slope of the triangular waveform in 
order to secure the necessary transfer function between (df + df) and (5;. 

(Received June 13th, 1964.) 
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Metody pro zapamatování a zpracování analogových signálů 
použité ve stroji MUSA-6 

JIŘÍ KRÝŽE 

Práce popisuje algoritmy pro zapamatování a zpracování analogových signálů 
použité ve stroji MUSA-6, jenž je určen zejména pro vyhodnocování náhodných 
procesů. Algoritmy jsou důsledně založeny na časově diskrétní reprezentaci signálů. 
Vhodnou volbou transformací ze spojitého signálu na diskrétní je využito maximum 
možností, které uvedená metoda skýtá, a dosaženo necitlivosti k různým nedokona
lostem elektronických i mechanických funkčních bloků stroje. Je uveden zobecněný 
matematický rozbor použitých metod, jenž může nalézt uplatnění zejména tam, kde se 
používá šířkové pulsní modulace pro přesný magnetofonový záznam analogových 
signálů. 

lni. Jiří Krýže, CSc, Ústav teorie informace a automatizace ČSA V, Českomalínská 25, Praha 6. 


